Interannual Variation in Mainland China’s Atmosphere Clearness Index Associated with El Niño–Southern Oscillation
Abstract
:1. Introduction
2. Data and Methods
2.1. Clearness Index
2.2. Extraterrestrial Solar Radiation
2.3. El Niño–Southern Oscillation Index
2.4. Analysis Methods
3. Results and Discussion
3.1. Spatial Distribution and Temporal Variations of the Clearness Index
3.2. Impacts of the El Niño and La Niña Events on the Clearness Index
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Bjerknes, J. Atmospheric Teleconnections from the Equatorial Pacific. Mon. Weather Rev. 1969, 97, 163–172. [Google Scholar] [CrossRef]
- Philander, S.G. El Niño, La Niña, and the Southern Oscillation; International Geophysics; Academic Press: London, UK, 1989; Volume 46. [Google Scholar]
- Walker, G. World Weather. Mon. Weather Rev. 1928, 56, 167–170. [Google Scholar] [CrossRef]
- Julian, P.R.; Chervin, R.M. A Study of the Southern Oscillation and Walker Circulation Phenomenon. Mon. Weather Rev. 1978, 106, 1433–1451. [Google Scholar] [CrossRef]
- Latif, M.; Anderson, D.; Barnett, T.; Cane, M.; Kleeman, R.; Leetmaa, A.; O’Brien, J.; Rosati, A.; Schneider, E. A Review of the Predictability and Prediction of ENSO. J. Geophys. Res. Ocean. 1998, 103, 14375–14393. [Google Scholar] [CrossRef]
- Rasmusson, E.M.; Carpenter, T.H. Variations in Tropical Sea Surface Temperature and Surface Wind Fields Associated with the Southern Oscillation/El Niño. Mon. Weather Rev. 1982, 110, 354–384. [Google Scholar] [CrossRef]
- Lin, J.; Qian, T. A New Picture of the Global Impacts of El Nino-Southern Oscillation. Sci. Rep. 2019, 9, 17543. [Google Scholar] [CrossRef]
- Hu, J.; Wang, H.; Gao, C.; Zhou, L.; Zhang, R.H. Interdecadal Wind Stress Variability over the Tropical Pacific Causes ENSO Diversity in an Intermediate Coupled Model. Clim. Dyn. 2023, 60, 1831–1847. [Google Scholar] [CrossRef]
- Maruyama, T.; Tsuneoka, Y. Anomalously Short Duration of the Easterly Wind Phase of the QBO at 50hPa in 1987 and Its Relationship to an El Niño Event. J. Meteorol. Soc. Jpn. Ser. II 1988, 66, 629–634. [Google Scholar] [CrossRef]
- Kane, R.P. Comparison of Stratospheric Zonal Winds and El Niño–Southern Oscillation in Recent Decades. Int. J. Climatol. 2004, 24, 525–532. [Google Scholar] [CrossRef]
- Wallace, J.M.; Rasmusson, E.M.; Mitchell, T.P.; Kousky, V.E.; Sarachik, E.S.; von Storch, H. On the Structure and Evolution of ENSO-related Climate Variability in the Tropical Pacific: Lessons from TOGA. J. Geophys. Res. Ocean. 1998, 103, 14241–14259. [Google Scholar] [CrossRef]
- Yang, G.Y.; Hoskins, B. ENSO Impact on Kelvin Waves and Associated Tropical Convection. J. Atmos. Sci. 2013, 70, 3513–3532. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Branstator, G.W.; Karoly, D.; Kumar, A.; Lau, N.C.; Ropelewski, C. Progress during TOGA in Understanding and Modeling Global Teleconnections Associated with Tropical Sea Surface Temperatures. J. Geophys. Res. Ocean 1998, 103, 14291–14324. [Google Scholar] [CrossRef]
- Annamalai, H.; Neale, R.B.; Hafner, J. ENSO-induced Teleconnection: Process-Oriented Diagnostics to Assess Rossby Wave Sources and Ambient Flow Properties in Climate Models. J. Clim. 2023, 36, 3015–3041. [Google Scholar] [CrossRef]
