Cloud Characteristics during Intense Cold Air Outbreaks over the Barents Sea Based on Satellite Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Reanalysis Data
2.2.2. Satellite Data
2.3. Methods
2.3.1. MCAO Identification and Sampling
2.3.2. Cloud Radiative Characteristics
2.3.3. Composite Analysis of Cloud Radiative Characteristics
2.3.4. Dependence of MCAO Cloud Characteristics on the Background Conditions
3. Results
3.1. Spatial Distribution of Cloud Characteristics for Intense MCAOs
3.2. Changes in the Cloud Characteristics with MCAO Propagation
3.3. Analysis of the Fine Structure of Cloud Characteristics within MCAOs Based on MODIS Data
3.4. Dependence of MCAO Cloud Characteristics on the Environmental Conditions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
Abbreviation | Full Name | Unit |
Parameters | ||
Parameter | Full name | Unit |
M-index | index representing MCAO intensity | K |
CRELW/SW/NET | cloud radiative effect | W m−2 |
SRBLW/SW/NET | surface radiative budget | W m−2 |
N | cloud fraction | % |
COT | cloud optical thickness | units |
CTH | cloud top height | km |
LWP | liquid water path | g m−2 |
CBP | cloud base pressure | hPa |
CTP | cloud top pressure | hPa |
CPP | cloud particle phase (1—liquid, 2—solid) | units |
CTT | cloud top temperature | K |
IWV | integral water vapor content | kg m−2 |
EfR | cloud droplet effective radius | μm |
Other | ||
CERES | Clouds and the Earth’s Radiant Energy System | |
MODIS | Moderate Resolution Imaging Spectroradiometer | |
AM | air mass | |
SIC | sea ice concentration | |
ICE95 | ice edge 95% | |
ICE30 | ice edge 30% | |
CS | clear-sky conditions | |
AS | all-sky conditions | |
MK | Mann–Kendall correlation coefficients | |
TS | Theil–Sen slope estimator | |
SFC | surface | |
BS | Barents Sea |
References
- Wendisch, M.; Stapf, J.; Becker, S.; Ehrlich, A.; Jäkel, E.; Klingebiel, M.; Lüpkes, C.; Schäfer, M.; Shupe, M.D. Effects of variable ice–ocean surface properties and air mass transformation on the Arctic radiative energy budget. Atmos. Chem. Phys. 2023, 23, 9647–9667. [Google Scholar] [CrossRef]
- Esau, I.; Pettersson, L.H.; Cancet, M.; Chapron, B.; Chernokulsky, A.; Donlon, C.; Sizov, A.; Soromotin, A.; Johannesen, J.A. The Arctic Amplification and Its Impact: A Synthesis through Satellite Observations. Remote Sens. 2023, 15, 1354. [Google Scholar] [CrossRef]
- Serreze, M.C.; Barry, R.G. Processes and impacts of Arctic amplification: A research synthesis. Glob. Planet. Change 2011, 77, 85–96. [Google Scholar] [CrossRef]
- Cohen, J.; Screen, J.A.; Furtado, J.C.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.; Dethloff, K.; Entekhabi, D.; Overland, J.; et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 2014, 7, 627–637. [Google Scholar] [CrossRef]
- Vavrus, S.; Walsh, J.E.; Chapman, W.L.; Portis, D. The behavior of extreme cold air outbreaks under greenhouse warming. Int. J. Climatol. 2006, 26, 1133–1147. [Google Scholar] [CrossRef]
- Chernokulsky, A.; Esau, I. Cloud cover and cloud types in the Eurasian Arctic in 1936–2012. Int. J. Climatol. 2019, 39, 5771–5790. [Google Scholar] [CrossRef]
