Enhancing Air Quality Forecasting: A Novel Spatio-Temporal Model Integrating Graph Convolution and Multi-Head Attention Mechanism
Abstract
:1. Introduction
- The development of an information-rich graph neural network is achieved through the integration of multi-source and heterogeneous data. The model establishes a topology that mirrors the spatial interconnection of the stations by utilizing the geographic coordinates of the air quality monitoring stations. It integrates various types of data from each location, such as air quality data, meteorological data, and POI data in the vicinity, to create a feature matrix that enhances the characterization of the graph neural network.
- This study proposes a model for air quality prediction by integrating GCN and LSTM networks using a multi-head attention mechanism. The model employs graph convolution to capture spatial correlations, substitutes matrix multiplication in RNN with graph convolution operators, and enhances the fusion and extraction of spatio-temporal features of air quality through an encoder-multiple-head attentional decoder architecture to capture temporal dependencies in long sequences for crucial feature inputs.
- The experimental results demonstrate that the model surpasses existing methods in terms of performance, leading to an enhancement in prediction accuracy.
2. Related Work
2.1. Traditional Air Quality Prediction Methods
2.2. Deep Learning-Based Air Quality Prediction Methods
3. Data and Pre-Processing
3.1. Air Quality Data
3.1.1. Missing Value Interpolation
3.1.2. Spatial Correlation Analysis
3.2. Meteorological Data
3.3. POI Data
4. GLSTMMA Network
4.1. Overview
4.2. Station Relationship Graphs Development
4.3. Temporal Graph Convolutional Modules
4.4. Encoder-Multi-Head Attention Enhanced Decoder
5. Results and Discussion
5.1. Experimental Setup
5.2. Experimental Results
5.3. Model Effectiveness Evaluation
5.4. Dataset Validity Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and health impacts of air pollution: A review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Shaddick, G.; Thomas, M.L.; Mudu, P.; Ruggeri, G.; Gumy, S. Half the world’s population are exposed to increasing air pollution. npj Clim. Atmos. Sci. 2020, 3, 23. [Google Scholar] [CrossRef]
- Kang, G.K.; Gao, J.Z.; Chiao, S.; Lu, S.; Xie, G. Air quality prediction: Big data and machine learning approaches. Int. J. Environ. Sci. Dev. 2018, 9, 8–16. [Google Scholar] [CrossRef]
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef]
- Glencross, D.A.; Ho, T.-R.; Camina, N.; Hawrylowicz, C.M.; Pfeffer, P.E. Air pollution and its effects on the immune system. Free Radic. Biol. Med. 2020, 151, 56–68. [Google Scholar] [CrossRef]
- Sarkheil, H.; Rahbari, S. Development of case historical logical air quality indices via fuzzy mathematics (Mamdani and Takagi–Sugeno systems), a case study for Shahre Rey Town. Environ. Earth Sci. 2016, 75, 1319. [Google Scholar] [CrossRef]
- Lu, J.G. Air pollution: A systematic review of its psychological, economic, and social effects. Curr. Opin. Psychol. 2020, 32, 52–65. [Google Scholar] [CrossRef]
- Tainio, M.; Andersen, Z.J.; Nieuwenhuijsen, M.J.; Hu, L.; De Nazelle, A.; An, R.; Garcia, L.M.; Goenka, S.; Zapata-Diomedi, B.; Bull, F.; et al. Air pollution, physical activity and health: A mapping review of the evidence. Environ. Int. 2021, 147, 105954. [Google Scholar] [CrossRef] [PubMed]
