Understanding the Inter-Model Spread of PDO’s Impact on Tropical Cyclone Frequency over the Western North Pacific in CMIP6 Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
- a.
- PDO skill in CMIP6 models
- b.
- TC-detection algorithm
- c.
- Dynamic TC genesis potential index
3. Results and Discussion
3.1. Evaluation of Model Performance in Simulating TCF Climatology and PDO
3.1.1. TCF Climatology
3.1.2. PDO Skills in CMIP6 Models
3.2. Inter-Model Spread of the PDO’s Impacts on WNP TCF
3.2.1. Impact of PDO on WNP TCF
3.2.2. Inter-Model Spread
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pielke, R.A., Jr.; Landsea, C.; Mayfield, M.; Layer, J.; Pasch, R. Hurricanes and global warming. Bull. Am. Meteorol. Soc. 2005, 86, 1571–1576. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, L.; Liu, Q. Tropical cyclone damages in China 1983–2006. Bull. Am. Meteorol. Soc. 2009, 90, 489–496. [Google Scholar] [CrossRef]
- Camargo, S.J.; Wing, A.A. Increased tropical cyclone risk to coasts. Science 2021, 371, 458–459. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Lu, Y.; Jiang, X.; Klotzbach, P.J.; Wu, L.; Cao, J. A statistical intraseasonal prediction model of extended boreal summer western North Pacific tropical cyclone genesis. J. Clim. 2022, 35, 2459–2478. [Google Scholar] [CrossRef]
- Lee, H.S.; Yamashita, T.; Mishima, T. Multi-decadal variations of ENSO, the Pacific Decadal Oscillation and tropical cyclones in the western North Pacific. Prog. Oceanogr. 2012, 105, 67–80. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, W.; Geng, X.; Stuecker, M.F.; Jin, F.F. Modulation of tropical cyclones in the southeastern part of western North Pacific by tropical Pacific decadal variability. Clim. Dyn. 2019, 53, 4475–4488. [Google Scholar] [CrossRef]
- Hong, J.S.; Yeh, S.W.; Yang, Y.M. Interbasin interactions between the Pacific and Atlantic Oceans depending on the phase of Pacific decadal oscillation and Atlantic multidecadal oscillation. J. Clim. 2022, 35, 2883–2894. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C. What caused the increase of tropical cyclones in the western North Pacific during the period of 2011–2020? Clim. Dyn. 2023, 60, 165–177. [Google Scholar] [CrossRef]
- Liu, K.S.; Chan, J.C. Inactive period of western North Pacific tropical cyclone activity in 1998–2011. J. Clim. 2013, 26, 2614–2630. [Google Scholar] [CrossRef]
- He, H.; Yang, J.; Gong, D.; Mao, R.; Wang, Y.; Gao, M. Decadal changes in tropical cyclone activity over the western North Pacific in the late 1990s. Clim. Dyn. 2015, 45, 3317–3329. [Google Scholar] [CrossRef]
- Hong, C.C.; Wu, Y.K.; Li, T. Influence of climate regime shift on the interdecadal change in tropical cyclone activity over the Pacific Basin during the middle to late 1990s. Clim. Dyn. 2016, 47, 2587–2600. [Google Scholar] [CrossRef]
- Zhao, J.; Zhan, R.; Wang, Y.; Xu, H. Contribution of the interdecadal Pacific oscillation to the recent abrupt decrease in tropical cyclone genesis frequency over the western North Pacific since 1998. J. Clim. 2018, 31, 8211–8224. [Google Scholar] [CrossRef]
- Yu, J.; Li, T.; Tan, Z.; Zhu, Z. Effects of tropical North Atlantic SST on tropical cyclone genesis in the western North Pacific. Clim. Dyn. 2016, 46, 865–877. [Google Scholar] [CrossRef]
- Zhang, W.; Vecchi, G.A.; Murakami, H.; Villarini, G.; Delworth, T.L.; Yang, X.; Jia, L. Dominant role of Atlantic multidecadal oscillation in the recent decadal changes in western North Pacific tropical cyclone activity. Geophys. Res. Lett. 2018, 45, 354–362. [Google Scholar] [CrossRef]
