Yearly Elevation Change and Surface Velocity Revealed from Two UAV Surveys at Baishui River Glacier No. 1, Yulong Snow Mountain
Abstract
:1. Introduction
2. Study Site
3. Data Collection and Data Analysis
3.1. UAV Surveying
3.2. Processing of UAV Data
3.3. Elevation Change Rate Calculation and Terminus Retreat Estimation of BRG1
3.4. Surface Velocity Calculation
4. Results
4.1. Elevation Change and Terminus Retreat in BGR1
4.2. Glacier Surface Velocity Estimate
5. Discussions and Conclusions
5.1. Error Analysis of Elevation Change and Surface Velocity
5.2. Relationship between Elevation Change and the Elevation
5.3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Figures | A1 |
---|---|
Data source | DJI UAV |
Data resolution | 0.2 m |
Grid resolution | 2 m |
Template window size | 30 pixels |
Search window size | 150 pixels |
Points | Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | Point 6 | Point 7 | Point 8 | Point 9 | Point 10 | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|
Velocity of Che (m/a) | 22.07 | 15.25 | 28.71 | 30.01 | 30.76 | 23.69 | 22.75 | 20.21 | 24.49 | 27.30 | 24.52 |
Velocity of ours (m/a) | 16.40 | 11.29 | 23.31 | 21.59 | 21.71 | 17.67 | 16.94 | 13.73 | 17.65 | 19.93 | 18.02 |
Difference (m/a) | 5.67 | 3.96 | 5.39 | 8.42 | 9.05 | 6.02 | 5.80 | 6.48 | 6.84 | 7.37 | 6.50 |
References
- Che, Y.; Zhang, M.; Li, Z.; Jin, S.; Wang, W.; Wang, S. Understanding the mass balance characteristics of Qingbingtan Glacier No. 72 during the period of 2008–2014. J. Glaciol. Geocryol. 2020, 42, 318–331. [Google Scholar]
- Friedl, P.; Seehaus, T.; Braun, M. Global time series and temporal mosaics of glacier surface velocities derived from Sentinel-1 data. Earth Syst. Sci. Data 2021, 13, 4653–4675. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, J.; Li, Z.; Zhang, M.; Wang, Y.; Liu, J.; Yang, J.; Yang, Z. Retrieving and Verifying Three-Dimensional Surface Motion Displacement of Mountain Glacier from Sentinel-1 Imagery Using Optimized Method. Water 2021, 13, 1793. [Google Scholar] [CrossRef]
- Pang, H.; He, Y.; Zhang, N.; Li, Z.; Theakstone, W.H. Observed glaciohydrological changes in China’s typical monsoonal temperate glacier region since 1980s. J. Earth Sci. 2010, 21, 179–188. [Google Scholar] [CrossRef]
- Bhambri, R.; Hewitt, K.; Kawishwar, P.; Pratap, B. Surge-type and surge-modified glaciers in the Karakoram. Sci. Rep. 2017, 7, 15391. [Google Scholar] [CrossRef] [PubMed]
- Gardelle, J.; Berthier, E.; Arnaud, Y. Slight mass gain of Karakoram glaciers in the early twenty-first century. Nat. Geosci. 2012, 5, 322–325. [Google Scholar] [CrossRef]
- Sun, M.; Liu, S.; Yao, X.; Guo, W.; Xu, J. Glacier changes in the Qilian Mountains in the past half-century: Based on the revised First and Second Chinese Glacier Inventory. J. Geogr. Sci. 2018, 28, 206–220. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Z.; Li, J.; Zhao, R.; Ding, X. Glacier mass balance in the Qinghai–Tibet Plateau and its surroundings from the mid-1970s to 2000 based on Hexagon KH-9 and SRTM DEMs. Remote Sens. Environ. 2018, 210, 96–112. [Google Scholar] [CrossRef]