- Alahmad, B.; Khraishah, H.; Althalji, K.; Borchert, W.; Al-Mulla, F.; Koutrakis, P. Connections between air pollution, climate change, and cardiovascular health. Can. J. Cardiol. 2023, 39, 1182–1190. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, S.; Xing, J.; Wang, Y.; Chen, W.; Ding, D.; Wu, Y.; Wang, S.; Duan, L.; Hao, J. Progress of air pollution control in China and its challenges and opportunities in the ecological civilization era. Engineering 2020, 6, 1423–1431. [Google Scholar] [CrossRef]
- Cabaneros, S.M.; Calautit, J.K.; Hughes, B.R. A review of artificial neural network models for ambient air pollution prediction. Environ. Model. Softw. 2019, 119, 285–304. [Google Scholar] [CrossRef]
- Gonzalez-Martin, J.; Kraakman, N.J.R.; Perez, C.; Lebrero, R.; Munoz, R. A state–of–the-art review on indoor air pollution and strategies for indoor air pollution control. Chemosphere 2021, 262, 128376. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, K.; Liu, Z.; Zhang, Y.; Shao, T.; Zhang, H. Coordinated control of PM2. 5 and O3 is urgently needed in China after implementation of the “Air pollution prevention and control action plan”. Chemosphere 2021, 270, 129441. [Google Scholar] [CrossRef] [PubMed]
- Chu, Z.; Bian, C.; Yang, J. Joint prevention and control mechanism for air pollution regulations in China: A policy simulation approach with evolutionary game. Environ. Impact Assess. Rev. 2021, 91, 106668. [Google Scholar] [CrossRef]
- Yang, X.; Wu, H.; Ren, S.; Ran, Q.; Zhang, J. Does the development of the internet contribute to air pollution control in China? Mechanism discussion and empirical test. Struct. Chang. Econ. Dyn. 2021, 56, 207–224. [Google Scholar] [CrossRef]
- Ma, J.; Cheng, J.C.; Lin, C.; Tan, Y.; Zhang, J. Improving air quality prediction accuracy at larger temporal resolutions using deep learning and transfer learning techniques. Atmos. Environ. 2019, 214, 116885. [Google Scholar] [CrossRef]
- Ameer, S.; Shah, M.A.; Khan, A.; Song, H.; Maple, C.; Islam, S.U.; Asghar, M.N. Comparative analysis of machine learning techniques for predicting air quality in smart cities. IEEE Access 2019, 7, 128325–128338. [Google Scholar] [CrossRef]
- Iskandaryan, D.; Ramos, F.; Trilles, S.J. Air quality prediction in smart cities using machine learning technologies based on sensor data: A review. Appl. Sci. 2020, 10, 2401. [Google Scholar] [CrossRef]
- Masood, A.; Ahmad, K.J. A review on emerging artificial intelligence (AI) techniques for air pollution forecasting: Fundamentals, application and performance. J. Clean. Prod. 2021, 322, 129072. [Google Scholar] [CrossRef]
- Mitreska Jovanovska, E.; Batz, V.; Lameski, P.; Zdravevski, E.; Herzog, M.A.; Trajkovik, V. Methods for urban Air Pollution measurement and forecasting: Challenges, opportunities, and solutions. Atmosphere 2023, 14, 1441. [Google Scholar] [CrossRef]
- Liao, Q.; Zhu, M.; Wu, L.; Pan, X.; Tang, X.; Wang, Z. Deep learning for air quality forecasts: A review. Curr. Pollut. Rep. 2020, 6, 399–409. [Google Scholar] [CrossRef]
- Hanna, S.R.; Egan, B.A.; Purdum, J.; Wagler, J. Evaluation of the ADMS, AERMOD, and ISC3 dispersion models with the OPTEX, Duke Forest, Kincaid, Indianapolis and Lovett field datasets. Int. J. Environ. Pollut. 2001, 16, 301–314. [Google Scholar] [CrossRef]
- Moore, G.E.; Londergan, R.J. Sampled Monte Carlo uncertainty analysis for photochemical grid models. Atmos. Environ. 2001, 35, 4863–4876. [Google Scholar] [CrossRef]
