Mid- and High-Latitude Electron Temperature Dependence on Solar Activity in the Topside Ionosphere through the Swarm B Satellite Observations and the International Reference Ionosphere Model
Abstract
:1. Introduction
2. Historical Background
3. Data, Models, and Methods
3.1. Swarm B Satellite In Situ Observations and Data Sorting
- June solstice: the months of May, June, July, and August. The summer season in the Northern Hemisphere, and the winter season in the Southern Hemisphere;
- December solstice: the months of November, December, January, and February. The winter season in the Northern Hemisphere, and the summer season in the Southern Hemisphere;
- Equinoxes: the months of March, April, September, and October. Equinoctial seasons in both hemispheres.
- QD latitude: from |30°| to |90°| in steps of 1°, for both hemispheres, 120 bins in total;
- MLT: from 00:00 to 24:00 in steps of 4 min, 360 bins in total.
3.2. Electron Temperature Modeling by IRI
3.3. Millstone Hill Incoherent Scatter Radar Remote Sensing Observations
4. Results
- Low solar activity (LSA): PF10.7 < 80 sfu;
- Medium solar activity (MSA): 80 ≤ PF10.7 < 120 sfu;
- High solar activity (HSA): PF10.7 ≥ 120 sfu.
4.1. Solar Activity Variation as Described by Swarm B Observations
4.2. Solar Activity Variation as Described by the IRI Model
4.3. Comparison against Millstone Hill Incoherent Scatter Radar Observations
5. Discussion
5.1. Physical Processes Affecting the Te Variations in the Ionosphere
5.2. High-Latitude Te Variations with Solar Activity
5.3. Mid-Latitude Te Variations with Solar Activity
6. Conclusions and Future Developments
- At high latitudes, there is a remarkable seasonal dependence in the Te variation on the solar activity. In the summer season, Te generally increases with solar activity in the polar cusp and auroral regions, with Te,HSA ≥ Te,MSA ≥ Te,LSA for most MLTs. Differently, in the winter season, Te generally decreases with solar activity in the polar cusp and auroral regions and, more evidently, at sub-auroral latitudes in the nightside region, with Te,HSA ≤ Te,MSA ≤ Te,LSA. The Te relative variations are much higher in winter than in summer. Instead, equinoxes show a barely noticeable variation with solar activity, without a clear trend;
- At mid-latitudes, in most cases, the Te variation with the solar activity is negligible or within the natural dispersion of observations, irrespective of the season and MLT. This is also confirmed by the Millstone Hill ISR observations, for which the Te variation with the solar activity is mostly within the dispersion of observations and it is generally less important than the diurnal and seasonal ones;
- The TBT-2012+SA model included in IRI-2020 shows different performances for mid- and high latitudes. While it correctly describes the Te diurnal and seasonal variations for different solar activity levels at mid-latitudes, the steep and narrow high-latitude Te enhancements found in the polar cusp region at noon and that associated with the sub-auroral enhancements at nighttime are not properly described. The model generally underestimates the observed Te from Swarm B by about 10% on average, particularly for LSA and at high latitudes.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Titheridge, J.E. Ion transition heights from topside electron density profiles. Planet. Space Sci. 1976, 24, 229–246. [Google Scholar] [CrossRef]
- Kotov, D.V.; Truhlík, V.; Richards, P.G.; Stankov, S.; Bogomaz, O.V.; Chernogor, L.F.; Domnin, I.F. Night-time light ion transition height behaviour over the Kharkiv (50°N, 36°E) IS radar during the equinoxes of 2006–2010. J. Atmos. Sol.-Terr. Phys. 2015, 132, 1–12. [Google Scholar] [CrossRef]