- Francis, J.A.; Hunter, E. New insight into the disappearing Arctic sea ice. EOS Trans. Am. Geophys. Union 2006, 87, 509–511. [Google Scholar] [CrossRef]
- Graversen, R.G.; Wang, M. Polar amplification in a coupled climate model with locked albedo. Clim. Dyn. 2009, 33, 629–643. [Google Scholar] [CrossRef]
- Kolstad, E.W.; Bracegirdle, T.J. Marine cold-air outbreaks in the future: An assessment of IPCC AR4 model results for the Northern Hemisphere. Clim. Dyn. 2008, 30, 871–885. [Google Scholar] [CrossRef]
- Narizhnaya, A.I.; Chernokulsky, A.V.; Akperov, M.G.; Chechin, D.G.; Esau, I.; Timazhev, A.V. Marine cold air outbreaks in the Russian Arctic: Climatology, interannual variability, dependence on sea-ice concentration. IOP Conf. Ser. Earth Environ. Sci. 2020, 606, 012039. [Google Scholar] [CrossRef]
- Papritz, L.; Hauswirth, D.; Hartmuth, K. Moisture origin, transport pathways, and driving processes of intense wintertime moisture transport into the Arctic. Weather Clim. Dyn. 2022, 3, 1–20. [Google Scholar] [CrossRef]
- Brümmer, B. Boundary-layer modification in wintertime cold-air outbreaks from the Arctic sea ice. Bound. Layer Meteorol. 1996, 80, 109–125. [Google Scholar] [CrossRef]
- Pithan, F.; Svensson, G.; Caballero, R.; Chechin, D.; Cronin, T.W.; Ekman, A.M.; Neggers, R.; Shupe, M.D.; Solomon, A.; Tjernström, M.; et al. Role of air-mass transformations in exchange between the Arctic and mid-latitudes. Nat. Geosci. 2018, 11, 805–812. [Google Scholar] [CrossRef]
- McCoy, I.L.; Wood, R.; Fletcher, J.K. Identifying meteorological controls on open and closed mesoscale cellular convection associated with marine cold air outbreaks. J. Geophys. Res. Atmos. 2017, 122, 11678–11702. [Google Scholar] [CrossRef]
- Brümmer, B. Roll and cell convection in wintertime Arctic cold-air outbreaks. J. Atmos. Sci. 1999, 56, 2613–2636. [Google Scholar] [CrossRef]
- Kolstad, E.W.; Bracegirdle, T.J.; Seierstad, I.A. Marine cold-air outbreaks in the North Atlantic: Temporal distribution and associations with large-scale atmospheric circulation. Clim. Dyn. 2009, 33, 187–197. [Google Scholar] [CrossRef]
- Papritz, L.; Pfahl, S.; Sodemann, H.; Wernli, H. A climatology of cold air outbreaks and their impact on air–sea heat fluxes in the high-latitude South Pacific. J. Clim. 2015, 28, 342–364. [Google Scholar] [CrossRef]
- Papritz, L.; Spengler, T. A Lagrangian climatology of wintertime cold air outbreaks in the Irminger and Nordic Seas and their role in shaping air–sea heat fluxes. J. Clim. 2017, 30, 2717–2737. [Google Scholar] [CrossRef]
- Kolstad, E.W. Higher ocean wind speeds during marine cold air outbreaks. Q. J. R. Meteorol. Soc. 2017, 143, 2084–2092. [Google Scholar] [CrossRef]
- Terpstra, A.; Renfrew, I.A.; Sergeev, D.E. Characteristics of cold-air outbreak events and associated polar mesoscale cyclogenesis over the North Atlantic region. J. Clim. 2021, 34, 4567–4584. [Google Scholar] [CrossRef]
- Fletcher, J.K.; Mason, S.; Jakob, C. A climatology of clouds in marine cold air outbreaks in both hemispheres. J. Clim. 2016, 29, 6677–6692. [Google Scholar] [CrossRef]