- Levy, J.I.; Spengler, J.D.; Hlinka, D.; Sullivan, D.; Moon, D. Using CALPUFF to evaluate the impacts of power plant emissions in Illinois: Model sensitivity and implications. Atmos. Environ. 2002, 36, 1063–1075. [Google Scholar] [CrossRef]
- Makar, P.; Stockwell, W.; Li, S. Gas-phase chemical mechanism compression strategies: Treatment of reactants. Atmos. Environ. 1996, 30, 831–842. [Google Scholar] [CrossRef]
- Byun, D.; Schere, K.L. Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl. Mech. Rev. 2006, 59, 51–77. [Google Scholar] [CrossRef]
- Wang, Z.; Itahashi, S.; Uno, I.; Pan, X.; Osada, K.; Yamamoto, S.; Nishizawa, T.; Tamura, K.; Wang, Z. Modeling the long-range transport of particulate matters for January in East Asia using NAQPMS and CMAQ. Aerosol Air Qual. Res. 2017, 17, 3065–3078. [Google Scholar] [CrossRef]
- Stockwell, W.R.; Lawson, C.V.; Saunders, E.; Goliff, W.S. A review of tropospheric atmospheric chemistry and gas-phase chemical mechanisms for air quality modeling. Atmosphere 2011, 3, 1–32. [Google Scholar] [CrossRef]
- Liao, K.; Huang, X.; Dang, H.; Ren, Y.; Zuo, S.; Duan, C. Statistical approaches for forecasting primary air pollutants: A review. Atmosphere 2021, 12, 686. [Google Scholar] [CrossRef]
- Wang, J.; Ji, H.; Wang, Q.g.; Li, H.; Qian, X.; Li, F.; Yang, M. Prediction of size-fractionated airborne particle-bound metals using MLR, BP-ANN and SVM analyses. Chemosphere 2017, 180, 513–522. [Google Scholar]
- Abhilash, M.; Thakur, A.; Gupta, D.; Sreevidya, B. Time series analysis of air pollution in Bengaluru using ARIMA model. In Ambient Communications and Computer Systems: RACCCS 2017; Springer: Singapore, 2018; pp. 413–426. [Google Scholar]
- Rybarczyk, Y.; Zalakeviciute, R. Machine learning approaches for outdoor air quality modelling: A systematic review. Appl. Sci. 2018, 8, 2570. [Google Scholar] [CrossRef]
- Ayturan, Y.A.; Ayturan, Z.C.; Altun, H.O. Air pollution modelling with deep learning: A review. Int. J. Environ. Pollut. Environ. Model. 2018, 1, 58–62. [Google Scholar]
- Zhang, B.; Rong, Y.; Yong, R.; Qin, D.; Li, M.; Zou, G.; Pan, J. Deep learning for air pollutant concentration prediction: A review. Atmos. Environ. 2022, 290, 119347. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Athira, V.; Geetha, P.; Vinayakumar, R.; Soman, K. Deepairnet: Applying recurrent networks for air quality prediction. Procedia Comput. Sci. 2018, 132, 1394–1403. [Google Scholar]
- Seng, D.; Zhang, Q.; Zhang, X.; Chen, G.; Chen, X. Spatiotemporal prediction of air quality based on LSTM neural network. Alex. Eng. J. 2021, 60, 2021–2032. [Google Scholar] [CrossRef]
- Wang, X.; Yan, J.; Wang, X.; Wang, Y. Air quality forecasting using GRU model based on multiple sensors nodes. IEEE Sens. Lett. 2023, 7, 6003804. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Jin, L.; Li, J.; Sun, Q.; Wang, H. An air quality index prediction model based on CNN-ILSTM. Sci. Rep. 2022, 12, 8373. [Google Scholar] [CrossRef]
- Ge, L.; Wu, K.; Zeng, Y.; Chang, F.; Wang, Y.; Li, S. Multi-scale spatiotemporal graph convolution network for air quality prediction. Appl. Intell. 2021, 51, 3491–3505. [Google Scholar] [CrossRef]
- El-Harbawi, M. Air quality modelling, simulation, and computational methods: A review. Environ. Rev. 2013, 21, 149–179. [Google Scholar] [CrossRef]