- Vaishnav, R.; Jin, Y.; Golam Mostafa, M.; Aziz, S.R.; Zhang, S.-R.; Jacobi, C. Study of the upper transition height using ISR observations and IRI predictions over Arecibo. Adv. Space Res. 2021, 68, 2177–2185. [Google Scholar] [CrossRef]
- Truhlík, V.; Třísková, L.; Šmilauer, J. New advances in empirical modelling of ion composition in the outer ionosphere. Adv. Space Res. 2004, 33, 844–849. [Google Scholar] [CrossRef]
- Bauer, S.J. Diffusive equilibrium in the topside ionosphere. Proc. IEEE 1969, 57, 1114–1118. [Google Scholar] [CrossRef]
- Pignalberi, A.; Pezzopane, M.; Nava, B.; Coïsson, P. On the link between the topside ionospheric effective scale height and the plasma ambipolar diffusion, theory and preliminary results. Sci. Rep. 2020, 10, 17541. [Google Scholar] [CrossRef]
- Rishbeth, H.; Garriott, O. Introduction to Ionospheric Physics. International Geophysics Series v. 14; Academic Press: New York, NY, USA, 1969. [Google Scholar]
- Ratcliffe, J.A. An Introduction to the Ionosphere and Magnetosphere; Cambridge University Press: Cambridge, UK, 1972. [Google Scholar]
- Willmore, A.P. Electron and ion temperatures in the ionosphere. Space Sci. Rev. 1970, 11, 607–670. [Google Scholar] [CrossRef]
- Banks, P.M. The thermal structure of the ionosphere. Proc. IEEE 1969, 57, 258–281. [Google Scholar] [CrossRef]
- Schunk, R.W.; Nagy, A.F. Electron temperatures in the region of the ionosphere: Theory and observations. Rev. Geophys. 1978, 16, 355–399. [Google Scholar] [CrossRef]
- Bilitza, D. Electron and ion temperature data for ionospheric modelling. Adv. Space Res. 1991, 11, 139–148. [Google Scholar] [CrossRef]
- Spenner, K.; Plugge, R. Empirical model of global electron temperature distribution between 300 and 700 Km based on data from Aeros-A. J. Geophys. 1979, 46, 43–56. [Google Scholar]
- Brace, L.H.; Theis, R. Global empirical models of ionospheric electron temperature in the upper F-region and plasmasphere based on in situ measurements from the atmosphere explorer-c, isis-1 and isis-2 satellites. J. Atmos. Terr. Phys. 1981, 43, 1317–1343. [Google Scholar] [CrossRef]
- Truhlik, V.; Bilitza, D.; Triskova, L. A new global empirical model of the electron temperature with the inclusion of the solar activity variations for IRI. Earth Planets Space 2012, 64, 531–543. [Google Scholar] [CrossRef]
- Bilitza, D.; Pezzopane, M.; Truhlik, V.; Altadill, D.; Reinisch, B.W.; Pignalberi, A. The International Reference Ionosphere model: A review and description of an ionospheric benchmark. Rev. Geophys. 2022, 60, e2022RG000792. [Google Scholar] [CrossRef]
- Truhlík, V.; Třísková, L.; Šmilauer, J.; Afonin, V. Global empirical model of electron temperature in the outer ionosphere for period of high solar activity based on data of three Intercosmos satellites. Adv. Space Res. 2000, 25, 163–169. [Google Scholar] [CrossRef]
- Truhlík, V.; Třísková, L.; Šmilauer, J. Improved electron temperature model and comparison with satellite data. Adv. Space Res. 2001, 27, 101–109. [Google Scholar] [CrossRef]
- Pignalberi, A.; Giannattasio, F.; Truhlik, V.; Coco, I.; Pezzopane, M.; Consolini, G.; De Michelis, P.; Tozzi, R. On the Electron Temperature in the Topside Ionosphere as Seen by Swarm Satellites, Incoherent Scatter Radars, and the International Reference Ionosphere Model. Remote Sens. 2021, 13, 4077. [Google Scholar] [CrossRef]
- Brace, L.H.; Mayr, H.G.; Reddy, B.M. The early effects of increasing solar activity upon the temperature and density of the 1000-kilometer ionosphere. J. Geophys. Res. 1968, 73, 1607–1615. [Google Scholar] [CrossRef]
- Evans, J.V. Seasonal and sunspot cycle variations of F Region electron temperatures and protonospheric heat fluxes. J. Geophys. Res. 1973, 78, 2344–2349. [Google Scholar] [CrossRef]
