Topographic Elevation’s Impact on Local Climate and Extreme Rainfall: A Case Study of Zhengzhou, Henan
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. The Calculation of Topographic Elevation Precipitation
3. Results
3.1. Spatial Distribution of July Precipitation in Henan and the Characteristics of Precipitation Anomalies in Zhengzhou
3.2. The Impact of Terrain Uplift on Precipitation in Henan Province in July
3.3. Experiments on the Sensitivity of Extreme Rainfall to Terrain Elevation
3.3.1. The Simulation of Precipitation and Circulation by the Model
3.3.2. Terrain Sensitivity Experiment
3.3.3. The Impact of Terrain Height on Precipitation
4. Conclusions and Research Prospects
- (1)
- In terms of the spatial distribution of precipitation climatology, the precipitation in Zhengzhou during July does not exhibit prominence. The daily precipitation generated by topographic lift is 0.18 mm, accounting for only 4.3% of the total precipitation. The impact of topography on local climate-scale precipitation increments is not significant.
- (2)
- However, in the “7.20” extreme rainfall event in Zhengzhou, the topographic lift precipitation reached 48.7 mm, accounting for 15.8% of the total precipitation. The topographic lift precipitation in this event is significantly higher than the topographic lift precipitation at the climatic scale, and the proportion of total precipitation is also noticeably higher at the weather scale.
- (3)
- The WRF model effectively captures the spatiotemporal distribution characteristics of the precipitation process and the topographic lift precipitation. This precipitation event is highly sensitive to the surrounding topography. When reducing the heights of the Taihang and Funiu Mountains, the center of the heavy rainfall shifts northward and westward, and the intensity of the heavy rainfall decreases. The circulation around Zhengzhou weakens the east wind and strengthens the west and north winds, resulting in a reduction of topographic lift precipitation to 7.3 mm and 12.9 mm, respectively. The proportion of topographic lift precipitation to total precipitation also decreases to 10.6% and 10.3%, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hughes, M.; Hall, A.; Fovell, R.G. Blocking in areas of complex topography, and its influence on rainfall distribution. Atmos. Sci. 2009, 66, 508–518. [Google Scholar] [CrossRef]
- Jiang, Q. Moist dynamics and orographic precipitation. Tellus 2003, 55, 301–316. [Google Scholar] [CrossRef]
- Rotunno, R.; Ferretti, R. Mechanisms of intense alpine rainfall. Atmos. Sci. 2001, 58, 1732–1749. [Google Scholar] [CrossRef]
- Xu, R.; Qiu, Y. The Difference in Cloud Water Resources and Precipitation on the Eastern and Western Sides of the Liupan Mountains Caused by Topographic Effects. Atmosphere 2023, 14, 1502. [Google Scholar] [CrossRef]
- Pérez-Méndez, M.; Tejeda-Martínez, A.; Fitzjarrald, D.R. Diurnal Variation of Rainfall in a Tropical Coastal Region with Complex Orography. Atmosphere 2019, 10, 604. [Google Scholar] [CrossRef]
- Klinker, E.; Sardeshmukh, P.D. The diagnosis of mechanical dissipation in the atmosphere from large-scale balance requirements. Atmos. Sci. 1992, 49, 608–627. [Google Scholar] [CrossRef]
- Yu, C.K.; Jorgensen, D.P.; Roux, F. Multiple precipitation mechanisms over mountains observed by airborne Doppler radar during MAP IOP 5. Mon. Wea. Rev. 2007, 135, 955–984. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Lutz, A.F.; Andrade, M.; Bahl, A.; Biemans, H.; Bolch, T.; Hyde, S.; Brumby, S.; Davies, B.J.; Elmore, A.C.; et al. Importance and vulnerability of the world’s water towers. Nature 2020, 577, 364–369. [Google Scholar] [CrossRef]
- Yang, K.; Ye, B.; Zhou, D.; Wu, B.; Foken, T.; Qin, J.; Zhou, Z. Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Clim. Change 2011, 109, 517–534. [Google Scholar] [CrossRef]
- Minder, J.R.; Durran, D.R.; Roe, G.H.; Anders, A.M. The climatology of small-scale orographic precipitation over the Olympic Mountains: Patterns and processes. Quart. J. Roy. Meteor. Soc. 2008, 134, 817–839. [Google Scholar] [CrossRef]
- Daly, C.; Halbleib, M.; Smith, J.I.; Gibson, W.P.; Doggett, M.K.; Taylor, G.H.; Curtis, J.; Pasteris, P.P. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol. 2008, 28, 2031–2064. [Google Scholar] [CrossRef]
- Livneh, B.; Rosenberg, E.A.; Lin, C.; Nijssen, B.; Mishra, V.; Andreadis, K.M.; Maurer, E.P.; Lettenmaier, D.P. A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: Update and extensions. J. Clim. 2013, 26, 9384–9392. [Google Scholar] [CrossRef]