- Dennis, R.L.; Arnold, J.; Tonnesen, G.S.; Li, Y. A new response surface approach for interpreting Eulerian air quality model sensitivities. Comput. Phys. Commun. 1999, 117, 99–112. [Google Scholar] [CrossRef]
- Hu, J.; Chen, J.; Ying, Q.; Zhang, H. One-year simulation of ozone and particulate matter in China using WRF/CMAQ modeling system. Atmos. Meas. Tech. 2016, 16, 10333–10350. [Google Scholar] [CrossRef]
- Lei, M.T.; Monjardino, J.; Mendes, L.; Gonçalves, D.; Ferreira, F. Macao air quality forecast using statistical methods. Air Qual. Atmos. Heal. 2019, 12, 1049–1057. [Google Scholar] [CrossRef]
- Kumar, T.S.; Das, H.S.; Choudhary, U.; Dutta, P.E.; Guha, D.; Laskar, Y. Analysis and prediction of air pollution in Assam using ARIMA/SARIMA and machine learning. In Innovations in Sustainable Energy and Technology: Proceedings of ISET 2020; Springer: Singapore, 2021; pp. 317–330. [Google Scholar]
- Liu, W.; Chen, F.; Chen, Y. PM2.5 Concentration Prediction Based on Pollutant Pattern Recognition Using PCA-clustering Method and CS Algorithm Optimized SVR. Nat. Environ. Pollut. Technol. 2022, 21, 393–403. [Google Scholar] [CrossRef]
- Krishan, M.; Jha, S.; Das, J.; Singh, A.; Goyal, M.K.; Sekar, C. Air quality modelling using long short-term memory (LSTM) over NCT-Delhi, India. Air Qual. Atmos. Heal. 2019, 12, 899–908. [Google Scholar] [CrossRef]
- Li, X.; Peng, L.; Hu, Y.; Shao, J.; Chi, T. Deep learning architecture for air quality predictions. Environ. Sci. Pollut. Res. 2016, 23, 22408–22417. [Google Scholar] [CrossRef]
- Yan, R.; Liao, J.; Yang, J.; Sun, W.; Nong, M.; Li, F. Multi-hour and multi-site air quality index forecasting in Beijing using CNN, LSTM, CNN-LSTM, and spatiotemporal clustering. Expert Syst. Appl. 2021, 169, 114513. [Google Scholar] [CrossRef]
- Chen, L.; Xu, J.; Wu, B.; Huang, J. Group-aware graph neural network for nationwide city air quality forecasting. ACM Trans. Knowl. Discov. Data 2023, 18, 1–20. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, Y.; Zang, T.; Liu, H.; Yu, J. Modeling inter-station relationships with attentive temporal graph convolutional network for air quality prediction. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining, Virtual, 8–12 March 2021; pp. 616–634. [Google Scholar]
- Zhao, G.; He, H.; Huang, Y.; Ren, J. Near-surface PM2.5 prediction combining the complex network characterization and graph convolution neural network. Neural Comput. Appl. 2021, 33, 17081–17101. [Google Scholar] [CrossRef]
- Jin, X.-B.; Wang, Z.-Y.; Kong, J.-L.; Bai, Y.-T.; Su, T.-L.; Ma, H.-J.; Chakrabarti, P. Deep spatio-temporal graph network with self-optimization for air quality prediction. Entropy 2023, 25, 247. [Google Scholar] [CrossRef]
- Tang, X.; Wu, N.; Pan, Y. Prediction of Particulate Matter 2.5 Concentration Using a Deep Learning Model with Time-Frequency Domain Information. Appl. Sci. 2023, 13, 12794. [Google Scholar] [CrossRef]
- Ding, H.; Noh, G. A Hybrid Model for Spatiotemporal Air Quality Prediction Based on Interpretable Neural Networks and a Graph Neural Network. Atmosphere 2023, 14, 1807. [Google Scholar] [CrossRef]
- Hu, Y.; Cao, N.; Guo, W.; Chen, M.; Rong, Y.; Lu, H. FedDeep: A Federated Deep Learning Network for Edge Assisted Multi-Urban PM 2.5 Forecasting. Appl. Sci. 2024, 14, 1979. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, K.; He, Y.; Fu, Q.; Luo, W.; Li, W.; Liu, X.; Wang, P.; Xiao, S. Research on Missing Value Imputation to Improve the Validity of Air Quality Data Evaluation on the Qinghai-Tibetan Plateau. Atmosphere 2023, 14, 1821. [Google Scholar] [CrossRef]