- Mahajan, K.; Pandey, V. Solar activity changes in the electron temperature at 1000-km altitude from the Langmuir probe measurements on Isis 1 and Explorer 22 satellites. J. Geophys. Res. 1979, 84, 5885–5889. [Google Scholar] [CrossRef]
- Brace, L.H.; Theis, R.; Hoegy, W.R. A global view of F-region electron density and temperature at solar maximum. Geophys. Res. Lett. 1982, 9, 989–992. [Google Scholar] [CrossRef]
- Brace, L.H.; Theis, R.; Hoegy, W.R. Ionospheric electron temperature at solar maximum. Adv. Space Res. 1987, 7, 99–106. [Google Scholar] [CrossRef]
- Bilitza, D.; Hoegy, W.R. Solar activity variations of ionospheric plasma temperatures. Adv. Space Res. 1990, 10, 81–90. [Google Scholar] [CrossRef]
- Brace, L.H.; Theis, R.F. Global models of Ne and Te at solar maximum based on DE-2 measurements. Adv. Space Res. 1990, 10, 39–45. [Google Scholar] [CrossRef]
- Otsuka, Y.; Kawamura, S.; Balan, N.; Fukao, S.; Bailey, G.J. Plasma temperature variations in the ionosphere over the middle and upper atmosphere radar. J. Geophys. Res. 1998, 103, 20705–20713. [Google Scholar] [CrossRef]
- Sethi, N.K.; Pandey, V.K.; Mahajan, K.K. Seasonal and solar activity changes of electron temperature in the F-region and topside ionosphere. Adv. Space Res. 2004, 33, 970–974. [Google Scholar] [CrossRef]
- Zhang, S.-R.; Holt, J.M. Ionospheric plasma temperatures during 1976–2001 over Millstone Hill. Adv. Space Res. 2004, 33, 963–969. [Google Scholar] [CrossRef]
- Lei, J.; Roble, R.G.; Wang, W.; Emery, B.A.; Zhang, S.-R. Electron temperature climatology at Millstone Hill and Arecibo. J. Geophys. Res. 2007, 112, A02302. [Google Scholar] [CrossRef]
- Bilitza, D.; Truhlik, V.; Richards, P.; Abe, T.; Triskova, L. Solar cycle variations of mid-latitude electron density and temperature: Satellite measurements and model calculations. Adv. Space Res. 2007, 39, 779–789. [Google Scholar] [CrossRef]
- Truhlik, V.; Bilitza, D.; Třísková, L. Latitudinal variation of the topside electron temperature at different levels of solar activity. Adv. Space Res. 2009, 44, 693–700. [Google Scholar] [CrossRef]
- Stolle, C.; Liu, H.; Truhlík, V.; Luehr, H.; Richards, P.G. Solar flux variation of the electron temperature morning overshoot in the equatorial F region. J. Geophys. Res. Space Phys. 2011, 116, A04308. [Google Scholar] [CrossRef]
- Friis-Christensen, E.; Lühr, H.; Hulot, G. Swarm: A constellation to study the Earth’s magnetic field. Earth Planets Space 2006, 58, 351–358. [Google Scholar] [CrossRef]
- Laundal, K.M.; Richmond, A.D. Magnetic coordinate systems. Space Sci. Rev. 2017, 206, 27–59. [Google Scholar] [CrossRef]
- Knudsen, D.J.; Burchill, J.K.; Buchert, S.C.; Eriksson, A.I.; Gill, R.; Wahlund, J.; Åhlen, L.; Smith, M.; Moffat, B. Thermal ion imagers and Langmuir probes in the Swarm electric field instruments. J. Geophys. Res. Space Phys. 2017, 122, 2655–2673. [Google Scholar] [CrossRef]
- Catapano, F.; Buchert, S.; Qamili, E.; Nilsson, T.; Bouffard, J.; Siemes, C.; Coco, I.; D’Amicis, R.; Tøffner-Clausen, L.; Trenchi, L.; et al. Swarm Langmuir probes’ data quality validation and future improvements. Geosci. Instrum. Methods Data Syst. 2022, 11, 149–162. [Google Scholar] [CrossRef]
- Lomidze, L.; Knudsen, D.J.; Burchill, J.; Kouznetsov, A.; Buchert, S.C. Calibration and validation of swarm plasma densities and electron temperatures using ground-based radars and satellite radio occultation measurements. Radio Sci. 2018, 53, 15–36. [Google Scholar] [CrossRef]
- Swarm L1b Product Definition. 2018. Available online: https://earth.esa.int/eogateway/documents/20142/37627/swarm-level-1b-product-definition-specification.pdf (accessed on 15 April 2024).