- Yeh, S.W.; Cai, W.; Min, S.K.; McPhaden, M.J.; Dommenget, D.; Dewitte, B.; Collins, M.; Ashok, K.; An, S.I.; Yim, B.Y.; et al. ENSO Atmospheric Teleconnections and Their Response to Greenhouse Gas Forcing. Rev. Geophys. 2018, 56, 185–206. [Google Scholar] [CrossRef]
- Huang, R.; Wu, Y. The Influence of ENSO on the Summer Climate Change in China and Its Mechanism. Adv. Atmos. Sci. 1989, 6, 21–32. [Google Scholar] [CrossRef]
- Wu, B.; Zhou, T.; Li, T. Seasonally Evolving Dominant Interannual Variability Modes of East Asian Climate. J. Clim. 2009, 22, 2992–3005. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, Y.; Feng, J.; Wang, F. ENSO Cycle and Climate Anomaly in China. Chin. J. Oceanol. Limnol. 2012, 30, 985–1000. [Google Scholar] [CrossRef]
- Huang, R.; Chen, J.; Wang, L.; Lin, Z. Characteristics, Processes, and Causes of the Spatio-Temporal Variabilities of the East Asian Monsoon System. Adv. Atmos. Sci. 2012, 29, 910–942. [Google Scholar] [CrossRef]
- Duan, Y.; Yang, Q.; Ma, Z.; Wu, P.; Chen, X.; Duan, J. Disentangling the Driving Mechanisms of the Tripole Mode of Summer Rainfall over Eastern China. J. Clim. 2023, 36, 1175–1186. [Google Scholar] [CrossRef]
- Zhang, R.; Sumi, A.; Kimoto, M. A Diagnostic Study of the Impact of El Niño on the Precipitation in China. Adv. Atmos. Sci. 1999, 16, 229–241. [Google Scholar] [CrossRef]
- Wu, R.; Yang, S.; Liu, S.; Sun, L.; Lian, Y.; Gao, Z. Changes in the Relationship between Northeast China Summer Temperature and ENSO. J. Geophys. Res. Atmos. 2010, 115, D21107. [Google Scholar] [CrossRef]
- Feng, J.; Li, J.; Zhu, J.; Liao, H. Influences of El Niño Modoki Event 1994/1995 on Aerosol Concentrations over Southern China. J. Geophys. Res. Atmos. 2016, 121, 1637–1651. [Google Scholar] [CrossRef]
- Feng, J.; Li, J.; Zhu, J.; Liao, H.; Yang, Y. Simulated Contrasting Influences of Two La Niña Modoki Events on Aerosol Concentrations over Eastern China. J. Geophys. Res. Atmos. 2017, 122, 2734–2749. [Google Scholar] [CrossRef]
- Sun, J.; Li, H.; Zhang, W.; Li, T.; Zhao, W.; Zuo, Z.; Guo, S.; Wu, D.; Fan, S. Modulation of the ENSO on Winter Aerosol Pollution in the Eastern Region of China. J. Geophys. Res. Atmos. 2018, 123, 11952–11969. [Google Scholar] [CrossRef]
- Liu, B.Y.; Jordan, R.C. The Interrelationship and Characteristic Distribution of Direct, Diffuse and Total Solar Radiation. Sol. Energy 1960, 4, 1–19. [Google Scholar] [CrossRef]
- Udo, S.O. Sky Conditions at Ilorin as Characterized by Clearness Index and Relative Sunshine. Sol. Energy 2000, 69, 45–53. [Google Scholar] [CrossRef]
- Jung, Y.; Lee, H.; Kim, J.; Cho, Y.; Kim, J.; Lee, Y.G. Spatio-Temporal Characteristics in the Clearness Index Derived from Global Solar Radiation Observations in Korea. Atmosphere 2016, 7, 55. [Google Scholar] [CrossRef]
- Apeh, O.O.; Overen, O.K.; Meyer, E.L. Monthly, Seasonal and Yearly Assessments of Global Solar Radiation, Clearness Index and Diffuse Fractions in Alice, South Africa. Sustainability 2021, 13, 2135. [Google Scholar] [CrossRef]
- Olukemi Soneye, O. Evaluation of Clearness Index and Cloudiness Index Using Measured Global Solar Radiation Data: A Case Study for a Tropical Climatic Region of Nigeria. Atmósfera 2021, 34, 25–39. [Google Scholar] [CrossRef]
- Cooper, P.I. The Absorption of Radiation in Solar Stills. Sol. Energy 1969, 12, 333–346. [Google Scholar] [CrossRef]