- Sarkheil, H.; Fakhari, M.; Rayegani, B.; Bodagh Jamali, J. Reliability assessment in spatial modeling for identification of air pollution (NO2 & CO) probability in Tehran metropolis. Environ. Sci. 2020, 18, 187–202. [Google Scholar]
- Hussain, A.J.; Sankar, T.K.; Vithanage, M.; Ambade, B.; Gautam, S. Black carbon emissions from traffic contribute sustainability to air pollution in urban cities of India. Water Air Soil Pollut. 2023, 234, 217. [Google Scholar] [CrossRef]
- Ambade, B.; Sankar, T.K.; Kumar, A.; Sethi, S.S. Characterization of PAHs and n-alkanes in atmospheric aerosol of Jamshedpur City, India. J. Hazard. Toxic Radioact. Waste 2020, 24, 04020003. [Google Scholar] [CrossRef]
- Ambade, B.; Kumar, A.; Latif, M. Emission sources, Characteristics and risk assessment of particulate bound Polycyclic Aromatic Hydrocarbons (PAHs) from traffic sites. Res. Sq. 2021. [Google Scholar] [CrossRef]
Abbreviation | Nomenclature | Units |
---|---|---|
ADMS | Atmospheric Dispersion Modeling System | -- |
ADOM | Acid Deposition and Oxidant Model | -- |
AERMOD | AMS/EPA REGULATORY MODEL | -- |
ANN | Artificial Neural Network | -- |
AQI | Air Quality Index | -- |
AQSTN | Air Quality Spatio-Temporal Network | -- |
ARIMA | Autoregressive Integrated Moving Average Model | -- |
BGGRU | Bayesian Graph Gated Recurrent Unit | -- |
BLH | Boundary Layer Height | m |
BRITS-ALSTM | Bidirectional Recurrent Imputation for Time Series- and Attention-based Long Short-Term Memory | -- |
C3S | Copernicus Climate Change Service | -- |
CALPUFF | California Air Quality Puff Urban Fluid Flow | -- |
CGEMS | China General Environmental Monitoring Station | -- |
CMAQ | The Community Multiscale Air Quality Modeling System | -- |
CNEMC | China National Environmental Monitoring Center | -- |
CNN | Convolutional Neural Networks | -- |
CO | Carbon Monoxide | mg/m3 |
CS | Cuckoo Search | -- |
CSSVR | Cuckoo Search Support Vector Regression | -- |
CUAQRDP | China Urban Air Quality Real-Time Dissemination Platform | -- |
ECMWF | European Centre for Medium-Range Weather Forecasts | -- |
ERA5 | Fifth Generation of ECMWF Atmospheric Reanalysis of the Global Climate | -- |
GAGNN | Group-Aware Graph Neural Network | -- |
GCN | Graph Convolutional Network | -- |
GCNN | Graph Convolutional Neural Network | -- |
GLSTMMA | Graph Long Short-Term Memory with Multi-head Attention | -- |
GRU | Gated Recurrent Unit | -- |
HA | Historical Average | -- |
ISC3 | Industrial Source Complex 3 | -- |
LSTM | Long Short-Term Memory | -- |
MAE | Mean Absolute Error | Dimensionless |
MAPE | Mean Absolute Percentage Error | Dimensionless |
MLR | Multiple Linear Regression | -- |
MNR | Multivariate Nonlinear Regression | -- |
MR | Multiple Regression | -- |
MSE | Mean Square Error | Dimensionless |
NAQPMS | Nested Air Quality Prediction Modeling System | -- |
NO2 | Nitrogen Dioxide | μg/m3 |
O3 | Ozone | mg/m3 |
OZIP/EKMA | Ozone Isopleth Plotting/Electrolyte Kissinger Modification Analysis | -- |
PCA | Principal Component Analysis | -- |
PM10 | Particulate Matter 10 | μg/m3 |
PM2.5 | Particulate Matter 2.5 | μg/m3 |
POI | Point of Interest | -- |
RADM | Regional Acid Deposition Model | -- |
RH | Relative Humidity | % |