- Millan, R.; Mouginot, J.; Rabatel, A.; Jeong, S.; Cusicanqui, D.; Derkacheva, A.; Chekki, M. Mapping Surface Flow Velocity of Glaciers at Regional Scale Using a Multiple Sensors Approach. Remote Sens. 2019, 11, 2498. [Google Scholar] [CrossRef]
- Wang, W.; Yao, T.; Yang, X. Variations of glacial lakes and glaciers in the Boshula mountain range, southeast Tibet, from the 1970s to 2009. Ann. Glaciol. 2011, 52, 9–17. [Google Scholar] [CrossRef]
- Veh, G.; Korup, O.; Walz, A. Hazard from Himalayan glacier lake outburst floods. Proc. Natl. Acad. Sci. USA 2020, 117, 907–912. [Google Scholar] [CrossRef]
- Kääb, A.; Leinss, S.; Gilbert, A.; Bühler, Y.; Gascoin, S.; Evans, S.G.; Bartelt, P.; Berthier, E.; Brun, F.; Chao, W.-A. Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability. Nat. Geosci. 2018, 11, 114–120. [Google Scholar] [CrossRef]
- Wei, R.; Zeng, Q.; Davies, T.; Yuan, G.; Wang, K.; Xue, X.; Yin, Q. Geohazard cascade and mechanism of large debris flows in Tianmo gully, SE Tibetan Plateau and implications to hazard monitoring. Eng. Geol. 2018, 233, 172–182. [Google Scholar] [CrossRef]
- Che, Y.; Zhang, M.; Li, Z.; Li, H.; Wang, S.; Sun, M.; Zha, S. Glacier mass-balance and length variation observed in China during the periods 1959–2015 and 1930–2014. Quat. Int. 2017, 454, 68–84. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Kraaijenbrink, P.D.A.; Shea, J.M.; Shrestha, A.B.; Pellicciotti, F.; Bierkens, M.F.P.; de Jong, S.M. High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles. Remote Sens. Environ. 2014, 150, 93–103. [Google Scholar] [CrossRef]
- Nascetti, A.; Nocchi, F.; Camplani, A.; Di Rico, C.; Crespi, M. Exploiting Sentinel-1 Amplitude Data for Glacier Surface Velocity Field Measurements: Feasibility Demonstration on Baltoro Glacier. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B7, 783–788. [Google Scholar] [CrossRef]
- Moragues, S.N.; Lenzano, M.G.; Lo Vecchio Repetto, A.; Falaschi, D.; Lenzano, L.E. Surface velocities of Upsala glacier, Southern Patagonian Andes, estimated using cross-correlation satellite imagery: 2013–2014 period. Andean Geol. 2018, 45, 87–103. [Google Scholar] [CrossRef]
- Wang, P.; Li, Z.; Xu, C.; Xing, W.; Zhou, P.; Zhang, H. Multi-decadal variations in glacier flow velocity and the influencing factors of Urumqi Glacier No. 1 in Tianshan Mountains, Northwest China. J. Arid Land 2017, 9, 900–910. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, G.; Wang, X.; Liu, Q.; Shum, C.K.; Bao, J.; Mao, W. Investigating the Intra-Annual Dynamics of Kunlun Glacier in the West Kunlun Mountains, China, From Ascending and Descending Sentinel-1 SAR Observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1272–1282. [Google Scholar] [CrossRef]
- Whitehead, K.; Moorman, B.; Hugenholtz, C. Brief Communication: Low-cost, on-demand aerial photogrammetry for glaciological measurement. Cryosphere 2013, 7, 1879–1884. [Google Scholar] [CrossRef]
- Wang, P.; Li, H.; Li, Z.; Liu, Y.; Xu, C.; Mu, J.; Zhang, H. Seasonal Surface Change of Urumqi Glacier No. 1, Eastern Tien Shan, China, Revealed by Repeated High-Resolution UAV Photogrammetry. Remote Sens. 2021, 13, 3398. [Google Scholar] [CrossRef]
