Nitrous Oxide Emissions during Cultivation and Fallow Periods from Rice Paddy Soil under Urea Fertilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Treatments
2.2. Gas Sampling, Analysis, and Calculation
2.3. Additional Data Collection and Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Changes in N2O Fluxes over Three Years during the Rice Cultivation Period
3.2. Daily N2O Flux Variations during the Fallow Period over Three Years
3.3. Comparisons of Annual Cumulative N2O Emissions under Different Levels of Nitrogen Fertilization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, H.Q.; Xu, R.T.; Canadell, J.G.; Thompson, R.L.; Winiwarter, W.; Suntharalingam, P.; Davidson, E.A.; Ciais, P.; Jackson, R.B.; Janssens-Maenhout, G.; et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 2020, 586, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Haider, A.; Bashir, A.; Husnain, M.I. Impact of agricultural land use and economic growth on nitrous oxide emissions: Evidence from developed and developing countries. Sci. Total Environ. 2020, 741, 140421. [Google Scholar] [CrossRef] [PubMed]
- Yagi, K.; Tsuruta, H.; Kanda, K.; Minami, K. Effect of water management on methane emission from a Japanese rice paddy field: Automated methane monitoring. Glob. Biogeochem. Cycles 1996, 10, 255–267. [Google Scholar] [CrossRef]
- Sass, R.L.; Fisher, F.M.; Ding, A.; Huang, Y. Exchange of methane from rice fields: National, regional, and global budgets. J. Geophys. Res. 1999, 104, 26943–26951. [Google Scholar] [CrossRef]
- Cai, Z.; Tsuruta, H.; Gao, M.; Xu, H.; Wei, C. Options for mitigating methane emission from permanently flooded rice field. Glob. Chang. Biol. 2003, 9, 37–45. [Google Scholar] [CrossRef]
- Singh, S.; Singh, J.S.; Kashyap, A.K. Methane flux from irrigated rice fields in relation to crop growth and N-fertilization. Soil Biol. Biochem. 1999, 31, 1219–1228. [Google Scholar] [CrossRef]
- Freney, J.R. Emission of nitrous oxide from soils used for agriculture. Nutr. Cycl. Agroecosystems 1997, 49, 1–6. [Google Scholar] [CrossRef]
- Singh, B.P.; Hatton, B.J.; Singh, B.; Cowie, A.L.; Kathuria, A. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J. Environ. Qual. 2010, 39, 1224–1235. [Google Scholar] [CrossRef]
- Venterea, R.T.; Clough, T.J.; Coulter, J.A.; Breuillin-Sessoms, F.; Wang, P.; Sadowsky, M.J. Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production. Sci. Rep. 2015, 5, 12153. [Google Scholar] [CrossRef]
- Firestone, M.K.; Davidson, E.A. Microbiological basis of NO and N2O production and consumption in soil. Exch. Trace Gases Between Terr. Ecosyst. Atmos. 1989, 47, 7–21. [Google Scholar]
- Smith, C.J.; Brandon, M.; Patrick, W.H., Jr. Nitrous oxide emission following urea-N fertilization of wetland rice. Soil Sci. Plant Nutri. 1982, 28, 161–171. [Google Scholar] [CrossRef]
- Cai, Z.; Xing, G.; Yan, X.; Xu, H.; Tsuruta, H.; Yagi, K.; Minami, K. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management. Plant Soil 1997, 196, 7–14. [Google Scholar] [CrossRef]
- Akiyama, H.; Yagi, K. Direct N2O emissions from rice paddy fields: Summary of available data. Glob. Biogeochem. Cycles 2005, 19, 1–10. [Google Scholar] [CrossRef]