RMSE | Root Mean Square Error | Dimensionless |
RNN | Recurrent Neural Network | -- |
RSPM | Respirable Suspended Particulate Matter | -- |
SAE | Stacked Autoencoder Encoders | -- |
SO2 | Sulfur Dioxide | μg/m3 |
SP | Surface Pressure | hPa |
ST-DGCNN | Spatio-Temporal Dynamic Graph Convolutional Neural Network | -- |
STDL | Spatio-Temporal Deep Learning | -- |
SVR | Support Vector Regression | -- |
T2M | 2 m Temperature | °C |
TP | Total Precipitation | m |
VAR | Vector Autoregressive | -- |
VOCs | Volatile Organic Compounds | -- |
WD | Wind Direction | -- |
WRF | The Weather Research and Forecasting Model | -- |
WS | Wind Speed | m/s |
Pollutants (Missing Rate) | PM2.5 (5.70%) | PM10 (5.70%) | O3 (4.96%) | NO2 (4.86%) | SO2 (4.77%) | CO (5.00%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Method | MAE | MRE | MAE | MRE | MAE | MRE | MAE | MRE | MAE | MRE | MAE | MRE |
Mean | 21.4726 | 0.9944 | 47.5001 | 1.0070 | 74.8322 | 0.9994 | 17.7608 | 0.9966 | 13.1555 | 0.9867 | 0.6231 | 0.9961 |
KNN | 21.2697 | 0.9881 | 46.9564 | 0.9954 | 75.9053 | 1.0137 | 17.2510 | 0.9680 | 12.9697 | 0.9728 | 0.6187 | 0.9893 |
MF | 18.5589 | 0.9592 | 28.2112 | 0.5612 | 70.3940 | 0.8156 | 19.9263 | 1.0599 | 9.4305 | 0.8431 | 0.8335 | 0.9737 |
MICE | 22.5469 | 1.0132 | 48.2395 | 1.0171 | 73.2109 | 1.0014 | 19.3482 | 1.0064 | 13.5124 | 1.0135 | 0.6546 | 1.0087 |
M-RNN | 6.7744 | 0.3115 | 20.7425 | 0.4352 | 18.7845 | 0.2483 | 5.7384 | 0.3187 | 3.7013 | 0.2772 | 0.1403 | 0.2220 |
BRITS | 6.4716 | 0.3007 | 16.0573 | 0.3478 | 12.5022 | 0.1653 | 6.0460 | 0.3802 | 3.6611 | 0.2717 | 0.1288 | 0.2038 |
BRITS–LSTM | 6.3088 | 0.2901 | 15.8079 | 0.3317 | 12.8271 | 0.1696 | 5.8899 | 0.3272 | 3.5000 | 0.2621 | 0.1584 | 0.2507 |
BRITS–ALSTM | 5.9780 | 0.2739 | 17.6502 | 0.3698 | 12.4189 | 0.1629 | 5.0359 | 0.2805 | 3.0694 | 0.2317 | 0.1030 | 0.1630 |
Parameters | Data Sources | Units | Temporal Resolution | Description |
---|---|---|---|---|
T2M | ERA5-Land hourly data | K | hourly | Temperature of air at 2 m above the surface of land, sea, or inland waters. |
WD | ERA5-Land hourly data | - | hourly | Wind direction at 10 m. |
WS | ERA5-Land hourly data | m/s | hourly | Wind speed at 10 m. |
SP | ERA5-Land hourly data | Pa | hourly | Surface atmospheric pressure is essential for understanding weather patterns influencing air quality. |
TP | ERA5-Land hourly data | m | hourly | Accumulated precipitation, including rain and snow, impacts air pollutant deposition. |
BLH | ERA5 hourly data on single levels | m | hourly | Depth of the atmospheric boundary layer is crucial for understanding pollutant dispersion and concentration. |
RH | ERA5 hourly data on pressure levels | % | hourly | The percentage of water vapor in the air relative to the maximum it could hold is significant in understanding pollutant transformation processes. |
Pollutant | PM2.5 | PM10 | O3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Time Step | 3 | 6 | 12 | 24 | 3 | 6 | 12 | 24 | 3 | 6 | 12 | 24 | |
Static | MAE | 6.77 | 8.74 | 9.18 | 7.83 | 13.26 | 16.82 | 18.14 | 17.14 | 18.32 | 28.72 | 37.37 | 17.76 |
RMSE | 11.01 | 13.26 | 13.61 | 12.29 | 32.45 | 37.77 | 39.73 | 38.8 | 26.29 | 39 | 48.58 | 25.14 | |
MAPE | 51.62 | 70.19 | 70.39 | 57.61 | 47.41 | 61.41 | 66.96 | 64.65 | 56.72 | 110.28 | 172.38 | 57.61 | |
HA | MAE | 10.36 | 10.36 | 10.36 | 10.36 | 25.82 | 25.82 | 25.82 | 25.82 | 25.33 | 25.33 | 25.33 | 25.33 |
