Radar, Lightning, and Synoptic Observations for a Thunderstorm on 7 January 2012 during the CHUVA-Vale Campaign
Abstract
:1. Introduction
2. Materials and Methods
2.1. CHUVA-Vale Field Campaign
2.2. S-Band Weather Radar and Methodology
2.3. Lightning Observations and Methodology
2.4. Synoptic Analysis
2.5. Identifying and Analyzing Thunderstorms
3. Results
3.1. Event Description
3.2. Synoptic Environment
3.3. Lifecycle Evolution of Radar and Satellite Properties
3.4. Lifecycle Evolution of Lightning and Radar Signatures
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johns, R.H.; Doswell, C.A. Severe local storms forecasting. Weather Forecast. 1992, 7, 588–612. [Google Scholar] [CrossRef]
- Moller, A.R. Severe local storms forecasting. In Severe Convective Storms; Doswell, C.A., III, Eds.; American Meteorological Society, Monograph: Boston, MA, USA, 2001; Volume 28, pp. 433–480. [Google Scholar]
- Re, M. Münchener Rückversicherungs-Gesellschaft, Geo Risks Research. NatCatSERVICE. Record Hurricane Season and Major Wildfires—The Natural Disaster Figures for 2020. 2013. Available online: https://www.munichre.com/en/company/media-relations/media-information-and-corporate-news/media-information/2021/2020-natural-disasters-balance.html (accessed on 14 March 2021).
- CEPED. Atlas Brasileiro de Desastres Naturais Online. 2020. Available online: https://s2id.mi.gov.br/paginas/atlas/ (accessed on 21 April 2020).
- Marengo, J.A.; Alves, L.M.; Ambrizzi, T.; Young, A.; Barreto, N.J.C.; Ramos, A.M. Trends in extreme rainfall and hydrogeometeorological disasters in the Metropolitan Area of São Paulo: A review. Ann. N. Y. Acad. Sci. 2020, 1472, 5–20. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.M.F.; Caramori, P.H.; Ricce, W.S. O Jornal Como Fonte de Informação Sobre Precipitações de Granizo no Estado do Paraná. Rev. GeoNorte 2012, 1, 1079–1090. Available online: https://www.periodicos.ufam.edu.br/index.php/revista-geonorte/article/view/2465 (accessed on 12 January 2023).
- Mohr, S.; Kunz, M.; Keuler, K. Development and application of a logistic model to estimate the past and future hail potential in Germany. J. Geophys. Res. Atmos. 2015, 120, 3939–3956. [Google Scholar] [CrossRef]
- Martins, J.A.; Brand, V.S.; Capucim, M.N.; Felix, R.R.; Martins, L.D.; Freitas, E.D.; Gonçalves, F.L.T.; Hallak, R.; Silva, M.A.F.D.; Cecil, D.J. Climatology of destructive hailstorms in Brazil. Atmos. Res. 2017, 184, 126–138. [Google Scholar] [CrossRef]
- Prein, A.F.; Holland, G.J. Global estimates of damaging hail hazard. Weather Clim. Extrem. 2018, 22, 10–23. [Google Scholar] [CrossRef]
- Martinez, J.F. Compositional heterogeneity of hailstones: Atmospheric conditions and possible environmental implications. Ambio 2001, 30, 452–454. [Google Scholar] [CrossRef]
- Houze, R.A. Cloud Dynamics; International Geophysics Series; Academic Press: San Diego, CA, USA, 2014; Volume 104. [Google Scholar]
- Rinehart, R.E. Radar for Meteorologists; Rinehart Publications: Grand Forks, ND, USA, 2004. [Google Scholar]
- Cecil, D.J.; Blankenship, C.B. Toward a global climatology of severe hailstorms as estimated by satellite passive microwave imagers. J. Clim. 2012, 25, 687–703. [Google Scholar] [CrossRef]
- Medina, B.L.; Machado, L.A.T. Dual Polarization Radar Lagrangian Parameters: A Statistics-Based Probabilistic Nowcasting Model. Nat. Hazards J. Int. Soc. Prev. Mitig. Nat. Hazards 2017, 89, 705–721. [Google Scholar] [CrossRef]