- Mokhov, I.I.; Chernokul’Skii, A.V.; Akperov, M.G.; Dufresne, J.L.; Le Treut, H. Variations in the characteristics of cyclonic activity and cloudiness in the atmosphere of extratropical latitudes of the Northern Hemisphere based from model calculations compared with the data of the reanalysis and satellite data. Dokl. Earth Sci. 2009, 424, 147. [Google Scholar] [CrossRef]
- Pichugin, M.K.; Mitnik, L.M. Cold invasions over the Bering Sea: Satellite multisensor analysis. Mod. Probl. Remote Sens. Earth Space 2009, 6, 172–179. (In Russian) [Google Scholar] [CrossRef]
- Myslenkov, S.; Shestakova, A.; Chechin, D. The impact of sea waves on turbulent heat fluxes in the Barents Sea according to numerical modeling. Atmos. Chem. Phys. 2021, 21, 5575–5595. [Google Scholar] [CrossRef]
- Chechin, D.G.; Pichugin, M.K. Cold-air outbreaks over the ocean at high latitudes and associated mesoscale atmospheric circulations: Problems of numerical modelling. Izv. Atmos. Ocean. Phys. 2015, 51, 1034–1050. [Google Scholar] [CrossRef]
- Dahlke, S.; Solbès, A.; Maturilli, M. Cold air outbreaks in Fram Strait: Climatology, trends, and observations during an extreme season in 2020. J. Geophys. Res. Atmos. 2022, 127, e2021JD035741. [Google Scholar] [CrossRef]
- Ezau, I.N.; Chernokulsky, A.V. Convective cloud fields in the Atlantic sector of the Arctic: Satellite and ground observations. Earth Explor. Space 2015, 2, 49. (In Russian) [Google Scholar] [CrossRef]
- Tornow, F.; Ackerman, A.S.; Fridlind, A.M. Preconditioning of overcast-to-broken cloud transitions by riming in marine cold air outbreaks. Atmos. Chem. Phys. 2021, 21, 12049–12067. [Google Scholar] [CrossRef]
- Abel, S.J.; Boutle, I.A.; Waite, K.; Fox, S.; Brown, P.R.; Cotton, R.; Lloyd, G.; Choularton, T.W.; Bower, K.N. The role of precipitation in controlling the transition from stratocumulus to cumulus clouds in a Northern Hemisphere cold-air outbreak. J. Atmos. Sci. 2017, 74, 2293–2314. [Google Scholar] [CrossRef]
- Field, P.R.; Cotton, R.J.; McBeath, K.; Lock, A.P.; Webster, S.; Allan, R.P. Improving a convection-permitting model simulation of a cold air outbreak. Q. J. R. Meteorol. Soc. 2014, 140, 124–138. [Google Scholar] [CrossRef]
- Murray-Watson, R.J.; Gryspeerdt, E.; Goren, T. Investigating the development of clouds within marine cold-air outbreaks. Atmos. Chem. Phys. 2023, 23, 9365–9383. [Google Scholar] [CrossRef]
- Mateling, M.E.; Pettersen, C.; Kuli3e, M.S.; L’Ecuyer, T.S. Marine Cold-Air Outbreak Snowfall in the North Atlantic: A CloudSat Perspective. J. Geophys. Res. Atmos. 2023, 128, e2022JD038053. [Google Scholar] [CrossRef]
- Wu, P.; Ovchinnikov, M. Cloud Morphology Evolution in Arctic Cold-Air Outbreak: Two Cases During COMBLE Period. J. Geophys. Res. Atmos. 2022, 127, e2021JD035966. [Google Scholar] [CrossRef]
- Petoukhov, V.; Semenov, V.A. A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J. Geophys. Res. Atmos. 2010, 115, D21. [Google Scholar] [CrossRef]
- Website of the German Meteorological Office. Available online: https://wetterzentrale.de (accessed on 23 September 2020).
- EOSDIS Worldview. Available online: https://worldview.earthdata.nasa.gov (accessed on 7 February 2022).
- NSIDC Archive. Available online: https://nsidc.org/data/data-programs/nsidc-daac (accessed on 7 September 2019).