- Ke, L.; Song, C.; Yong, B.; Lei, Y.; Ding, X. Which heterogeneous glacier melting patterns can be robustly observed from space? A multi-scale assessment in southeastern Tibetan Plateau. Remote Sens. Environ. 2020, 242, 111777. [Google Scholar] [CrossRef]
- Wu, K.; Liu, S.; Jiang, Z.; Xu, J.; Wei, J. Glacier mass balance over the central Nyainqentanglha Range during recent decades derived from remote-sensing data. J. Glaciol. 2019, 65, 422–439. [Google Scholar] [CrossRef]
- Che, Y.; Wang, S.; Yi, S.; Wei, Y.; Cai, Y. Summer Mass Balance and Surface Velocity Derived by Unmanned Aerial Vehicle on Debris-Covered Region of Baishui River Glacier No. 1, Yulong Snow Mountain. Remote Sens. 2020, 12, 3280. [Google Scholar] [CrossRef]
- Xue, Y.; Jing, Z.; Kang, S.; He, X.; Li, C. Combining UAV and Landsat data to assess glacier changes on the central Tibetan Plateau. J. Glaciol. 2021, 67, 862–874. [Google Scholar] [CrossRef]
- Bash, E.A.; Moorman, B.J. Surface melt and the importance of water flow–an analysis based on high-resolution unmanned aerial vehicle (UAV) data for an Arctic glacier. Cryosphere 2020, 14, 549–563. [Google Scholar] [CrossRef]
- Wu, K.; Liu, S.; Zhu, Y.; Xie, F.; Gao, Y. High-resolution monitoring of glacier dynamics based on unmanned aerial vehicle survey in the Meili Snow Mountain. Prog. Geogr. 2021, 40, 1581–1589. [Google Scholar] [CrossRef]
- Pieczonka, T.; Bolch, T. Region-wide glacier mass budgets and area changes for the Central Tien Shan between~ 1975 and 1999 using Hexagon KH-9 imagery. Glob. Planet. Chang. 2015, 128, 1–13. [Google Scholar] [CrossRef]
- Poblete, T.; Ortega-Farías, S.; Ryu, D. Automatic coregistration algorithm to remove canopy shaded pixels in UAV-borne thermal images to improve the estimation of crop water stress index of a drip-irrigated Cabernet Sauvignon vineyard. Sensors 2018, 18, 397. [Google Scholar] [CrossRef]
- Tonkin, T.N.; Midgley, N.; Cook, S.J.; Graham, D. Ice-cored moraine degradation mapped and quantified using an unmanned aerial vehicle: A case study from a polythermal glacier in Svalbard. Geomorphology 2016, 258, 1–10. [Google Scholar] [CrossRef]
- Rossini, M.; Di Mauro, B.; Garzonio, R.; Baccolo, G.; Cavallini, G.; Mattavelli, M.; De Amicis, M.; Colombo, R. Rapid melting dynamics of an alpine glacier with repeated UAV photogrammetry. Geomorphology 2018, 304, 159–172. [Google Scholar] [CrossRef]
- Kraaijenbrink, P.; Meijer, S.W.; Shea, J.M.; Pellicciotti, F.; De Jong, S.M.; Immerzeel, W.W. Seasonal surface velocities of a Himalayan glacier derived by automated correlation of unmanned aerial vehicle imagery. Ann. Glaciol. 2016, 57, 103–113. [Google Scholar] [CrossRef]
- Brun, F.; Wagnon, P.; Berthier, E.; Shea, J.M.; Immerzeel, W.W.; Kraaijenbrink, P.D.; Vincent, C.; Reverchon, C.; Shrestha, D.; Arnaud, Y. Ice cliff contribution to the tongue-wide ablation of Changri Nup Glacier, Nepal, central Himalaya. Cryosphere 2018, 12, 3439–3457. [Google Scholar] [CrossRef]
- van Woerkom, T.; Steiner, J.F.; Kraaijenbrink, P.D.; Miles, E.S.; Immerzeel, W.W. Sediment supply from lateral moraines to a debris-covered glacier in the Himalaya. Earth Surf. Dyn. 2019, 7, 411–427. [Google Scholar] [CrossRef]