- Beltrán, R.P. Características da Precipitação e Atividade Elétrica de Tempestades Severas da Região Metropolitana de São Paulo. Master’s Thesis, Programa de Pós-graduação em Meteorologia, Universidade de São Paulo, São Paulo, Brazil, 2017; p. 113. [Google Scholar]
- Bruick, Z.S.; Rasmussen, K.L.; Cecil, D.J. Subtropical South American hailstorm characteristics and environments. Mon. Weather Rev. 2019, 147, 4289–4304. [Google Scholar] [CrossRef]
- Niall, S.; Walsh, K. The impact of climate change on hailstorms in southeastern Australia. Int. J. Climatol. A J. R. Meteorol. Soc. 2005, 25, 1933–1952. [Google Scholar] [CrossRef]
- Viana, D.R.; Aquino, F.E.; Munõz, V.A. Avaliação de desastres no Rio Grande do Sul associados a complexos convectivos de mesoescala. Rev. Soc. Nat. 2009, 21, 91–105. [Google Scholar] [CrossRef]
- Hand, W.H.; Cappelluti, G. A global hail climatology using the UK Met Office convection diagnosis procedure (CDP) and model analyses. Meteorol. Appl. 2011, 18, 446–458. [Google Scholar] [CrossRef]
- Dolati, S.H.; Fereidoon, A.; Sabet, A.R. Hail impact damage behaviors of glass fiber reinforced epoxy filled with nanoclay. J. Compos. Mater. 2014, 48, 1241–1249. [Google Scholar] [CrossRef]
- Punge, H.J.; Kunz, M. Hail observations and hailstorm characteristics in Europe: A review. Atmos. Res. 2016, 176, 159–184. [Google Scholar] [CrossRef]
- Punge, H.J.; Bedka, K.M.; Kunz, M.; Reinbold, A. Hail frequency estimation across Europe based on a combination of overshooting top detections and the ERA INTERIM reanalysis. Atmos. Res. 2017, 198, 34–43. [Google Scholar] [CrossRef]
- Capozzi, V.; Picciotti, E.; Mazzarella, V.; Marzano, F.S.; Budillon, G. Fuzzy-logic detection and probability of hail exploiting short-range X band weather radar. Atmos. Res. 2018, 201, 17–33. [Google Scholar] [CrossRef]
- Trefalt, S.; Martynov, A.; Barras, H.; Besic, N.; Hering, A.M.; Lenggenhager, S.; Noti, P.; Röthlisberger, M.; Schemm, S.; Germann, U.; et al. A Severe Hail Storm in Complex Topography in Switzerl and Observations and Processes. Atmos. Res. 2018, 209, 76–94. [Google Scholar] [CrossRef]
- Caldana, N.F.S.; Martelócio, A.; Rudke, A.; Nitsche, P.; Caramori, P. Frequência, Intensidade e Variabilidade Pluviométrica na Mesorregião Sudoeste Paranaense. Rev. Bras. Climatol. 2019, 25, 161–181. [Google Scholar] [CrossRef]
- Bang, S.D.; Cecil, D.J. Constructing a multifrequency passive microwave hail retrieval and climatology in the GPM domain. J. Appl. Meteorol. Climatol. 2019, 58, 1889–1904. [Google Scholar] [CrossRef]
- Hahn, R. Estimativa da Ocorrência e Severidade de Granizo no Rio Grande do Sul Baseado em Observações de Radar Meteorológico; Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo: São Paulo, Brazil, 2021. [Google Scholar]
- Sperling, V.B. Processos Físicos e Elétricos das Tempestades de Granizo na Região sul do Brasil. Ph.D. Thesis, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil, 2018; p. 211. [Google Scholar]
- De Abreu, X.; Mattos, E.V.; Sperling, V.B. Caracterização das Assinaturas de Radar e da Atividade Elétrica de Relâmpagos de Tempestades com Granizo no Estado de São Paulo. Anu. Inst. Geociên. 2020, 43, 173–188. [Google Scholar] [CrossRef]