- Wang, C.; Wang, B.; Wu, L.; Luo, J.J. A Seesaw Variability in Tropical Cyclone Genesis between the Western North Pacific and the North Atlantic Shaped by Atlantic Multidecadal Variability. J. Clim. 2022, 35, 2479–2489. [Google Scholar] [CrossRef]
- Dunstone, N.J.; Smith, D.M.; Booth, B.B.B.; Hermanson, L.; Eade, R. Anthropogenic aerosol forcing of Atlantic tropical storms. Nat. Geosci. 2013, 6, 534–539. [Google Scholar] [CrossRef]
- Takahashi, C.; Watanabe, M.; Mori, M. Significant aerosol influence on the recent decadal decrease in tropical cyclone activity over the western North Pacific. Geophys. Res. Lett. 2017, 44, 9496–9504. [Google Scholar] [CrossRef]
- Cao, J.; Zhao, H.; Wang, B.; Wu, L. Hemisphere-asymmetric tropical cyclones response to anthropogenic aerosol forcing. Nat. Commun. 2021, 12, 6787. [Google Scholar] [CrossRef] [PubMed]
- Murakami, H. Substantial global influence of anthropogenic aerosols on tropical cyclones over the past 40 years. Sci. Adv. 2022, 8, eabn9493. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wallace, J.M.; Battisti, D.S. ENSO-like Multidecadal Variability: 1900–93. J. Clim. 1997, 10, 1004–1020. [Google Scholar] [CrossRef]
- Oshima, K.; Tanimoto, Y. An evaluation of reproducibility of the Pacific decadal oscillation in the CMIP3 simulations. J. Meteor. Soc. Japan 2009, 87, 755–770. [Google Scholar] [CrossRef]
- Furtado, J.C.; Di Lorenzo, E.; Schneider, N.; Bond, N.A. North Pacific decadal variability and climate change in the IPCC AR4 models. J. Clim. 2011, 24, 3049–3067. [Google Scholar] [CrossRef]
- Newman, M.; Alexander, M.A.; Ault, T.R.; Cobb, K.M.; Deser, C.; Di Lorenzo, E.; Smith, C.A. The Pacific decadal oscillation, revisited. J. Clim. 2016, 29, 4399–4427. [Google Scholar] [CrossRef]
- Fasullo, J.T.; Phillips, A.; Deser, C. Evaluation of leading modes of climate variability in the CMIP archives. J. Clim. 2020, 33, 5527–5545. [Google Scholar] [CrossRef]
- Coburn, J.; Pryor, S.C. Differential credibility of climate modes in CMIP6. J. Clim. 2021, 34, 8145–8164. [Google Scholar] [CrossRef]
- Xia, S.; Liu, P.; Jiang, Z.; Cheng, J. Simulation evaluation of AMO and PDO with CMIP5 and CMIP6 models in historical experiment. Adv. Earth Sci. 2021, 36, 58. [Google Scholar]
- Xu, Y.; Li, T.; Xu, M.; Shen, S.; Hu, Z. Evaluation of the Pacific Decadal Oscillation from 1901 to 2014 in CMIP6 models. Clim. Res. 2023, 90, 1–15. [Google Scholar] [CrossRef]
- Polade, S.D.; Gershunov, A.; Cayan, D.R.; Dettinger, M.D.; Pierce, D.W. Natural climate variability and teleconnections to precipitation over the Pacific-North American region in CMIP3 and CMIP5 models. Geophys. Res. Lett. 2013, 40, 2296−2301. [Google Scholar] [CrossRef]
- Yim, B.Y.; Kwon, M.; Min, H.S.; Kug, J.S. Pacific decadal oscillation and its relation to the extratropical atmospheric variation in CMIP5. Clim. Dyn. 2015, 44, 1521–1540. [Google Scholar] [CrossRef]
- Zhao, Y.; Di Lorenzo, E.; Sun, D.; Stevenson, S. Tropical Pacific decadal variability and ENSO precursor in CMIP5 models. J. Clim. 2021, 34, 1023–1045. [Google Scholar] [CrossRef]
- Xia, S.; Liu, P.; Jiang, Z.; Tao, L.; Song, H. Evaluation and projection of the AMO and PDO variabilities in the CMIP5 models under different warming scenarios part1: Evaluation. Dyn. Atmos. Ocean. 2022, 97, 101260. [Google Scholar] [CrossRef]
- Zuki, Z.M.; Lupo, A.R. Interannual variability of tropical cyclone activity in the southern South China Sea. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Lee, M.H.; Ho, C.H.; Kim, J.H.; Song, H.J. Low-frequency variability of tropical cyclone-induced heavy rainfall over East Asia associated with tropical and North Pacific sea surface temperatures. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Wang, X.; Liu, H. PDO modulation of ENSO effect on tropical cyclone rapid intensification in the western North Pacific. Clim. Dyn. 2016, 46, 15–28. [Google Scholar] [CrossRef]