- Shang, Q.; Yang, X.; Gao, C.; Wu, P.; Liu, J.; Xu, Y.; Shen, Q.; Zou, J.; Guo, S. Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: A 3-year field measurement in long-term fertilizer experiments. Glob. Chang. Biol. 2011, 17, 2196–2210. [Google Scholar] [CrossRef]
- Timilsina, A.; Bizimana, F.; Pandey, B.; Yadav, R.K.P.; Dong, W.; Hu, C. Nitrous oxide emissions from paddies: Understanding the role of rice plants. Plants 2020, 9, 180. [Google Scholar] [CrossRef]
- Clayton, H.; Mctagart, J.P.; Parker, J.; Swan, L.; Smith, K.A. Nitrous oxide emissions from fertilized grassland: A 2-year study of the effects of n fertilizer form and environmental conditions. Biol. Fertil. Soils 1997, 25, 252–260. [Google Scholar] [CrossRef]
- Arone, J.A.; Bohlen, P.J. Stimulated N2O flux from intact grassland monoliths after two growing seasons under elevated atmospheric CO2. Oecologia 1998, 116, 331–335. [Google Scholar] [CrossRef]
- Dobbie, K.E.; McTaggart, I.P.; Smith, K.A. Nitrous oxide emissions from intensive agricultural systems: Variations between crops and seasons, key driving variables, and mean emission factors. J. Geophys. Res. Atmos. 1999, 104, 26891–26899. [Google Scholar] [CrossRef]
- Sozanska, M.; Skiba, U.; Metcalfe, S. Developing an invent tory of N2O emissions from British soils. Atmos. Environ. 2002, 36, 987–998. [Google Scholar] [CrossRef]
- Khalil, M.I.; Baggs, E.M. CH4 oxidation and N2O emissions at varied soil water-filled pore spaces and headspace CH4 concentrations. Soil Biol. Biochem. 2005, 37, 1785–1794. [Google Scholar] [CrossRef]
- Mosier, A.; Kroeze, C.; Nevison, C.; Oenema, O.; Seitzinger, S.; van Cleemput, O. Closing the global N2O budget: Nitrous oxide emissions through the agricultural nitrogen cycle. Nutr. Cycl. Agroecosystems 1998, 52, 225–248. [Google Scholar] [CrossRef]
- Scheer, C.; Wassmann, R.; Kienzler, K.; Ibragimov, N.; Eschanov, R. Nitrous oxide emissions from fertilized, irrigated cotton (Gossypium hirsutum L.) in the Aral Sea Basin, Uzbekistan: Influence of nitrogen applications and irrigation practices. Soil Biol. Biochem. 2008, 40, 290–301. [Google Scholar] [CrossRef]
- Li, B.; Fan, C.H.; Xiong, Z.Q.; Li, Q.L.; Zhang, M. The combined effects of nitrification inhibitor and biochar incorporation on yield-scaled N2O emissions from an intensively managed vegetable field in southeastern China. Biogeosciences 2015, 12, 2003–2017. [Google Scholar] [CrossRef]
- Ludwig, B.; Wolf, L.; Teepe, R. Contribution of nitrification and denitrification to the emission of N2O in a freeze-thaw event in an agricultural soil. J. Plant Nutr. Soil Sci. 2014, 167, 678–684. [Google Scholar] [CrossRef]
- Eichner, M.J. Nitrous Oxide Emissions from Fertilized Soils: Summary of Available Data. J. Environ. Qual. 1990, 19, 272. [Google Scholar] [CrossRef]
- Yan, X.; Akimoto, H.; Ohara, T. Estimation of nitrous oxide, nitric oxide and ammonia emissions from croplands in East, Southeast and South Asia. Glob. Chang. Biol. 2003, 9, 1080–1096. [Google Scholar] [CrossRef]
- RDA Fertilization Standards to Crop Plants; National Institute of Agricultural Science and Technology, Rural Development Administration: Jeonbuk, Republic of Korea, 2019; p. 26. (In Korean)
- Minamikawa, K.; Tokida, T.; Sudo, S.; Padre, A.; Yagi, K. Guildelines for Measuring CH4 and N2O Emissions from Rice Paddies by a Manually Operated Closed Chamber Method; National Institute for Agro-Environmental Sciences: Tsukuba, Japan, 2015.