- Lopes, C.C. Microfísica, Cinemática e Eletrificação em Tempestades Tropicais que Geraram Granizo durante o Projeto SOS-CHUVA. Master’s Thesis, Instituto de Astronomia, Geofísica e Ciências Atmosféricas—USP, Sao Paulo, SP, Brazil, 2019; p. 107. [Google Scholar]
- Schultz, C.J.; Petersen, W.A.; Carey, L.D. Preliminary development and evaluation of lightning jump algorithms for the real-time detection of severe weather. J. Appl. Meteor. Climatol. 2009, 48, 2543–2563. [Google Scholar] [CrossRef]
- Gatlin, P.N.; Goodman, S.J. A Total Lightning Trending Algorithm to Identify Severe Thunderstorms. J. Atmos. Oceanic Technol. 2010, 27, 3–22. [Google Scholar] [CrossRef]
- Schultz, C.J.; Petersen, W.A.; Carey, L.D. Lightning and Severe Weather: A Comparison between Total and Cloud-to-Ground Lightning Trends. Weather Forecast. 2011, 26, 744–755. [Google Scholar] [CrossRef]
- Albrecht, R.I.; Morales, C.A.; Anselmo, E.M.; Neves, J.R.; Mattos, E.V.; Biscaro, T.; Machado, L.A.T. Thunderstorm Characteristics of Summer Precipitating Systems during CHUVA-GLM Vale do Paraiba Field Campaign. In Proceedings of the 16th International Conference on Clouds and Precipitation, Leipzig, Germany, 30 July–3 August 2012. [Google Scholar]
- Williams, E.R.; Boldi, B.; Matlin, A.; Weber, M.; Hodanish, S.; Sharp, D.; Goodman, S.; Raghavan, R.; Buechler, D. The behavior of total lightning activity in severe Florida thunderstorms. Atmos. Res. 1999, 51, 245–265. [Google Scholar] [CrossRef]
- Bechis, H.; Galligani, V.; Imaz, M.A.; Cancelada, M.; Simone, I.; Piscitelli, F.; Maldonado, P.; Salio, P.; Nesbitt, S.W. A case study of a severe hailstorm in Mendoza, Argentina, during the RELAMPAGO-CACTI field campaign. Atmos. Res. 2022, 271, 106127. [Google Scholar] [CrossRef]
- Rison, W.; Krehbiel, P.R.; Thomas, R.J.; Brown, M.F. Observations of precursor breakdown prior to intracloud lightning discharges. In Proceedings of the American Geophysical Union Fall Meeting 2009, San Francisco, CA, USA, 14–18 December 2009. AE32A-02 2009. [Google Scholar]
- Bruning, E.C.; Weiss, S.A.; Calhoun, K.M. Continuous variability in thunderstorm primary electrification and an evaluation of inverted-polarity terminology. Atmos. Res. 2014, 135–136, 274–284. [Google Scholar] [CrossRef]
- Mecikalski, R.M.; Bain, A.L.; Carey, L.D. Radar and lightning observations of deep moist convection across Northern Alabama during DC3: 21 May 2012. Mon. Weather Rev. 2015, 143, 2774–2794. [Google Scholar] [CrossRef]
- Zhang, Z.; Zheng, D.; Zhang, Y.; Lu, G. Spatial–temporal characteristics of lightning flash size in a supercell storm. Atmos. Res. 2017, 197, 201–210. [Google Scholar] [CrossRef]
- Da Silva, M.V. Propriedades Físicas e Elétricas de Relâmpagos Estimadas por Lightning Mapping Array. Bachelor’s Thesis, Universidade Federal de Itajubá, Itajubá, MG, Brazil, 2018; p. 61. [Google Scholar]
- Salvador, A.; Pineda, N.; Montanyà, J.; López, J.A.; Solà, G. Thunderstorm charge structures favoring cloud-to-ground lightning. Atmos. Res. 2021, 257, 105577. [Google Scholar] [CrossRef]
- Metzger, E.; Nuss, W.A. The Relationship Between Total Cloud Lightning Behavior and Radar-derived Thunderstorm Structure. Weather Forecast. 2013, 1, 237–253. [Google Scholar] [CrossRef]