- Huangfu, J.; Huang, R.; Chen, W. Interdecadal variation of tropical cyclone genesis and its relationship to the convective activities over the central Pacific. Clim. Dyn. 2018, 50, 1439–1450. [Google Scholar] [CrossRef]
- Dai, Y.; Wang, B.; Wei, N.; Song, J.; Duan, Y. How has the North Pacific Gyre Oscillation affected peak season tropical cyclone genesis over the western North Pacific from 1965 to 2020? Environ. Res. Lett. 2022, 17, 104016. [Google Scholar] [CrossRef]
- Dai, Y.; Wang, B.; Sun, W. What drives the decadal variability of global tropical storm days from 1965 to 2019? Adv. Atmos. Sci. 2022, 39, 344–353. [Google Scholar] [CrossRef]
- Cao, X.; Liu, Y.; Wu, R.; Bi, M.; Dai, Y.; Cai, Z. Northwestwards shift of tropical cyclone genesis position during autumn over the western North Pacific after the late 1990s. Int. J. Climatol. 2020, 40, 1885–1899. [Google Scholar] [CrossRef]
- Cao, X.; Wu, R. Simulations of development of tropical disturbances associated with the monsoon trough over the western North Pacific. Atmos. Sci. Lett. 2018, 19, e801. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, S.; Raga, G.B.; Klotzbach, P.J.; Wu, L. Recent decrease in genesis productivity of tropical cloud clusters over the Western North Pacific. Clim. Dyn. 2019, 52, 5819–5831. [Google Scholar] [CrossRef]
- Peng, X.; Wang, L.; Wu, M.; Gan, Q. A contrast of recent changing tendencies in genesis productivity of tropical cloud clusters over the western North Pacific in May and October. Atmosphere 2021, 12, 1177. [Google Scholar] [CrossRef]
- O’Neill, L.W.; Chelton, D.B.; Esbensen, S.K. The effects of SST-induced surface wind speed and direction gradients on midlatitude surface vorticity and divergence. J. Clim. 2010, 23, 255–281. [Google Scholar] [CrossRef]
- Dare, R.A.; McBride, J.L. The threshold sea surface temperature condition for tropical cyclogenesis. J. Clim. 2011, 24, 4570–4576. [Google Scholar] [CrossRef]
- Huangfu, J.; Chen, W.; Ma, T.; Huang, R. Influences of sea surface temperature in the tropical Pacific and Indian Oceans on tropical cyclone genesis over the western North Pacific in May. Clim. Dyn. 2018, 51, 1915–1926. [Google Scholar] [CrossRef]
- Wu, R.; Yang, Y.; Cao, X. Respective and combined impacts of regional SST anomalies on tropical cyclogenesis in different sectors of the western North Pacific. J. Geophys. Res. Atmos. 2019, 124, 8917–8934. [Google Scholar] [CrossRef]
- Wang, C.; Wang, B. Tropical cyclone predictability shaped by western Pacific subtropical high: Integration of trans-basin sea surface temperature effects. Clim. Dyn. 2019, 53, 2697–2714. [Google Scholar] [CrossRef]
- Wang, C.; Wang, B.; Cao, J. Unprecedented Northern Hemisphere tropical cyclone genesis in 2018 shaped by subtropical warming in the North Pacific and the North Atlantic. Geophys. Res. Lett. 2019, 46, 13327–13337. [Google Scholar] [CrossRef]
- Goh, A.Z.C.; Chan, J.C. Interannual and interdecadal variations of tropical cyclone activity in the South China Sea. Int. J. Climatol. A J. R. Meteorol. Soc. 2010, 30, 827–843. [Google Scholar] [CrossRef]
- Yang, L.; Chen, S.; Wang, C.; Wang, D.; Wang, X. Potential impact of the pacific decadal oscillation and sea surface temperature in the tropical Indian Ocean–Western Pacific on the variability of typhoon landfall on the China coast. Clim. Dyn. 2018, 51, 2695–2705. [Google Scholar] [CrossRef]
- Choi, J.-W.; Kim, H.-D. Negative relationship between Korea landfalling tropical cyclone activity and Pacific Decadal Oscillation. Dyn. Atmos. Ocean. 2019, 87, 101100. [Google Scholar] [CrossRef]