- Denmead, O.T. Chamber systems for measuring nitrous oxide emission from soils in the field. Soil Sci. Soc. Am. J. 1979, 43, 89–95. [Google Scholar] [CrossRef]
- RDA Standard Investigation Methods for Agriculture Experiment; National Institute of Agricultural Science and Technology, Rural Development Administration: Gyeonggi, Republic of Korea, 2012; p. 16. (In Korean)
- Rochette, P.; Eriksen-Hamel, N. Chamber measurements of soil nitrous oxide flux: Are absolute values reliable? Soil Sci. Soc. Am. J. 2008, 72, 331–342. [Google Scholar] [CrossRef]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. ‘Agriculture’. In Climate Change; Mitigation; Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; Available online: https://archive.ipcc.ch/publications_and_data/ar4/wg3/en/ch8.html (accessed on 23 November 2023).
- Syakila, A.; Kroeze, C. The global nitrous oxide budget revisited. Greenh. Gas Meas. Manag. 2011, 1, 17–26. [Google Scholar] [CrossRef]
- Trost, B.; Prochnow, A.; Drastig, K.; Meyer-Au rich, A.; Ellmer, F.; Baumecker, M. Irrigation, soil organic carbon and N2O emissions, A review. Agron. Sustain. Dev. 2013, 33, 733–749. [Google Scholar] [CrossRef]
- Castellano, M.J.; Schmidt, J.P.; Kaye, J.P.; Walker, C.; Graham, C.B.; Lin, H.; Dell, C.J. Hydrological and biogeochemical controls on the timing and magnitude of nitrous oxide flux across an agri cul tur al land scape. Glob. Chang. Biol. 2010, 16, 2711–2720. [Google Scholar] [CrossRef]
- Lognoul, M.; Debacq, A.; De Ligne, A.; Dumont, B.; Manise, T.; Bodson, B.; Heinesch, B.; Aubinet, M. N2O flux short-term response to temperature and topsoil disturbance in a fertilized crop: An eddy covariance campaign. Agric. For. Meteorol. 2019, 271, 193–206. [Google Scholar] [CrossRef]
- Wu, Y.F.; Whitaker, J.; Toet, S.; Bradly, A.; Davies, C.A.; McNamara, N.P. Diurnal variability in soil nitrous oxide emissions is a widespread phenomenon. Glob. Chang. Biol. 2021, 27, 4950–4966. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Wang, X.; Wang, Y.; Zhu, B. A three-year experiment of annual methane and nitrous oxide emissions from the subtropical permanently flooded rice paddy fields of China: Emission factor, temperature sensitivity and fertilizer nitrogen effect. Agric. For. Meteorol. 2018, 250, 299–307. [Google Scholar] [CrossRef]
Treatment | pH (1:5) | OM (g kg−1) | AP (mg kg−1) | AS (mg kg−1) | EC (cmol kg−1) | Soil Texture | ||
---|---|---|---|---|---|---|---|---|
K | Ca | Mg | ||||||
N0 | 6.3 | 22 | 40 | 210 | 0.49 | 7.1 | 1.6 | Loam |
N1.0 | 6.1 | 23 | 47 | 224 | 0.50 | 7.1 | 1.5 | |