- Emersic, C.; Heinselman, P.L.; MacGorman, D.R.; Bruning, E.C. Lightning Activity in a Hail-producing Storm Observed with Phased-array Radar. Mon. Weather Rev. 2011, 6139, 1809–1825. [Google Scholar] [CrossRef]
- Machado, L.A.T.; Dias, M.A.F.S.; Morales, C.; Fisch, G.; Vila, D.; Albrecht, R.; Goodman, S.J.; Calheiros, A.J.P.; Biscaro, T.; Kummerow, C.; et al. The Chuva Project: How Does Convection Vary across Brazil? Bulletin of the American Meteorological Society. Am. Meteorol. Soc. 2014, 95, 1365–1380. [Google Scholar] [CrossRef]
- Mattos, E.V.; Machado, L.A.T.; Williams, E.; Albrecht, R.I. Polarimetric Radar Characteristics of Storms with and without Lightning Activity. J. Geophys. Res. Atmos. 2016, 121, 14,201–14,220. [Google Scholar] [CrossRef]
- Mattos, E.V.; Machado, L.A.T.; Williams, E.; Goodman, S.J.; Blakeslee, R.J.; Bailey, J.C. Electrification Life Cycle of Incipient Thunderstorms: Radar and Electrification Life Cycle. J. Geophys. Res. Atmos. 2017, 122, 4670–4697. [Google Scholar] [CrossRef]
- IAG-USP Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo. Boletim Climatológico Anual da Estação Meteorológica do IAG-USP; Seção Técnica do Serviço Meteorológico; IAG-USP: São Paulo, Brazil, 2017; p. 20. Available online: https://www.iag.usp.br/noticia/boletim-estacao-meteorologica-2017 (accessed on 20 February 2021).
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2014, 22, 711–728. [Google Scholar] [CrossRef]
- Lemos, C.F.; Calbete, N.O. Sistemas Frontais que Atuaram no Brasil de 1987 a 1995. Climanálise Especial, Edição Comemorativa de 10 anos, MCT/INPE-CPTEC; CLIMANÁLISE, SP. 1996.
- Raia, A.; Cavalcanti, I.F.A. The life cycle of the South American monsoon system. J. Clim. 2008, 21, 6227–6246. [Google Scholar] [CrossRef]
- Lima, K.C.; Satyamurti, P.; Fernández, J.P.R. Large-scale atmospheric conditions associated with heavy rainfall episodes in southeast brazil. Theor. Appl. Climatol. 2010, 101, 121–135. [Google Scholar] [CrossRef]
- Naccarato, K.P.; Saraiva, A.C.V.; Saba, M.M.F.; Schumann, C. First Performance Analysis of BrasilDAT Total Lightning Network in Southeastern Brazil. In Proceedings of the International Conference on Grounding and Earthing & 5th International Conference on Lightning Physics and Effects, Bonito, MS, Brazil, 25–30 November 2012. [Google Scholar]
- Naccarato, K.P.; Pinto Jr., O.; Sloop, C.D.; Heckman, S.; Liu, C. Evaluation of BrasilDAT relative detection efficiency based on LIS observations and a numeric model. In Proceedings of the 2014 International Conference on Lightning Protection (ICLP), Shanghai, China, 11–18 October 2014; Proceedings IEEE; pp. 1814–1819. [Google Scholar]
- Goodman, S.J.; Blakeslee, R.J.; Christian, H.J.; Koshak, W.J.; Bailey, J.C.; Hall, J.M.; McCaul, E.W.; Buechler, D.E.; Darden, C.; Burks, J.; et al. The North Alabama Lightning Mapping Array: Recent severe storm observations and future prospects. Atmos. Res. 2005, 76, 423–437. [Google Scholar] [CrossRef]
- Blakeslee, R.; Bailey, J.C.; Carey, L.D.; Goodman, S.J.; Rudlosky, S.D.; Albrecht, R.I.; Morales, C.A.; Anselmo, E.M.; Neves, J.R. São Paulo Lightning Mapping Array(SP-LMA): Network assessment and analyses for intercomparison studies and GOES-R proxy activities. In Proceedings of the CHUVA Workshop; São Paulo, SP, Brazil, 8–10 August 2013. Available online: https://ntrs.nasa.gov/api/citations/20140002963/downloads/20140002963.pdf (accessed on 11 January 2024).