- Racoviteanu, A.E.; Glasser, N.F.; Robson, B.A.; Harrison, S.; Millan, R.; Kayastha, R.B.; Kayastha, R. Recent evolution of glaciers in the Manaslu region of Nepal from satellite imagery and UAV data (1970–2019). Front. Earth Sci. 2022, 9, 767317. [Google Scholar] [CrossRef]
- Xue, Y.; Jing, Z.; Kang, S. Application of unmanned aerial vehicle in glacier change monitoring: Taking the Xiao Dongkemadi Glacier in the Tanggula Mountains as an example. Prog. Geogr. 2021, 40, 1590–1599. [Google Scholar] [CrossRef]
- Zhao, C.; Yang, W.; Wang, Y.; Ding, B.; Xu, X. Changes in surface elevation and velocity of Parlung No. 4 glacier in southeastern Tibetan Plateau: Monitoring by UAV technology. J. Beijing Norm. Univ. 2020, 56, 557–565. [Google Scholar]
- Liu, Y.; Qin, D.; Jin, Z.; Li, Y.; Xue, L.; Qin, X. Dynamic Monitoring of Laohugou Glacier No. 12 with a Drone, West Qilian Mountains, West China. Remote Sens. 2022, 14, 3315. [Google Scholar] [CrossRef]
- Yang, W.; Zhao, C.; Westoby, M.; Yao, T.; Wang, Y.; Pellicciotti, F.; Zhou, J.; He, Z.; Miles, E. Seasonal Dynamics of a Temperate Tibetan Glacier Revealed by High-Resolution UAV Photogrammetry and In Situ Measurements. Remote Sens. 2020, 12, 2389. [Google Scholar] [CrossRef]
- RGI 7.0 Consortium. Randolph Glacier Inventory—A Dataset of Global Glacier Outlines, Version 7.0; NSIDC: National Snow and Ice Data Center: Boulder, CO, USA, 2023. [Google Scholar] [CrossRef]
- Xiao, Y.; Ke, C.-Q.; Cai, Y.; Shen, X.; Wang, Z.; Nourani, V.; Lhakpa, D. Glacier Retreating Analysis on the Southeastern Tibetan Plateau via Multisource Remote Sensing Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 2035–2049. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Van Beek, L.P.; Bierkens, M.F. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Brun, F.; Berthier, E.; Wagnon, P.; Kääb, A.; Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 2017, 10, 668–673. [Google Scholar] [CrossRef]
- Hugonnet, R.; McNabb, R.; Berthier, E.; Menounos, B.; Nuth, C.; Girod, L.; Farinotti, D.; Huss, M.; Dussaillant, I.; Brun, F. Accelerated global glacier mass loss in the early twenty-first century. Nature 2021, 592, 726–731. [Google Scholar] [CrossRef]
- Zhao, F.; Long, D.; Li, X.; Huang, Q.; Han, P. Rapid glacier mass loss in the Southeastern Tibetan Plateau since the year 2000 from satellite observations. Remote Sens. Environ. 2022, 270, 112853. [Google Scholar] [CrossRef]
- Wang, X.; Guo, X.; Yang, C.; Liu, Q.; Wei, J.; Zhang, Y.; Liu, S.; Zhang, Y.; Jiang, Z.; Tang, Z. Glacial lake inventory of high-mountain Asia in 1990 and 2018 derived from Landsat images. Earth Syst. Sci. Data 2020, 12, 2169–2182. [Google Scholar] [CrossRef]
- Wang, C.; Yang, Y.; Wang, S.; Ai, S.; Che, Y.; Wang, J.; Li, L.; Li, F. Seasonal glacier change revealed from the real-time monitoring platform on Baishui River Glacier No. 1 in Yulong Snow Mountain, Southeastern Qinghai–Tibet plateau. Ann. Glaciol. 2023, 1–11. [Google Scholar] [CrossRef]