- Pignalberi, A.; Coco, I.; Giannattasio, F.; Pezzopane, M.; De Michelis, P.; Consolini, G.; Tozzi, R. A new ionospheric index to investigate electron temperature small-scale variations in the topside ionosphere. Universe 2021, 7, 290. [Google Scholar] [CrossRef]
- Pignalberi, A.; Habarulema, J.B.; Pezzopane, M.; Rizzi, R. On the development of a method for updating an empirical climatological ionospheric model by means of assimilated vTEC measurements from a GNSS receiver network. Space Weather 2019, 17, 1131–1164. [Google Scholar] [CrossRef]
- Karpachev, A.T. Variations in the winter troughs’ position with local time, longitude, and solar activity in the Northern and Southern Hemispheres. J. Geophys. Res. Space Phys. 2019, 124, 8039–8055. [Google Scholar] [CrossRef]
- Prölss, G.W. Subauroral electron temperature enhancement in the nighttime ionosphere. Ann. Geophys. 2006, 24, 1871–1885. [Google Scholar] [CrossRef]
- Prölss, G.W. Electron temperature enhancement beneath the magnetospheric cusp. J. Geophys. Res. 2006, 111, A07304. [Google Scholar] [CrossRef]
- Giannattasio, F.; De Michelis, P.; Pignalberi, A.; Coco, I.; Consolini, G.; Pezzopane, M.; Tozzi, R. Parallel electrical conductivity in the topside ionosphere derived from Swarm measurements. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028452. [Google Scholar] [CrossRef]
- Brinton, H.C.; Grebowsky, J.M.; Brace, L.H. The high-latitude winter F region at 300 km: Thermal plasma observations from AE-C. J. Geophys. Res. 1978, 83, 4767–4776. [Google Scholar] [CrossRef]
- ISO 16457; Space Systems—Space Environment (Natural and Artificial)—The Earth’s Ionosphere Model: International Reference Ionosphere (IRI) Model and Extension to the Plasmasphere. International Standardization Organization: Geneva, Switzerland, 2022. Available online: http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=61556 (accessed on 15 April 2024).
- Bilitza, D. Models for Ionospheric Electron and Ion Temperature. In International Reference Ionosphere-IRI 79; Report, UAG-82; Rawer, K., Lincoln, J.V., Conkright, R.O., Eds.; World Data Center A for Solar-Terrestrial Physics: Boulder, CO, USA, 1981; p. 245. Available online: http://www.irimodel.org/ (accessed on 15 April 2024).