- Comiso, J.C. Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, Version 3 [Data Set]; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2017. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Polkova, I.; Afargan-Gerstman, H.; Domeisen, D.I.; King, M.P.; Ruggieri, P.; Athanasiadis, P.; Baehr, J. Predictors and prediction skill for marine cold-air outbreaks over the Barents Sea. Q. J. R. Meteorol. Soc. 2021, 147, 2638–2656. [Google Scholar] [CrossRef]
- Yu, Y.; Cai, M.; Ren, R.; Rao, J. A closer look at the relationships between meridional mass circulation pulses in the stratosphere and cold air outbreak patterns in northern hemispheric winter. Clim. Dyn. 2018, 51, 3125–3143. [Google Scholar] [CrossRef]
- Lindsay, R.; Wensnahan, M.; Schweiger, A.; Zhang, J. Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Clim. 2014, 27, 2588–2606. [Google Scholar] [CrossRef]
- Wielicki, B.A.; Barkstrom, B.R.; Baum, B.A.; Charlock, T.P.; Green, R.N.; Kratz, D.P.; Welch, R.M. Clouds and the Earth’s Radiant Energy System (CERES): Algorithm overview. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1127–1141. [Google Scholar] [CrossRef]
- Loeb, N.G.; Su, W.; Doelling, D.R.; Wong, T.; Minnis, P.; Thomas, S.; Miller, W.F. Earth’s top-of-atmosphere radiation budget. Compr. Remote Sens. 2018, 5, 67–84. [Google Scholar] [CrossRef]
- Doelling, D.; Haney, C.; Bhatt, R.; Scarino, B.; Gopalan, A. Geostationary enhanced temporal interpolation for CERES flux products. J. Atmos. Ocean. Technol. 2013, 30, 1072–1090. [Google Scholar] [CrossRef]
- Minnis, P.; Sun-Mack, S.; Young, D.F.; Heck, P.W.; Garber, D.P.; Chen, Y.; Yang, P. CERES edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part I: Algorithms. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4374–4400. [Google Scholar] [CrossRef]
- CERES Archive. Available online: https://ceres.larc.nasa.gov (accessed on 20 December 2019).
- Di Biagio, C.; Pelon, J.; Blanchard, Y.; Loyer, L.; Hudson, S.R.; Walden, V.P.; Granskog, M.A. Toward a Better Surface Radiation Budget Analysis Over Sea Ice in the High Arctic Ocean: A Comparative Study Between Satellite, Reanalysis, and local-scale Observations. J. Geophys. Res. Atmos. 2021, 126, e2020JD032555. [Google Scholar] [CrossRef]
- Riihelä, A.; Devasthale, A.; Karlsson, K.G.; Thomas, M. An intercomparison and validation of satellite-based surface radiative energy flux estimates over the Arctic. J. Geophys. Res. Atmos. 2017, 122, 4829–4848. [Google Scholar] [CrossRef]
- Ramanathan, V.; Cess, R.D.; Harrison, E.F.; Minnis, P.; Barkstrom, B.R.; Ahmad, E.; Hartmann, D. Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science 1989, 243, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Trepte, Q.Z.; Minnis, P.; Sun-Mack, S.; Yost, C.R.; Chen, Y.; Jin, Z.; Chee, T.L. Global cloud detection for CERES Edition 4 using Terra and Aqua MODIS data. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9410–9449. [Google Scholar] [CrossRef]
- Huang, Y.; Dong, X.; Kay, J.E.; Xi, B.; McIlhattan, E.A. Toward a more realistic representation of surface albedo in NASA CERES-derived surface radiative fluxes. Elementa 2022, 10, 00013. [Google Scholar] [CrossRef]
- Platnick, S.; Meyer, K.G.; King, M.D.; Wind, G.; Amarasinghe, N.; Marchant, B.; Riedi, J. The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua. IEEE Trans. Geosci. Remote Sens. 2016, 55, 502–525. [Google Scholar] [CrossRef]
- Moderate Resolution Imaging Spectroradiometer (MODIS). Available online: https://lance.modaps.eosdis.nasa.gov/modis/ (accessed on 7 February 2022).