RMSE | 13.82 | 13.82 | 13.82 | 13.82 | 37.10 | 37.10 | 37.10 | 37.10 | 31.48 | 31.48 | 31.48 | 31.48 | |
MAPE | 113.76 | 113.76 | 113.76 | 113.76 | 146.57 | 146.57 | 146.57 | 146.57 | 137.13 | 137.13 | 137.13 | 137.13 | |
VRA | MAE | 6.26 | 7.63 | 8.07 | 8.21 | 13.45 | 16.89 | 18.89 | 20.31 | 15.57 | 22.98 | 26.13 | 26.49 |
RMSE | 9.66 | 11.14 | 11.61 | 11.65 | 28.59 | 31.86 | 32.7 | 33.1 | 21.17 | 29.61 | 32.97 | 33.35 | |
MAPE | 55.1 | 70.58 | 76.35 | 78.84 | 58.84 | 78.97 | 93.3 | 104.71 | 67.27 | 106.73 | 127.69 | 135.21 | |
LSTM | MAE | 6.39 | 6.4 | 6.42 | 6.45 | 16.72 | 16.74 | 16.68 | 16.88 | 26.94 | 26.98 | 27.03 | 27.13 |
RMSE | 9.69 | 9.71 | 9.76 | 9.76 | 34.61 | 34.51 | 34.39 | 35.48 | 37.53 | 37.66 | 37.91 | 37.4 | |
MAPE | 58.22 | 58.24 | 58.4 | 58.91 | 59.10 | 59.13 | 58.98 | 59.37 | 30.49 | 30.41 | 30.07 | 30.72 | |
GRU | MAE | 6.4 | 6.41 | 6.42 | 6.44 | 17.69 | 17.69 | 17.71 | 17.62 | 25.76 | 25.69 | 25.61 | 25.22 |
RMSE | 9.81 | 9.83 | 9.89 | 9.85 | 35.01 | 34.84 | 34.83 | 35.47 | 36.02 | 35.93 | 35.95 | 35.26 | |
MAPE | 58.36 | 58.39 | 58.41 | 58.84 | 64.96 | 64.99 | 65.17 | 65.15 | 28.2 | 28.14 | 27.9 | 27.68 | |
CNN-LSTM | MAE | 7.74 | 8.14 | 7.89 | 7.71 | 22.82 | 24.16 | 22.78 | 20.00 | 27.14 | 31.37 | 29.42 | 17.67 |
RMSE | 10.43 | 10.7 | 10.24 | 9.98 | 38.88 | 44.18 | 40.15 | 25.88 | 38.38 | 43.72 | 41.9 | 25.26 | |
MAPE | 85.05 | 72.97 | 72.59 | 48.83 | 106.11 | 98.59 | 97.26 | 116.02 | 34.74 | 33.71 | 50.26 | 58.41 | |
GLSTMMA | MAE | 4.48 | 5.13 | 5.77 | 6.24 | 9.96 | 11.34 | 12.44 | 13.42 | 9.75 | 11.94 | 14.09 | 15.54 |
RMSE | 7.51 | 8.33 | 9.20 | 9.84 | 24.65 | 27.01 | 28.95 | 30.14 | 14.37 | 17.15 | 19.77 | 21.34 | |
MAPE | 34.44 | 39.88 | 44.4 | 46.7 | 42.12 | 48.62 | 52.25 | 55.78 | 31.01 | 38.34 | 47.62 | 54.41 | |
rRMSE | 0.54 | 0.60 | 0.67 | 0.71 | 0.66 | 0.73 | 0.78 | 0.81 | 0.46 | 0.54 | 0.63 | 0.68 |
Pollutant | NO2 | SO2 | CO | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Time Step | 3 | 6 | 12 | 24 | 3 | 6 | 12 | 24 | 3 | 6 | 12 | 24 | |
Static | MAE | 8.11 | 10.64 | 11 | 7.76 | 4.32 | 5.3 | 5.44 | 4.4 | 0.17 | 0.22 | 0.24 | 0.19 |
RMSE | 12.71 | 15.76 | 16.28 | 12.26 | 9.33 | 10.74 | 10.7 | 8.32 | 0.38 | 0.45 | 0.48 | 0.39 | |
MAPE | 59.71 | 88.95 | 88.59 | 57.2 | 31.94 | 43.12 | 42.99 | 36.12 | 28.27 | 38.4 | 41.45 | 32.83 | |
HA | MAE | 11.34 | 11.34 | 11.34 | 11.34 | 5.65 | 5.65 | 5.65 | 5.65 | 0.26 | 0.26 | 0.26 | 0.26 |
RMSE | 14.98 | 14.98 | 14.98 | 14.98 | 9.05 | 9.05 | 9.05 | 9.05 | 0.4 | 0.4 | 0.4 | 0.4 | |
MAPE | 126.46 | 126.46 | 126.46 | 126.46 | 53.66 | 53.66 | 53.66 | 53.66 | 56.44 | 56.44 | 56.44 | 56.44 | |
VRA | MAE | 7.07 | 8.49 | 9.03 | 9.14 | 4.44 | 5.34 | 5.59 | 5.71 | 0.17 | 0.21 | 0.23 | 0.24 |
RMSE | 10.45 | 11.95 | 12.43 | 12.46 | 38.44 | 49.26 | 52.64 | 53.94 | 0.32 | 0.36 | 0.37 | 0.38 | |
MAPE | 65.51 | 86.51 | 94.39 | 95.94 | 38.44 | 49.26 | 52.64 | 53.94 | 33.02 | 43.46 | 49.36 | 52.15 | |
LSTM | MAE | 15.23 | 15.23 | 15.24 | 15.1 | 4.13 | 5.27 | 5.24 | 5.27 | 0.14 | 0.14 | 0.14 | 0.17 |
RMSE | 23.81 | 23.81 | 23.89 | 23.73 | 15.98 | 23.67 | 23.47 | 24.54 | 0.2 | 0.2 | 0.2 | 0.22 | |
MAPE | 63.92 | 63.92 | 63.59 | 63.66 | 31.68 | 40.52 | 40.19 | 40.68 | 35.93 | 35.92 | 36.12 | 35.68 | |
GRU | MAE | 14.68 | 14.68 | 14.72 | 14.57 | 3.67 | 4.87 | 5.05 | 5.12 | 0.15 | 0.15 | 0.15 | 0.15 |
RMSE | 22.25 | 22.25 | 22.36 | 22.06 | 10.42 | 17.89 | 18.8 | 18.13 | 0.21 | 0.21 | 0.21 | 0.21 | |