- Che, H.Z.; Shi, G.Y.; Zhang, X.Y.; Arimoto, R.; Zhao, J.Q.; Xu, L.; Wang, B.; Chen, Z.H. Analysis of 40 Years of Solar Radiation Data from China, 1961–2000. Geophys. Res. Lett. 2005, 32, L06803. [Google Scholar] [CrossRef]
- Tang, W.; Qin, J.; Yang, K.; Liu, S.; Lu, N.; Niu, X. Retrieving High-Resolution Surface Solar Radiation with Cloud Parameters Derived by Combining MODIS and MTSAT Data. Atmos. Chem. Phys. 2016, 16, 2543–2557. [Google Scholar] [CrossRef]
- Zhao, W.; Chen, S.; Zhang, H.; Wang, J.; Chen, W.; Wu, R.; Xing, W.; Wang, Z.; Hu, P.; Piao, J.; et al. Distinct Impacts of ENSO on Haze Pollution in the Beijing–Tianjin–Hebei Region between Early and Late Winters. J. Clim. 2022, 35, 687–704. [Google Scholar] [CrossRef]
- Perez, R.; Ineichen, P.; Seals, R.; Zelenka, A. Making Full Use of the Clearness Index for Parameterizing Hourly Insolation Conditions. Sol. Energy 1990, 45, 111–114. [Google Scholar] [CrossRef]
- Lauret, P.; Alonso-Suárez, R.; Le Gal La Salle, J.; David, M. Solar Forecasts Based on the Clear Sky Index or the Clearness Index: Which Is Better? Solar 2022, 2, 432–444. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- He, J.; Yang, K.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.; Li, X. The First High-Resolution Meteorological Forcing Dataset for Land Process Studies over China. Sci. Data 2020, 7, 25. [Google Scholar] [CrossRef] [PubMed]
- Kousky, V.E.; Higgins, R.W. An Alert Classification System for Monitoring and Assessing the ENSO Cycle. Weather. Forecast. 2007, 22, 353–371. [Google Scholar] [CrossRef]
- Duan, A.; Wu, G.; Liu, Y.; Ma, Y.; Zhao, P. Weather and Climate Effects of the Tibetan Plateau. Adv. Atmos. Sci. 2012, 29, 978–992. [Google Scholar] [CrossRef]
- Wang, X.; Pang, G.; Yang, M. Precipitation over the Tibetan Plateau during Recent Decades: A Review Based on Observations and Simulations. Int. J. Climatol. 2018, 38, 1116–1131. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Q. Interannual Variation of Summer Precipitation in Xinjiang and Asian Subtropical Westerly Jet Stream. J. Appl. Meteorol. Sci. 2008, 19, 171–179. [Google Scholar]
- Zhang, R.; Chu, Q.; Zuo, Z.; Qi, Y. Summertime Moisture Sources and Transportation Pathways for China and Associated Atmospheric Circulation Patterns. Front. Earth Sci. 2021, 9, 756943. [Google Scholar] [CrossRef]
- Chen, G.; Huang, R. Excitation Mechanisms of the Teleconnection Patterns Affecting the July Precipitation in Northwest China. J. Clim. 2012, 25, 7834–7851. [Google Scholar] [CrossRef]
- Yeh, T.C. The Circulation of the High Troposphere over China in the Winter of 1945–46. Tellus 1950, 2, 173–183. [Google Scholar] [CrossRef]
- Ding, F.; Li, C. Subtropical Westerly Jet Waveguide and Winter Persistent Heavy Rainfall in South China. J. Geophys. Res. Atmos. 2017, 122, 7385–7400. [Google Scholar] [CrossRef]
- Li, C.; Sun, J. Role of the Subtropical Westerly Jet Waveguide in a Southern China Heavy Rainstorm in December 2013. Adv. Atmos. Sci. 2015, 32, 601–612. [Google Scholar] [CrossRef]
- Yin, J.; Yuan, J.; Peng, J.; Cao, X.; Duan, W.; Nan, Y.; Mao, M.; Feng, T. Role of the Subtropical Westerly Jet Wave Train in the Eastward-Moving Heavy Rainfall Event over Southern China in Winter: A Case Study. Front. Earth Sci. 2023, 11, 1107674. [Google Scholar] [CrossRef]