- Kolstad, E.W.; Breiteig, T.; Scaife, A.A. The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere. Q. J. R. Meteorol. Soc. 2010, 136, 886–893. [Google Scholar] [CrossRef]
- Fletcher, J.; Mason, S.; Jakob, C. The climatology, meteorology, and boundary layer structure of marine cold air outbreaks in both hemispheres. J. Clim. 2016, 29, 1999–2014. [Google Scholar] [CrossRef]
- Allan, R.P. Combining satellite data and models to estimate cloud radiative effect at the surface and in the atmosphere. Meteorol. Appl. 2011, 18, 324–333. [Google Scholar] [CrossRef]
- Becker, S.; Ehrlich, A.; Schäfer, M.; Wendisch, M. Airborne observations of the surface cloud radiative effect during different seasons over sea ice and open ocean in the Fram Strait. Atmos. Chem. Phys. 2023, 23, 7015–7031. [Google Scholar] [CrossRef]
- Barrientos-Velasco, C.; Deneke, H.; Hünerbein, A.; Griesche, H.J.; Seifert, P.; Macke, A. Radiative closure and cloud effects on the radiation budget based on satellite and shipborne observations during the Arctic summer research cruise, PS106. Atmos. Chem. Phys. 2022, 22, 9313–9348. [Google Scholar] [CrossRef]
- Oreopoulos, L.; Rossow, W.B. The cloud radiative effects of International Satellite Cloud Climatology Project weather states. J. Geophys. Res. Atmos. 2011, 116, D10. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Academic Press: Cambridge, MA, USA, 2011; Volume 100. [Google Scholar] [CrossRef]
- Cronin, T.W.; Tziperman, E. Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming. Proc. Natl. Acad. Sci. USA 2015, 112, 11490–11495. [Google Scholar] [CrossRef] [PubMed]
- Kay, J.E.; L’Ecuyer, T. Observational constraints on Arctic Ocean clouds and radiative fluxes during the early 21st century. J. Geophys. Res. Atmos. 2013, 118, 7219–7236. [Google Scholar] [CrossRef]
- Ruiz-Donoso, E.; Ehrlich, A.; Schäfer, M.; Jäkel, E.; Schemann, V.; Crewell, S.; Wendisch, M. Small-scale structure of thermodynamic phase in Arctic mixed-phase clouds observed by airborne remote sensing during a cold air outbreak and a warm air advection event. Atmos. Chem. Phys. 2020, 20, 5487–5511. [Google Scholar] [CrossRef]
- Graham, R.M.; Cohen, L.; Ritzhaupt, N.; Segger, B.; Graversen, R.G.; Rinke, A.; Walden, V.P.; Granskog, M.A.; Hudson, S.R. Evaluation of six atmospheric reanalyses over Arctic sea ice from winter to early summer. J. Clim. 2019, 32, 4121–4143. [Google Scholar] [CrossRef]
- Geerts, B.; Giangrande, S.E.; McFarquhar, G.M.; Xue, L.; Abel, S.J.; Comstock, J.M.; Wu, P. The COMBLE campaign: A study of marine boundary layer clouds in Arctic cold-air outbreaks. Bull. Am. Meteorol. Soc. 2022, 103, E1371–E1389. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Thépaut, J.N. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
Parameter | Full Name | Unit |
---|---|---|
CRELW/SW/NET | Cloud radiative effect | W m−2 |
SRBLW/SW/NET | Surface radiative budget | W m−2 |
N | Cloud fraction | % |
COT | Cloud optical thickness | units |
CTH | Cloud top height | km |
LWP | Liquid water path | g m−2 |
CBP | Cloud base pressure | hPa |
CTP | Cloud top pressure | hPa |
CPP | Cloud particle phase (1—liquid, 2—solid) | units |
CTT | Cloud top temperature | K |
IWV | Integral water vapor content | kg m−2 |
EfR | Cloud droplet effective radius | μm |