MAPE | 64.39 | 64.39 | 64.75 | 65.42 | 28.75 | 37.29 | 37.49 | 38.29 | 38.13 | 38.11 | 38.44 | 38.21 | |
CNN-LSTM | MAE | 17.6 | 19.34 | 17.2 | 10.69 | 3.19 | 4.15 | 5.59 | 4.69 | 0.15 | 0.15 | 0.15 | 0.17 |
RMSE | 24.07 | 26.31 | 24.77 | 12.34 | 9.56 | 15.42 | 17.52 | 16.23 | 0.2 | 0.21 | 0.21 | 0.23 | |
MAPE | 96.16 | 107.39 | 125.75 | 123.25 | 24.39 | 30.16 | 32.37 | 31.12 | 43.22 | 39.14 | 31.46 | 29.24 | |
GLSTMMA | MAE | 5.21 | 5.72 | 6.19 | 6.49 | 2.74 | 3.13 | 3.55 | 3.94 | 0.12 | 0.13 | 0.15 | 0.16 |
RMSE | 8.46 | 9.22 | 9.86 | 10.19 | 5.56 | 6.15 | 6.84 | 7.78 | 0.25 | 0.28 | 0.3 | 0.31 | |
MAPE | 36.72 | 40.26 | 44.02 | 47.52 | 20.47 | 23.76 | 27.46 | 29.81 | 19.68 | 22.6 | 25.81 | 29.2 | |
rRMSE | 0.56 | 0.62 | 0.66 | 0.68 | 0.61 | 0.68 | 0.76 | 0.86 | 0.62 | 0.70 | 0.75 | 0.78 |
Pollutants | Dataset | Air Quality Dataset | Multi-Source Air Quality Dataset | ||||
---|---|---|---|---|---|---|---|
Time Step | MAE | RMSE | MAPE | MAE | RMSE | MAPE | |
PM2.5 | 3 | 4.45 | 7.43 | 34.72 | 4.48 | 7.51 | 34.44 |
6 | 5.12 | 8.28 | 40.60 | 5.13 | 8.33 | 39.88 | |
12 | 5.81 | 9.26 | 45.51 | 5.77 | 9.20 | 44.40 | |
24 | 6.30 | 9.86 | 48.00 | 6.24 | 9.84 | 46.70 | |
PM10 | 3 | 10.18 | 25.03 | 43.24 | 9.96 | 24.65 | 42.12 |
6 | 11.29 | 27.12 | 46.22 | 11.34 | 27.01 | 48.62 | |
12 | 12.39 | 28.52 | 50.73 | 12.44 | 28.95 | 52.25 | |
24 | 13.43 | 30.69 | 54.42 | 13.42 | 30.14 | 55.78 | |
O3 | 3 | 10.10 | 14.71 | 32.95 | 9.75 | 14.37 | 31.01 |
6 | 12.32 | 17.62 | 40.72 | 11.94 | 17.15 | 38.34 | |
12 | 14.54 | 20.43 | 49.89 | 14.09 | 19.77 | 47.62 | |
24 | 15.89 | 21.98 | 56.83 | 15.54 | 21.34 | 54.41 | |
NO2 | 3 | 5.40 | 8.65 | 36.85 | 5.21 | 8.46 | 36.72 |
6 | 5.81 | 9.32 | 42.70 | 5.72 | 9.22 | 40.26 | |
12 | 6.21 | 9.87 | 48.09 | 6.19 | 9.86 | 44.02 | |
24 | 6.57 | 10.25 | 51.15 | 6.49 | 10.19 | 47.52 | |
SO2 | 3 | 2.83 | 5.85 | 20.67 | 2.74 | 5.56 | 20.47 |
6 | 3.25 | 6.63 | 23.81 | 3.13 | 6.15 | 23.76 | |
12 | 3.64 | 7.29 | 28.69 | 3.55 | 6.84 | 27.46 | |
24 | 3.98 | 7.94 | 30.78 | 3.94 | 7.78 | 29.81 | |
CO | 3 | 0.12 | 0.26 | 19.75 | 0.12 | 0.25 | 19.68 |
6 | 0.14 | 0.29 | 23.36 | 0.13 | 0.28 | 22.60 | |
12 | 0.15 | 0.31 | 26.28 | 0.15 | 0.30 | 25.81 | |
24 | 0.17 | 0.33 | 30.06 | 0.16 | 0.31 | 29.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Liu, K.; He, Y.; Wang, P.; Chen, Y.; Xue, H.; Huang, C.; Li, L. Enhancing Air Quality Forecasting: A Novel Spatio-Temporal Model Integrating Graph Convolution and Multi-Head Attention Mechanism. Atmosphere 2024, 15, 418. https://doi.org/10.3390/atmos15040418
Wang Y, Liu K, He Y, Wang P, Chen Y, Xue H, Huang C, Li L. Enhancing Air Quality Forecasting: A Novel Spatio-Temporal Model Integrating Graph Convolution and Multi-Head Attention Mechanism. Atmosphere. 2024; 15(4):418. https://doi.org/10.3390/atmos15040418
Chicago/Turabian StyleWang, Yumeng, Ke Liu, Yuejun He, Pengfei Wang, Yuxin Chen, Hang Xue, Caiyi Huang, and Lin Li. 2024. "Enhancing Air Quality Forecasting: A Novel Spatio-Temporal Model Integrating Graph Convolution and Multi-Head Attention Mechanism" Atmosphere 15, no. 4: 418. https://doi.org/10.3390/atmos15040418
APA StyleWang, Y., Liu, K., He, Y., Wang, P., Chen, Y., Xue, H., Huang, C., & Li, L. (2024). Enhancing Air Quality Forecasting: A Novel Spatio-Temporal Model Integrating Graph Convolution and Multi-Head Attention Mechanism. Atmosphere, 15(4), 418. https://doi.org/10.3390/atmos15040418