- Lee, M.; Kim, T.; Cha, D.H.; Min, S.K.; Park DS, R.; Yeh, S.W.; Chan, J.C. How does Pacific decadal oscillation affect tropical cyclone activity over far East Asia? Geophys. Res. Lett. 2021, 48, e2021GL096267. [Google Scholar] [CrossRef]
- Knapp, K.R.; Kruk, M.C.; Levinson, D.H.; Diamond, H.J.; Neumann, C.J. The international best track archive for climate stewardship (IBTrACS) unifying tropical cyclone data. Bull. Am. Meteorol. Soc. 2010, 91, 363–376. [Google Scholar] [CrossRef]
- Huang, B.; Peter, W.T.; Banzon, V.F.; Boyer, T.; Chepurin, G.; Lawrimore, J.H.; Menne, M.J.; Smith, T.M.; Vose, R.S.; Zhang, H.-M. Extended Reconstructed Sea Surface Temperature version 5 (ERSSTv5). Upgrades, validations, and intercomparisons. J. Clim. 2017, 30, 8179–8205. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Thépaut, J.N. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Shea, D.J. Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett. 2006, 33, L12704. [Google Scholar] [CrossRef]
- Chen, X.; Wallace, J.M. ENSO-like variability: 1900–2013. J. Clim. 2015, 28, 9623–9641. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Du, Y.; Chen, H. Evaluation of CMIP6 model performance in simulating the PDO and its future change. Atmos. Ocean. Sci. Lett. 2023, 100449. [Google Scholar] [CrossRef]
- Luo, N.; Guo, Y.; Chou, J.; Gao, Z. Added value of CMIP6 models over CMIP5 models in simulating the climatological precipitation extremes in China. Int. J. Climatol. 2022, 42, 1148–1164. [Google Scholar] [CrossRef]
- Tory, K.J.; Chand, S.S.; McBride, J.L.; Ye, H.; Dare, R.A. Projected changes in late-twenty-first century tropical cyclone frequency in 13 coupled climate models from phase 5 of the Coupled Model Intercomparison Project. J. Clim. 2013, 26, 9946–9959. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Bell, S.S.; Chand, S.S.; Tory, K.J.; Turville, C. Statistical assessment of the OWZ tropical cyclone tracking scheme in ERA-Interim. J. Clim. 2018, 31, 2217–2232. [Google Scholar] [CrossRef]
- Tory, K.J.; Ye, H.; Brunet, G. Tropical cyclone formation regions in CMIP5 models: A global performance assessment and projected changes. Clim. Dyn. 2020, 55, 3213–3237. [Google Scholar] [CrossRef]
- Yamada, Y.; Kodama, C.; Satoh, M.; Sugi, M.; Roberts, M.J.; Mizuta, R.; Vidale, P.L. Evaluation of the contribution of tropical cyclone seeds to changes in tropical cyclone frequency due to global warming in high-resolution multi-model ensemble simulations. Prog. Earth Planet. Sci. 2021, 8, 11. [Google Scholar] [CrossRef]
- Wang, B.; Murakami, H. Dynamic genesis potential index for diagnosing present-day and future global tropical cyclone genesis. Environ. Res. Lett. 2020, 15, 114008. [Google Scholar] [CrossRef]
- Cao, J.; Wang, H.; Zhao, H.; Wang, B.; Wu, L.; Wang, C. Reversed and comparable climate impacts from historical anthropogenic aerosol and GHG on global-scale tropical cyclone genesis potential. Environ. Res. Lett. 2022, 17, 094027. [Google Scholar] [CrossRef]
- Cao, X.; Wu, R.; Bi, M.; Lan, X.; Dai, Y.; Zhao, J. Contribution of different timescale variations to the tropical cyclogenesis environment over the northern tropical Atlantic and comparison with the western North Pacific. J. Clim. 2019, 32, 6645–6661. [Google Scholar] [CrossRef]
- Basconcillo, J.; Moon, I.J. Increasing activity of tropical cyclones in East Asia during the mature boreal autumn linked to long-term climate variability. npj Clim. Atmos. Sci. 2022, 5, 4. [Google Scholar] [CrossRef]
- Gill, A.E. Some simple solutions for heat-induced tropical circulation. Q. J. R. Meteorol. Soc. 1980, 106, 447–462. [Google Scholar]