- Bailey, J.C.; Blakeslee, R.J.; Carey, L.D.; Goodman, S.J.; Rudlosky, S.D.; Albrecht, R.I.; Morales, C.A.; Anselmo, E.M.; Neves, J.R.; Buechler, D.E. São Paulo Lightning Mapping Array (SP-LMA): Network assessment and analyses for intercomparison studies and GOES-R proxy activities. In Proceedings of the International Conference on Atmospheric Electricity (ICAE 2014); Norman, OK, USA, 15–20 June 2014. Potsdam: IUGG/IAMAS. Available online: https://ntrs.nasa.gov/api/citations/20140011703/downloads/20140011703.pdf (accessed on 11 January 2024).
- Lang, T.J.; Rutledge, S.A. Kinematic, microphysical, and electrical aspects of an asymmetric bow-echo mesoscale convective system observed during STEPS 2000. J. Geophys. Res. 2008, 113, D08213. [Google Scholar] [CrossRef]
- Lund, N.R.; MacGorman, D.R.; Schuur, T.J.; Biggerstaff, M.I.; Rust, W.D. Relationships between Lightning Location and Polarimetric Radar Signatures in a Small Mesoscale Convective System. Mon. Weather Rev. 2009, 137, 4151–4170. [Google Scholar] [CrossRef]
- Bruning, E.C.; MacGorman, D.R. Theory and observations of controls on lightning flash size spectra. J. Atmos. Sci. 2013, 70, 4012–4029. [Google Scholar] [CrossRef]
- Hersbach, H.; Dee, D. ERA5 Reanalysis is in Production. ECMWF Newsl. 2016, 7, 147. Available online: https://www.ecmwf.int/en/newsletter/147/news/era5-reanalysis-production (accessed on 3 September 2020).
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, Á.; Muñoz-Sabater, J.; Nicolas, J.P.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Carey, L.D.; Rutledge, S.A. The Relationship between Precipitation and Lightning in Tropical Island Convection: A C-Band Polarimetric Radar Study. Mon. Weather Rev. 2000, 128, 2687–2710. [Google Scholar] [CrossRef]
- Heymsfield, A.J.; Palmer, A.G. Relations for deriving thunderstorm anvil mass of CCOPE storm water budget estimates. J. Appl. Meteorol. Climatol. 1986, 25, 691–702. [Google Scholar] [CrossRef]
- Waldvogel, A.; Federer, B.; Grimm, P. Criteria for the Detection of Hails Cells. J. Appl. Meteorol. 1979, 18, 1521–1525. [Google Scholar] [CrossRef]
- Greene, D.R.; Clark, R.A. Vertically Integrated Liquid Water—A New Analysis Tool. Mon. Weather Rev. 1972, 100, 548–552. [Google Scholar] [CrossRef]
- Mosier, R.M.; Schumacher, C.; Orville, R.E.; Carey, L.D. Radar Nowcasting of Cloud-to-Ground Lightning over Houston, Texas. Weather Forecast. 2011, 26, 199–212. [Google Scholar] [CrossRef]
- Globo Comunicação e Participações SA. Pancadas de Chuva Colocam SP em Estado de Atenção, diz CGE—g1. 2012. Available online: http://g1.globo.com/sao-paulo/noticia/2012/01/pancadas-de-chuva-colocam-sp-em-estado-de-atencao-diz-cge.html (accessed on 3 September 2020).