- Klein, S.A.; Hartmann, D.L. The Seasonal Cycle of Low Stratiform Clouds. J. Clim. 1993, 6, 1587–1606. [Google Scholar] [CrossRef]
- Jin, X.; Wu, T.; Li, L.; Shi, C. Cloudiness Characteristics over Southeast Asia from Satellite FY-2C and Their Comparison to Three Other Cloud Data Sets. J. Geophys. Res. Atmos. 2009, 114, D17207. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, M.; Zhang, H.; Lin, S.; Guo, Z.; Jiang, Y.; Zhou, C. Long-Term Change in Low-Cloud Cover in Southeast China during Cold Seasons. Atmos. Ocean. Sci. Lett. 2022, 15, 100222. [Google Scholar] [CrossRef]
- Hrudya, P.H.; Varikoden, H.; Vishnu, R. A Review on the Indian Summer Monsoon Rainfall, Variability and Its Association with ENSO and IOD. Meteorol. Atmos. Phys. 2021, 133, 1–14. [Google Scholar] [CrossRef]
- Wu, X.; Meng, F.; Liu, P.; Zhou, J.; Liu, D.; Xie, K.; Zhu, Q.; Hu, J.; Sun, H.; Xing, F. Contribution of the Northeast Cold Vortex Index and Multiscale Synergistic Indices to Extreme Precipitation over Northeast China. Earth Space Sci. 2021, 8, e2020EA001435. [Google Scholar] [CrossRef]
- Ding, Y.; Chan, J.C.L. The East Asian Summer Monsoon: An Overview. Meteorol. Atmos. Phys. 2005, 89, 117–142. [Google Scholar] [CrossRef]
- Wang, R.; Chen, J.; Chen, X.; Wang, Y. Variability of Precipitation Extremes and Dryness/Wetness over the Southeast Coastal Region of China, 1960–2014. Int. J. Climatol. 2017, 37, 4656–4669. [Google Scholar] [CrossRef]
- Lu, B.; Li, H.; Wu, J.; Zhang, T.; Liu, J.; Liu, B.; Chen, Y.; Baishan, J. Impact of El Niño and Southern Oscillation on the Summer Precipitation over Northwest China. Atmos. Sci. Lett. 2019, 20, e928. [Google Scholar] [CrossRef]
- Gu, W.; Chen, L.J.; Wang, Y.G.; Gao, H.; Wang, L.; Liu, Y.Y. Extreme Precipitation over Northern China in Autumn 2021 and Joint Contributions of Tropical and Mid-Latitude Factors. Adv. Clim. Chang. Res. 2022, 13, 835–842. [Google Scholar] [CrossRef]
- Li, G.; Gao, C.; Lu, B.; Chen, H. Inter-Annual Variability of Spring Precipitation over the Indo-China Peninsula and Its Asymmetric Relationship with El Niño-Southern Oscillation. Clim. Dyn. 2021, 56, 2651–2665. [Google Scholar] [CrossRef]
- Wang, H.; Chen, H. Climate Control for Southeastern China Moisture and Precipitation: Indian or East Asian Monsoon? J. Geophys. Res. Atmos. 2012, 117, D12109. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Z.; Wang, B.; Zheng, H.; Wang, S.; Liu, X.; Jin, S. Interannual Variation in Mainland China’s Atmosphere Clearness Index Associated with El Niño–Southern Oscillation. Atmosphere 2024, 15, 180. https://doi.org/10.3390/atmos15020180
Song Z, Wang B, Zheng H, Wang S, Liu X, Jin S. Interannual Variation in Mainland China’s Atmosphere Clearness Index Associated with El Niño–Southern Oscillation. Atmosphere. 2024; 15(2):180. https://doi.org/10.3390/atmos15020180
Chicago/Turabian StyleSong, Zongpeng, Bo Wang, Hui Zheng, Shu Wang, Xiaolin Liu, and Shuanglong Jin. 2024. "Interannual Variation in Mainland China’s Atmosphere Clearness Index Associated with El Niño–Southern Oscillation" Atmosphere 15, no. 2: 180. https://doi.org/10.3390/atmos15020180
APA StyleSong, Z., Wang, B., Zheng, H., Wang, S., Liu, X., & Jin, S. (2024). Interannual Variation in Mainland China’s Atmosphere Clearness Index Associated with El Niño–Southern Oscillation. Atmosphere, 15(2), 180. https://doi.org/10.3390/atmos15020180