- Lu, C.X.; Wang, L.; Xie, G.D.; Leng, Y.F. Altitude Effect of Precipitation and Spatial Distribution of Qinghai-Tibetan Plateau. Mt. Res. 2007, 6, 655–663. (In Chinese) [Google Scholar]
- Shi, L. Study on a Fine-Scale Estimating Climatic Model for the Spatial Distribution of Precipitation over the Rugged Terrain in Yangtze River Basin. Ph.D. Thesis, Nanjing University of Information Science & Technology, Nanjing, China, 2012. (In Chinese). [Google Scholar]
- Smith, R.B.; Barstad, I. A linear theory of orographic precipitation. J. Atmos. Sci. 2004, 61, 1377–1391. [Google Scholar] [CrossRef]
- Sinclair, M.R. A diagnostic model for estimating orographic precipitation. J. Appl. Meteor. 1994, 33, 1163–1175. [Google Scholar] [CrossRef]
- Eidhammer, T.; Grubišić, V.; Rasmussen, R.; Ikdea, K. Winter precipitation efficiency of mountain ranges in the Colorado Rockies under climate change. J. Geophys. Res. Atmos. 2018, 123, 2573–2590. [Google Scholar] [CrossRef]
- Mearns, L.O.; Gutowski, W.; Jones, R.; Leung, R.; McGinnis, S.; Nunes, A.; Qian, Y. A regional climate change assessment program for North America. EOS Trans. Amer. Geophys. Union 2009, 90, 311. [Google Scholar] [CrossRef]
- Arévalo, J.; Marín, J.C.; Díaz, M.; Raga, G.; Pozo, D.; Córdova, A.M.; Baumgardner, D. Sensitivity of Simulated Conditions to Different Parameterization Choices Over Complex Terrain in Central Chile. Atmosphere 2024, 15, 10. [Google Scholar] [CrossRef]
- Darby, L.S.; White, A.B.; Gottas, D.J.; Coleman, T. An evaluation of integrated water vapor, wind, and precipitation forecasts using water vapor flux observations in the western United States. Weather Forecast. 2019, 34, 1867–1888. [Google Scholar] [CrossRef]
- Zhang, X. Application of a convection-permitting ensemble prediction system to quantitative precipitation forecasts over southern China: Preliminary results during SCMREX. Quart. J. Roy. Meteor. Soc. 2018, 144, 2842–2862. [Google Scholar] [CrossRef]
- Wei, P.; Xu, X.; Xue, M.; Zhang, C.; Wang, Y.; Zhao, K.; Zhou, A.; Zhang, S.; Zhu, K. On the key dynamical processes supporting the 21.7 Zhengzhou record-breaking hourly rainfall in China. Adv. Atmos. Sci. 2023, 40, 337–349. [Google Scholar] [CrossRef]
- Guo, Y.; Shao, C.; Su, A. Investigation of Land–Atmosphere Coupling during the Extreme Rainstorm of 20 July 2021 over Central East China. Atmosphere 2023, 14, 1474. [Google Scholar] [CrossRef]
- Xu, J.; Li, R.; Zhang, Q.; Chen, Y.; Liang, X.; Gu, X. Extreme large-scale atmospheric circulation associated with the “21·7” Henan flood. Sci. China Earth Sci. 2022, 65, 1847–1860. [Google Scholar] [CrossRef]
- Zhu, K.F.; Zhang, C.; Xue, M.; Yang, N. Predictability and skill of convection-permitting ensemble forecast systems in predicting the record-breaking “21.7” extreme rainfall event in Henan Province. Sci. China Earth Sci. 2022, 52, 1905–1928. (In Chinese) [Google Scholar]
- Tao, K.; Barros, A.P. Using Fractal Downscaling of Satellite Precipitation Products for Hydrometeorological Applications. Atmos. Ocean. Technol. 2010, 27, 409–427. [Google Scholar] [CrossRef]
Units | Domain1 | Domain2 |
---|---|---|
Central point | (31.5° N, 115.0° E) | (30.0° N, 115.0° E) |
Grid distance | 27 km | 9 km |
Grid numbers | 111 × 148 | 247 × 334 |
Micro Physics Schemes | Thompson | |
Longwave Schemes | RRTM | |
Shortwave Schemes | Goddard | |
Planetary Boundary Layer Schemes | YSU | |
Land Surface Schemes | 5–layer Thermal Diffusion | |
Cumulus Parameterization Schemes | Tiedtke |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Z.; Yu, J.; Dai, K. Topographic Elevation’s Impact on Local Climate and Extreme Rainfall: A Case Study of Zhengzhou, Henan. Atmosphere 2024, 15, 234. https://doi.org/10.3390/atmos15020234
Jin Z, Yu J, Dai K. Topographic Elevation’s Impact on Local Climate and Extreme Rainfall: A Case Study of Zhengzhou, Henan. Atmosphere. 2024; 15(2):234. https://doi.org/10.3390/atmos15020234
Chicago/Turabian StyleJin, Zhi, Jinhua Yu, and Kan Dai. 2024. "Topographic Elevation’s Impact on Local Climate and Extreme Rainfall: A Case Study of Zhengzhou, Henan" Atmosphere 15, no. 2: 234. https://doi.org/10.3390/atmos15020234
APA StyleJin, Z., Yu, J., & Dai, K. (2024). Topographic Elevation’s Impact on Local Climate and Extreme Rainfall: A Case Study of Zhengzhou, Henan. Atmosphere, 15(2), 234. https://doi.org/10.3390/atmos15020234