- Sacramento Neto, O.B.; Escobar, G.C.J.; Silva, P.E.D. Método objetivo para identificar episódios de Zonas de Convergência de Umidade (ZCOU) no ambiente operacional do Centro de Previsão de Tempo e Estudos Climáticos—CPTEC. In XVI Congresso de Meteorologia, Belém, PA; SBMET: Rio de Janeiro, RJ, Brazil, 2010. [Google Scholar]
- Thiel, K.C.; Calhoun, K.M.; Reinhart, A.E.; MacGorman, D.R. GLM and ABI characteristics of severe and convective storms. J. Geophys. Res. Atmos. 2020, 125, e2020JD032858. [Google Scholar] [CrossRef]
- Fernandes, K.A. Cavados Invertidos na Região Central da América do Sul. Master’s Thesis, INPE, São José dos Campos, SP, Brazil, 1996; p. 90. [Google Scholar]
- Carvalho, A.M.G. Conexões Entre a Circulação em Altitude e a Convecção Sobre a América do Sul. Master’s Thesis, INPE, São José dos Campos, SP, Brazil, 1989; p. 121. [Google Scholar]
- Reboita, M.S. Ciclones Extratropicais Sobre o Atlântico Sul: Simulação Climática e Experimentos de Sensibilidade. Ph.D. Thesis, Instituto de Astronomia, Geofísica e Ciências Atmosféricas—IAG—USP, Sao Paulo, SP, Brazil, 2008; p. 359. [Google Scholar]
- Joe, P.; Dance, S.; Lakshmanan, V.; Heizenreder, D.; James, P.K.; Lang, P.; Hengstebeck, T.; Feng, Y.; Li, P.W.; Yeung, H.; et al. Automated Processing of Doppler Radar Data for Severe Weather Warnings; [Internet]. InTech.: London, UK, 2012. [Google Scholar] [CrossRef]
- Henry, W. The Skew-T, Log P Diagram; National Weather Service Training Center, EUA: Kansas City, MO, USA, 1897; p. 68. [Google Scholar]
- Nascimento, E.L. Previsão de tempestades severas utilizando-se parâmetros convectivos e modelos de mesoescala: Uma estratégia operacional adotável no Brasil? Rev. Bras. Meteorol. 2005, 20, 121–140. [Google Scholar]
- Kuo, J.T.; Orville, H.D. A radar climatology of summertime convective clouds in the Black Hills. J. Appl. Meteor. 1973, 12, 359–368. [Google Scholar] [CrossRef]
- Wallace, J.M. Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States. Mon. Weather Rev. 1975, 103, 406–419. [Google Scholar] [CrossRef]
- Court, A.; Griffiths, J.F. Thunderstorm climatology. In Thunderstorm Morphology and Dynamics; University of Oklahoma Press: Norman, OK, USA, 1981; pp. 9–39. [Google Scholar]
- Mattos, E.V.; Machado, L.A.T. Cloud-to-ground lightning and Mesoscale Convective Systems. Atmos. Res. 2011, 99, 377–399. [Google Scholar] [CrossRef]
- Makowski, J.A.; MacGorman, D.R.; Biggerstaff, M.I.; Beasley, W.H. Total lightning characteristics relative to radar and satellite observations of Oklahoma Mesoscale Convective Systems. Mon. Weather Rev. 2013, 141, 1593–1611. [Google Scholar] [CrossRef]
- Monteiro, J.R.; Mattos, E.V.; Lima, W. Propriedades Físicas e Elétricas de Tempestades na Região Sudeste do Brasil. Anu. Inst. Geociênc. 2021, 44, 41700. [Google Scholar] [CrossRef]
- Carey, L.D.; Rutledge, S.A. A multiparameter radar case study of the microphysical and kinematic evolution of a lightning producing storm. Meteorol. Atmos. Phys. 1996, 59, 33–64. [Google Scholar] [CrossRef]