Parameter | Ntot | Nlow | CTHtot | CTHlow | LWPtot | LWPlow | COTtot | COTlow | CBPtot | CPPtot | CPPlow | SRBLW | CRELW | SRBSW | CRESW | SRBNET | CRENET |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Units 1 | % | % | km | km | g/m2 | g/m2 | * | * | hPa | * | * | W/m2 | W/m2 | W/m2 | W/m2 | W/m2 | W/m2 |
Absolute values | 97.9 | 62.6 | 3.5 | 1.8 | 89.3 | 87.6 | 5.3 | 6.4 | 882.3 | 1.5 | 1.3 | −67.6 | 70.1 | 13.8 | −17.0 | −53.8 | 53.1 |
Anomalies | 6.7 | 15.9 | −0.5 | 0.8 | 16.4 | 18.3 | 0.7 | 0.9 | 33.1 | 0.02 | 0.1 | −13.8 | 13.1 | 0.1 | −0.9 | −13.7 | 12.2 |
Parameter | Units 1 | Distance to Ice Margin km | SST °C | IWV kg m−2 | |||
---|---|---|---|---|---|---|---|
MK | TS * 102 | MK | TS | MK | TS | ||
Ntot | % | −0.01 | −0.03 [−0.37, 0.42] | 0.20 | 1.66 [0.20, 2.91] | −0.11 | −0.95 [−1.96, 0.12] |
Nlow | % | 0.19 | 2.43 [0.55, 5.00] | 0.20 | 6.90 [2.85, 11.94] | 0.21 | 9.76 [3.68, 18.76] |
CTHtot | km | −0.16 | −0.10 [−0.19, −0.03] | −0.22 | −0.34 [−0.54, −0.15] | −0.28 | −0.61 [−0.92, −0.28] |
CTHlow | km | 0.20 | 0.03 [0.01, 0.05] | 0.14 | 0.07 [0.01, 0.14] | 0.02 | 0.01 [−0.10, 0.08] |
LWPtot | g m−2 | 0.40 | 5.40 [3.79, 7.55] | 0.23 | 9.44 [3.16, 15.52] | 0.15 | 9.06 [0.12, 16.51] |
LWPlow | g m−2 | 0.37 | 4.97 [3.25, 6.85] | 0.25 | 8.99 [3.43, 13.56] | 0.19 | 9.57 [1.56, 15.90] |
COTtot | * | 0.30 | 0.34 [0.23, 0.47] | 0.37 | 1.05 [0.70, 1.39] | 0.05 | 0.24 [−0.37, 0.79] |
COTlow | * | 0.32 | 0.34 [0.21, 0.51] | 0.35 | 1.06 [0.65, 1.46] | 0.04 | 0.18 [−0.34, 0.77] |
CPPtot | * | −0.25 | −0.03 [−0.06, −0.02] | −0.21 | −0.08 [−0.14, −0.03] | −0.30 | −0.15 [−0.24, −0.08] |
CPPlow | * | −0.25 | −0.02 [−0.04, −0.01] | −0.22 | −0.05 [−0.09, −0.03] | −0.31 | −0.10 [−0.16, −0.06] |
CBPlow | hPa | −0.10 | −1.24 [−3.09, 0.42] | −0.12 | −4.70 [−9.16, 1.18] | −0.19 | −9.01 [−15.69, −2.37] |
SRBLW | W m−2 | 0.03 | 0.16 [−0.93, 1.23] | 0.14 | 2.57 [0.11, 4.99] | 0.36 | 7.78 [4.74, 10.89] |
CRELW | W m−2 | 0.27 | 1.59 [0.72, 2.64] | 0.40 | 6.10 [4.08, 8.31] | 0.20 | 3.97 [2.12, 6.52] |
SRBSW | W m−2 | −0.06 | 0.00 [0.00, 0.00] | 0.02 | 0.00 [0.00, 0.00] | 0.04 | 0.00 [0.00, 0.00] |
CRESW | W m−2 | −0.23 | 0.00 [0.00, 0.00] | −0.13 | 0.00 [0.00, 0.00] | −0.04 | 0.00 [0.00, 0.00] |
SRBNET | W m−2 | 0.05 | 0.30 [−0.78, 1.24] | 0.17 | 3.02 [0.79, 4.82] | 0.33 | 7.72 [74.33, 11.33] |
CRENET | W m−2 | 0.23 | 1.58 [0.68, 2.80] | 0.33 | 5.43 [3.26, 7.56] | 0.18 | 3.94 [1.37, 6.52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narizhnaya, A.; Chernokulsky, A. Cloud Characteristics during Intense Cold Air Outbreaks over the Barents Sea Based on Satellite Data. Atmosphere 2024, 15, 317. https://doi.org/10.3390/atmos15030317
Narizhnaya A, Chernokulsky A. Cloud Characteristics during Intense Cold Air Outbreaks over the Barents Sea Based on Satellite Data. Atmosphere. 2024; 15(3):317. https://doi.org/10.3390/atmos15030317
Chicago/Turabian StyleNarizhnaya, Alexandra, and Alexander Chernokulsky. 2024. "Cloud Characteristics during Intense Cold Air Outbreaks over the Barents Sea Based on Satellite Data" Atmosphere 15, no. 3: 317. https://doi.org/10.3390/atmos15030317
APA StyleNarizhnaya, A., & Chernokulsky, A. (2024). Cloud Characteristics during Intense Cold Air Outbreaks over the Barents Sea Based on Satellite Data. Atmosphere, 15(3), 317. https://doi.org/10.3390/atmos15030317