- Cao, X.; Chen, G.; Li, T.; Ren, F. Simulations of tropical cyclogenesis associated with different monsoon trough patterns over the western North Pacific. Meteorol. Atmos. Phys. 2016, 128, 491–511. [Google Scholar] [CrossRef]
- Delcroix, T.; Cravatte, S.; McPhaden, M.J. Decadal variations and trends in tropical Pacific sea surface salinity since 1970. J. Geophys. Res. Ocean. 2007, 112. [Google Scholar] [CrossRef]
- Grassi, B.; Redaelli, G.; Canziani, P.O.; Visconti, G. Effects of the PDO phase on the tropical belt width. J. Clim. 2012, 25, 3282–3290. [Google Scholar] [CrossRef]
- Wang, W.; Matthes, K.; Omrani, N.E.; Latif, M. Decadal variability of tropical tropopause temperature and its relationship to the Pacific Decadal Oscillation. Sci. Rep. 2016, 6, 29537. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, Y.; Wang, B.; Wu, L.; Zhao, H.; Cao, J. Opposite skills of ENGPI and DGPI in depicting decadal variability of tropical cyclone genesis over the western North Pacific. J. Clim. 2023, 36, 8713–8721. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, W.; Stuecker, M.F.; Jin, F.F. Pacific Meridional Mode-Western North Pacific tropical cyclone linkage explained by tropical Pacific quasi-decadal variability. Geophys. Res. Lett. 2019, 46, 13346–13354. [Google Scholar] [CrossRef]
- Zhou, Q.; Wei, L. Influence of the pace of El Niño decay on tropical cyclone frequency over the western north pacific during decaying El Niño summers. Atmos. Ocean. Sci. Lett. 2023, 16, 100328. [Google Scholar] [CrossRef]
No. | Model | Resolution | TCF | TS2 (PDO) |
---|---|---|---|---|
1 | CESM2 | 1.25° × 0.94° | 18.6 | 0.87 |
2 | CESM2-WACCM | 1.25° × 0.95° | 17 | 0.80 |
3 | CMCC-CM2-SR5 | 1.5° × 0.94° | 18 | 0.80 |
4 | MIROC6 | 1.41° × 1.41° | 19.9 | 0.79 |
5 | IPSL-CM6A-LR | 2.5° × 1.27° | 17 | 0.78 |
6 | CESM2-WACCM-FV2 | 2.5° × 1.89° | 14.9 | 0.77 |
7 | EC-Earth3 | 0.70° × 0.70° | 18.1 | 0.76 |
8 | EC-Earth3-Veg | 0.70° × 0.70° | 19.3 | 0.76 |
9 | EC-Earth3-AerChem | 0.70° × 0.70° | 19.6 | 0.74 |
10 | FGOALS-g3 | 2° × 2.25° | 17.7 | 0.73 |
11 | EC-Earth3-Veg-LR | 1.12° × 1.13° | 18.6 | 0.73 |
12 | GISS-E2-1-G | 2.5° × 2° | 20.7 | 0.68 |
13 | TaiESM1 | 1.25° × 0.9° | 19.5 | 0.67 |
14 | EC-Earth3-CC | 0.70° × 0.70° | 19.1 | 0.69 |
15 | MPI-ESM1-2-HR | 0.9° × 0.9° | 8 | 0.63 |
16 | KACE-1-0-G | 1.87° × 1.25° | 19.2 | 0.68 |
17 | MPI-ESM1-2-LR | 1.9° × 1.9° | 16.7 | 0.63 |
18 | CanESM5 | 1.9° × 1.9° | 19.9 | 0.56 |
19 | CMCC-CM2-HR4 | 1.5° × 0.94° | 18.9 | 0.54 |
20 | INM-CM5-0 | 2° × 1.5° | 20.1 | 0.57 |
21 | INM-CM4-8 | 2° × 1.5° | 22.7 | 0.47 |
22 | IPSL-CM6A-LR-INCA | 2.5° × 1.27° | 15.8 | 0.32 |
MME | 18.2 | 0.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, J.; Cao, J.; Wang, B.; Zhao, K. Understanding the Inter-Model Spread of PDO’s Impact on Tropical Cyclone Frequency over the Western North Pacific in CMIP6 Models. Atmosphere 2024, 15, 276. https://doi.org/10.3390/atmos15030276
Feng J, Cao J, Wang B, Zhao K. Understanding the Inter-Model Spread of PDO’s Impact on Tropical Cyclone Frequency over the Western North Pacific in CMIP6 Models. Atmosphere. 2024; 15(3):276. https://doi.org/10.3390/atmos15030276
Chicago/Turabian StyleFeng, Jiawei, Jian Cao, Boyang Wang, and Kai Zhao. 2024. "Understanding the Inter-Model Spread of PDO’s Impact on Tropical Cyclone Frequency over the Western North Pacific in CMIP6 Models" Atmosphere 15, no. 3: 276. https://doi.org/10.3390/atmos15030276
APA StyleFeng, J., Cao, J., Wang, B., & Zhao, K. (2024). Understanding the Inter-Model Spread of PDO’s Impact on Tropical Cyclone Frequency over the Western North Pacific in CMIP6 Models. Atmosphere, 15(3), 276. https://doi.org/10.3390/atmos15030276