- Visser, P. The Storm-Structure-Severity method for the identification of convective storm characteristics with conventional weather radar. Meteorol. Appl. 2001, 8, 1–10. [Google Scholar] [CrossRef]
- Wiens, K.C.; Rutledge, S.A.; Tessendorf, S.A. The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci. 2005, 62, 4151–4177. [Google Scholar] [CrossRef]
- Williams, E.R. The tripole structure of thunderstorms. J. Geophys. Res. 1989, 94, 13151–13167. [Google Scholar] [CrossRef]
- Williams, E.R.; Weber, M.E.; Orville, E.E. The Relationship Between Lightning Type and Convective State of Thunderclouds. J. Geophys. Res. 1989, 94, 13213–13220. [Google Scholar] [CrossRef]
- Simpson, G.; Robinson, G.D. The distribution of electricity in thunderclouds, II. R. Soc. 1941, 177, 281–329. [Google Scholar] [CrossRef]
- Carey, L.D.; Murphy, M.J.; McCormick, T.L.; Demetriades, N. Lightning location relative to storm structure in a leading-line, trailing-stratiform mesoscale convective system. J. Geophys. Res. 2005, 110, 23. [Google Scholar] [CrossRef]
- Reynolds, S.E.; Brook, M.; Gourley, M.F. Thunderstorm charge separation. J. Meteorol. 1957, 14, 426–436. [Google Scholar] [CrossRef]
- Buser, O.; Aufdermaur, A.N. Electrification by collisions of ice particles on ice or metal targets. In Electrical Processes in Atmospheres; Dolezalek, H., Reiter, R., Eds.; Steinkopff: Darmstadt, Germany, 1977; p. 294. [Google Scholar] [CrossRef]
- MacGorman, D.R.; Burgess, D.W.; Mazur, V.; Rust, W.D.; Taylor, W.L.; Johnson, B.C. Lightning rates relative to tornadic storm evolution on 22 May 1981. J. Atmos. Sci. 1989, 46, 221–250. [Google Scholar] [CrossRef]
- Ziegler, C.L.; Macgorman, D.R. Observed lightning morphology relative to modeled space charge and electric field distributions in a tornadic storm. J. Atmos. Sci. 1994, 51, 833–851. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, J.G.M.; Mattos, E.V.; Reboita, M.S.; Enoré, D.P.; da Costa, I.C.; Albrecht, R.I.; Gonçalves, W.A.; Oliveira, R.A.J. Radar, Lightning, and Synoptic Observations for a Thunderstorm on 7 January 2012 during the CHUVA-Vale Campaign. Atmosphere 2024, 15, 182. https://doi.org/10.3390/atmos15020182
Ribeiro JGM, Mattos EV, Reboita MS, Enoré DP, da Costa IC, Albrecht RI, Gonçalves WA, Oliveira RAJ. Radar, Lightning, and Synoptic Observations for a Thunderstorm on 7 January 2012 during the CHUVA-Vale Campaign. Atmosphere. 2024; 15(2):182. https://doi.org/10.3390/atmos15020182
Chicago/Turabian StyleRibeiro, João Gabriel Martins, Enrique Vieira Mattos, Michelle Simões Reboita, Diego Pereira Enoré, Izabelly Carvalho da Costa, Rachel Ifanger Albrecht, Weber Andrade Gonçalves, and Rômulo Augusto Jucá Oliveira. 2024. "Radar, Lightning, and Synoptic Observations for a Thunderstorm on 7 January 2012 during the CHUVA-Vale Campaign" Atmosphere 15, no. 2: 182. https://doi.org/10.3390/atmos15020182
APA StyleRibeiro, J. G. M., Mattos, E. V., Reboita, M. S., Enoré, D. P., da Costa, I. C., Albrecht, R. I., Gonçalves, W. A., & Oliveira, R. A. J. (2024). Radar, Lightning, and Synoptic Observations for a Thunderstorm on 7 January 2012 during the CHUVA-Vale Campaign. Atmosphere, 15(2), 182. https://doi.org/10.3390/atmos15020182