- Bilitza, D.; Brace, L.; Theis, R. Modelling of ionospheric temperature profiles. Adv. Space Res. 1985, 5, 53–58. [Google Scholar] [CrossRef]
- Richards, P.G.; Fennelly, J.A.; Torr, D.G. EUVAC: A solar EUV flux model for aeronomic calculations. J. Geophys. Res. 1994, 99, 8981–8992. [Google Scholar] [CrossRef]
- Tapping, K.F. The 10.7 cm solar radio flux (F10.7). Space Weather 2013, 11, 394–406. [Google Scholar] [CrossRef]
- Richards, P.G.; Woods, T.N.; Peterson, W.K. HEUVAC: A new high resolution solar EUV proxy model. Adv. Space Res. 2006, 37, 315–322. [Google Scholar] [CrossRef]
- Booker, H.G. Fitting of multi-region ionospheric profiles of electron density by a single analytic function of height. J. Atmos. Terr. Phys. 1977, 39, 619–623. [Google Scholar] [CrossRef]
- Pignalberi, A.; Aksonova, K.D.; Zhang, S.-R.; Truhlik, V.; Gurram, P.; Pavlou, C. Climatological study of the ion temperature in the ionosphere as recorded by Millstone Hill incoherent scatter radar and comparison with the IRI model. Adv. Space Res. 2021, 68, 2186–2203. [Google Scholar] [CrossRef]
- Truhlik, V.; Bilitza, D.; Kotov, D.; Shulha, M.; Třísková, L. A global empirical model of the ion temperature in the ionosphere for the international reference ionosphere. Atmosphere 2021, 12, 1081. [Google Scholar] [CrossRef]
- Evans, J. Theory and practice of ionosphere study by Thomson scatter radar. Proc. IEEE 1969, 57, 496–530. [Google Scholar] [CrossRef]
- Schunk, R.; Nagy, A.F. Ionospheres: Physics, Plasma Physics, and Chemistry, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Třísková, L.; Truhlík, V.; Šmilauer, J. An empirical topside electron density model for calculation of absolute ion densities in IRI. Adv. Space Res. 2006, 37, 928–934. [Google Scholar] [CrossRef]
- Pignalberi, A.; Giannattasio, F.; Truhlik, V.; Coco, I.; Pezzopane, M.; Alberti, T. Investigating the main features of the correlation between electron density and temperature in the topside ionosphere through Swarm satellites data. J. Geophys. Res. Space Phys. 2024, 129, e2023JA032201. [Google Scholar] [CrossRef]
- Truhlik, V.; Třísková, L.; Bilitza, D.; Podolska, K. Variations of daytime and nighttime electron temperature and heat flux in the upper ionosphere, topside ionosphere and lower plasmasphere for low and high solar activity. J. Atmos. Sol.-Terr. Phys. 2009, 71, 2055–2063. [Google Scholar] [CrossRef]
- Marif, H.; Lilensten, J. Suprathermal electron moments in the ionosphere. J. Space Weather Space Clim. 2020, 10, 22. [Google Scholar] [CrossRef]
- Iijima, T.; Potemra, T.A. Large-scale characteristics of field-aligned currents associated with substorms. J. Geophys. Res. Space Phys. 1978, 83, 599–615. [Google Scholar] [CrossRef]
- Heelis, R.A.; Hanson, W.B.; Burch, J.L. Ion convection velocity reversals in the dayside cleft. J. Geophys. Res. 1976, 81, 3803–3809. [Google Scholar] [CrossRef]
- Titheridge, J.E. Ionospheric heating beneath the magnetospheric cleft. J. Geophys. Res. 1976, 81, 3221–3226. [Google Scholar] [CrossRef]
- Liou, K.; Newell, P.T.; Meng, C.-I. Seasonal effects on auroral particle acceleration and precipitation. J. Geophys. Res. 2001, 106, 5531–5542. [Google Scholar] [CrossRef]
- Liou, K.; Zhang, Y.-L.; Newell, P.T.; Paxton, L.J.; Carbary, J.F. TIMED/GUVI observation of solar illumination effect on auroral energy deposition. J. Geophys. Res. 2011, 116, A09305. [Google Scholar] [CrossRef]