- Wang, S.; Che, Y.; Pang, H.; Du, J.; Zhang, Z. Accelerated changes of glaciers in the Yulong Snow Mountain, Southeast Qinghai-Tibetan Plateau. Reg. Environ. Chang. 2020, 20, 38. [Google Scholar] [CrossRef]
- Pang, H.; Yuanqing, H.; Zhang, N. Accelerating glacier retreat on Yulong Mountain, Tibetan Plateau, since the late 1990s. J. Glaciol. 2007, 53, 317–319. [Google Scholar] [CrossRef]
- Yan, X.; Ma, J.; Ma, X.; Wang, S.; Chen, P.; He, Y. Accelerated glacier mass loss with atmospheric changes on Mt. Yulong, Southeastern Tibetan Plateau. J. Hydrol. 2021, 603, 126931. [Google Scholar] [CrossRef]
- Che, Y.; Wang, S.; Liu, J. Application of unmanned aerial vehicle (UAV) in the glacier region with complex terrain: A case study in Baishui River Glacier No. 1 located in the Yulong Snow Mountains. J. Glaciol. Geocryol. 2019, 41, 1–9. [Google Scholar]
- Yang, W.; Yao, T.; Xu, B.; Ma, L.; Wang, Z.; Wan, M. Characteristics of recent temperate glacier fluctuations in the Parlung Zangbo River basin, southeast Tibetan Plateau. Chin. Sci. Bull. 2010, 55, 2097–2102. [Google Scholar] [CrossRef]
- Yan, X.; Ma, J.; Ma, X.; Chen, P.; Wang, S.; Wei, Y.; Zhu, G.; Zhang, W. Hydrothermal combination and geometry control the spatial and temporal rhythm of glacier flow. Sci. Total Environ. 2021, 760, 144315. [Google Scholar] [CrossRef]
- Du, J.; He, Y.; Li, S.; Wang, S.; Niu, H.; Xin, H.; Pu, T. Mass balance and near-surface ice temperature structure of Baishui Glacier No.1 in Mt. Yulong. J. Geogr. Sci. 2013, 23, 668–678. [Google Scholar] [CrossRef]
- Liu, L.; Jing, Z. A Study of Velocity of Baishui No. 1 Glacier, Mt. Yulong. Adv. Earth Sci. 2012, 27, 987. [Google Scholar]
- DJI-Innovation. Inspire-2 User Manuals. Available online: https://www.dji.com/inspire-2 (accessed on 31 July 2019).
- DJI-Innovation. Matrice-300 RTK User Manuals. Available online: https://www.dji.com/matrice-300 (accessed on 29 July 2022).
- Li, P.; Yan, M.; Xu, Y.; Liu, L.; Zhang, Y. Calculation Methods of Glacier Terminus Variation Based on GIS: A Case Study on Austre Lovénbreen in Arctic. J. Glaciol. Geocryol. 2012, 34, 367–374. [Google Scholar]
- Miles, E.; Quincey, D.J.; Miles, K.; Hubbard, B.P.; Rowan, A.V. Quantifying seasonal velocity at Khumbu Glacier, Nepal. In Proceedings of the AGU Fall Meeting Abstracts, New Orleans, LA, USA, 11–15 December 2017; p. C51D-05. [Google Scholar]
- Ahsan, M.H. Dynamics and Evolution of Iconic Glaciers in Southern Alps of New Zealand; Politecnico di Torino: Turin, Italy, 2022. [Google Scholar]
- Messerli, A.; Karlsson, N.B.; Grinsted, A. No slowing down of Jakobshavn Isbræ in 2014: Results from feature-tracking five Greenland outlet glaciers using Landsat-8 data and the ImGRAFT toolbox. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 12–17 April 2015; p. 9857. [Google Scholar]
- Messerli, A.; Grinsted, A. Image georectification and feature tracking toolbox: ImGRAFT. Geosci. Instrum. Methods Data Syst. 2015, 4, 23–34. [Google Scholar] [CrossRef]
- Du, J.; Li, S.; Qang, S. Analysis of the surface velocity characteristics of Baishui Glacier No.1, Yulong Mountain. J. Yunnan Univ. Nat. Sci. Ed. 2019, 41, 317–322. [Google Scholar] [CrossRef]
- Cuffey, K.M.; Paterson, W.S.B. The Physics of Glaciers; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Yang, Y.; Sun, B.; Wang, Z.; Ding, M.; Hwang, C.; Ai, S.; Wang, L.; Du, Y.; Dongchen, E. GPS-derived velocity and strain fields around Dome Argus, Antarctica. J. Glaciol. 2017, 60, 735–742. [Google Scholar] [CrossRef]
- Liu, T.; Niu, M.; Yang, Y. Ice velocity variations of the polar record glacier (East Antarctica) using a rotation-invariant feature-tracking approach. Remote Sens. 2017, 10, 42. [Google Scholar] [CrossRef]
- Xingguo, Y. The Mass Balance and Surface Velocity of Baishui River Glacier No.1 in Yulong Snow Mountain; Northwest Normal University: Lanzhou, China, 2018. [Google Scholar]
- Barry, R.G. Mountain Weather and Climate; Routledge: Oxfordshire, UK, 2013. [Google Scholar]
- Wagnon, P.; Linda, A.; Arnaud, Y.; Kumar, R.; Sharma, P.; Vincent, C.; Pottakkal, J.G.; Berthier, E.; Ramanathan, A.; Hasnain, S.I. Four years of mass balance on Chhota Shigri Glacier, Himachal Pradesh, India, a new benchmark glacier in the western Himalaya. J. Glaciol. 2007, 53, 603–611. [Google Scholar] [CrossRef]
- Rabatel, A.; Dedieu, J.-P.; Vincent, C. Using remote-sensing data to determine equilibrium-line altitude and mass-balance time series: Validation on three French glaciers, 1994–2002. J. Glaciol. 2005, 51, 539–546. [Google Scholar] [CrossRef]
Region | Maximum (m) | Minimum (m) | Mean (m) | Mean Rate (m/a) |
---|---|---|---|---|
Study Area | 9.95 | −28.74 | −4.26 | −1.55 |
Lower | 9.95 | −28.74 | −8.81 | −3.20 |
Upper | 9.22 | −24.11 | −3.01 | −1.10 |
Method | Feature Point | Mainstream Line | Perimeter | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AR (m) | Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | Point 6 | Point 7 | Point 8 | Mean | −45.21 | −26.93 |
−11.19 | −28.54 | −24.37 | −33.67 | −45.10 | −70.33 | −56.43 | −87.95 | −44.70 | |||
Rate (m/a) | −16.25 | −16.44 | −9.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Yang, Y.; Wang, S.; Wang, C.; Wang, Q.; Chen, Y.; Wang, J.; Ai, S.; Che, Y. Yearly Elevation Change and Surface Velocity Revealed from Two UAV Surveys at Baishui River Glacier No. 1, Yulong Snow Mountain. Atmosphere 2024, 15, 231. https://doi.org/10.3390/atmos15020231
Li L, Yang Y, Wang S, Wang C, Wang Q, Chen Y, Wang J, Ai S, Che Y. Yearly Elevation Change and Surface Velocity Revealed from Two UAV Surveys at Baishui River Glacier No. 1, Yulong Snow Mountain. Atmosphere. 2024; 15(2):231. https://doi.org/10.3390/atmos15020231
Chicago/Turabian StyleLi, Leiyu, Yuande Yang, Shijin Wang, Chuya Wang, Qihua Wang, Yuqiao Chen, Junhao Wang, Songtao Ai, and Yanjun Che. 2024. "Yearly Elevation Change and Surface Velocity Revealed from Two UAV Surveys at Baishui River Glacier No. 1, Yulong Snow Mountain" Atmosphere 15, no. 2: 231. https://doi.org/10.3390/atmos15020231
APA StyleLi, L., Yang, Y., Wang, S., Wang, C., Wang, Q., Chen, Y., Wang, J., Ai, S., & Che, Y. (2024). Yearly Elevation Change and Surface Velocity Revealed from Two UAV Surveys at Baishui River Glacier No. 1, Yulong Snow Mountain. Atmosphere, 15(2), 231. https://doi.org/10.3390/atmos15020231