- Giannattasio, F.; Consolini, G.; Coco, I.; De Michelis, P.; Pezzopane, M.; Pignalberi, A.; Tozzi, R. Dissipation of field-aligned currents in the topside ionosphere. Sci. Rep. 2022, 12, 17202. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, F.; Papitashvili, V.O.; Neubert, T. Seasonal variations of high-latitude field-aligned currents inferred from Oersted and Magsat observations. J. Geophys. Res. 2002, 107, SMP 5-1–SMP 5-13. [Google Scholar] [CrossRef]
- Wang, H.; Lühr, H.; Ma, S.Y. Solar zenith angle and merging electric field control of field-aligned currents: A statistical study of the Southern Hemisphere. J. Geophys. Res. 2005, 110, 306. [Google Scholar] [CrossRef]
- Werner, S.; Prölss, G.W. The position of the ionospheric trough as a function of local time and magnetic activity. Adv. Space Res. 1997, 20, 1717–1722. [Google Scholar] [CrossRef]
- Brace, L.H. Solar cycle variations in F-region Te in the vicinity of the midlatitude trough based on AE-C measurements at solar minimum and DE-2 measurements at solar maximum. Adv. Space Res. 1990, 10, 83–88. [Google Scholar] [CrossRef]
- Fok, M.-C.; Kozyra, J.U.; Brace, L.H. Solar cycle variation in the subauroral electron temperature enhancement: Comparison of AE-C and DE 2 satellite observations. J. Geophys. Res. 1991, 96, 1861–1866. [Google Scholar] [CrossRef]
- Fok, M.-C.; Kozyra, J.U.; Warren, M.F.; Brace, L.H. Seasonal variations in the subauroral electron temperature enhancement. J. Geophys. Res. 1991, 96, 9773–9780. [Google Scholar] [CrossRef]
- Giannattasio, F.; Pignalberi, A.; De Michelis, P.; Coco, I.; Consolini, G.; Pezzopane, M.; Tozzi, R. Dependence of parallel electrical conductivity in the topside ionosphere on solar and geomagnetic activity. J. Geophys. Res. Space Phys. 2021, 126, e2021JA029138. [Google Scholar] [CrossRef]
- Denton, M.H.; Bailey, G.J.; Su, Y.Z.; Oyama, K.-I.; Abe, T. High altitude observations of electron temperature and a possible north–south asymmetry. J. Atmos. Sol.-Terr. Phys. 1999, 61, 775–788. [Google Scholar] [CrossRef]
- Laurenza, M.; Del Moro, D.; Alberti, T.; Battiston, R.; Benella, S.; Benvenuto, F.; Berrilli, F.; Bertello, I.; Bertucci, B.; Biasiotti, L.; et al. The CAESAR Project for the ASI Space Weather Infrastructure. Remote Sens. 2023, 15, 346. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pignalberi, A.; Truhlik, V.; Giannattasio, F.; Coco, I.; Pezzopane, M. Mid- and High-Latitude Electron Temperature Dependence on Solar Activity in the Topside Ionosphere through the Swarm B Satellite Observations and the International Reference Ionosphere Model. Atmosphere 2024, 15, 490. https://doi.org/10.3390/atmos15040490
Pignalberi A, Truhlik V, Giannattasio F, Coco I, Pezzopane M. Mid- and High-Latitude Electron Temperature Dependence on Solar Activity in the Topside Ionosphere through the Swarm B Satellite Observations and the International Reference Ionosphere Model. Atmosphere. 2024; 15(4):490. https://doi.org/10.3390/atmos15040490
Chicago/Turabian StylePignalberi, Alessio, Vladimir Truhlik, Fabio Giannattasio, Igino Coco, and Michael Pezzopane. 2024. "Mid- and High-Latitude Electron Temperature Dependence on Solar Activity in the Topside Ionosphere through the Swarm B Satellite Observations and the International Reference Ionosphere Model" Atmosphere 15, no. 4: 490. https://doi.org/10.3390/atmos15040490
APA StylePignalberi, A., Truhlik, V., Giannattasio, F., Coco, I., & Pezzopane, M. (2024). Mid- and High-Latitude Electron Temperature Dependence on Solar Activity in the Topside Ionosphere through the Swarm B Satellite Observations and the International Reference Ionosphere Model. Atmosphere, 15(4), 490. https://doi.org/10.3390/atmos15040490