N1.5 | 6.2 | 22 | 56 | 142 | 0.43 | 6.7 | 1.4 | |
N2.0 | 6.1 | 23 | 57 | 160 | 0.43 | 6.9 | 1.5 | |
Mean | 6.2 | 23 | 50 | 184 | 0.46 | 7.0 | 1.5 |
Year | Plowing | Irrigation | Transplanting | Drainage (35 DAT *) | Fertilization | Harvest (130 DAT) | ||
---|---|---|---|---|---|---|---|---|
Basal | Tillering (12 DAT) | Panicle (70 DAT) | ||||||
2020 | 24 April | 29 April | 21 May | 24 June | 22 May | 2 June | 29 July | 28 Sep. |
2021 | 10 April | 15 May | 27 May | 1 July | 24 May | 8 June | 5 Aug. | 5 Oct. |
2022 | 8 April | 10 May | 26 May | 30 June | 23 May | 7 June | 5 Aug. | 6 Oct. |
Year | DAT | N2O Emissions (Mean ± Standard Deviation, gN2O-N ha−1 day−1) | |||
---|---|---|---|---|---|
N0 | N1.0 | N1.5 | N2.0 | ||
2020 | 18 | - | - | - | 21.8 ± 22.1 |
49 | - | - | - | 33.9 ± 25.4 | |
76 | - | 31.6 ± 2.3 | - | - | |
92 | - | 39.9 ± 4.7 | - | - | |
116 | - | - | 24.2 ± 17.6 | - | |
123 | - | - | 27.9 ± 25.8 | - | |
2021 | 12 | - | - | - | 21.9 ± 31.3 |
21 | - | - | 46.1 ± 39.9 | 46.7 ± 65.5 | |
26 | - | - | 71.9 ± 71.6 | 44.4 ± 51.8 | |
50 | - | 59.6 ± 69.7 | 50.5 ± 81.2 | 131.7 ± 57.9 | |
53 | - | 38.5 ± 53.6 | - | 144.7 ± 66.0 | |
54 | - | - | - | 81.7 ± 55.7 | |
77 | - | - | - | 25.1 ± 28.9 | |
82 | - | - | - | 26.5 ± 45.9 | |
110 | - | 50.3 ± 80.9 | - | 89.1 ± 62.7 | |
112 | - | 33.1 ± 26.4 | - | 22.1 ± 25.8 | |
2022 | 7 | - | - | 35.7 ± 9.4 | 30.2 ± 2.5 |
13 | - | 37.7 ± 5.0 | 23.7 ± 4.2 | 24.5 ± 6.6 | |
14 | - | 51.6 ± 12.0 | 35.2 ± 7.9 | 26.3 ± 7.6 | |
18 | - | - | 37.6 ± 22.3 | - | |
41 | - | - | 25.2 ± 11.9 | 36.6 ± 21.7 | |
47 | 24.2 ± 3.6 | 51.9 ± 16.9 | 83.3 ± 28.9 | 47.1 ± 18.3 | |
53 | - | - | - | 56.8 ± 32.4 | |
110 | - | 25.2 ± 19.0 | 22.9 ± 14.2 | - | |
112 | - | 29.9 ± 12.8 | - | 43.2 ± 30.1 | |
123 | - | - | - | 20.5 ± 14.4 |
Year | DAH | N2O Emissions (Mean ± Standard Deviation, gN2O-N ha−1 day−1) | |||
---|---|---|---|---|---|
N0 | N1.0 | N1.5 | N2.0 | ||
2020 | 56 | - | - | - | 56.0 ± 33.9 |
121 | 91.4 ± 43.0 | - | - | 28.2 ± 18.5 | |
157 | 62.7 ± 13.2 | 45.1 ± 17.0 | - | - | |
161 | 38.1 ± 24.9 | 44.9 ± 58.3 | 28.2 ± 31.4 | 44.4 ± 51.9 | |
163 | 66.4 ± 69.9 | 117.3 ± 103.0 | 79.2 ± 106.6 | 59.7 ± 42.2 | |
168 | 153.2 ± 145.5 | - | - | 29.0 ± 8.1 | |
170 | 40.5 ± 1.4 | 24.5 ± 15.4 | - | - | |
183 | 20.6 ± 8.0 | 20.2 ± 10.2 | - | - | |
189 | 69.4 ± 55.4 | 45.8 ± 2.3 | - | - | |
190 | 75.2 ± 18.2 | 75.2 ± 44.5 | - | 32.2 ± 10.4 | |
194 | - | 32.5 ± 20.5 | - | - | |
220 | 29.1 ± 43.6 | - | - | 42.2 ± 61.6 | |
2021 | 112 | - | - | - | 22.2 ± 17.9 |
161 | 47.6 ± 15.9 | 109.8 ± 83.8 | 127.6 ± 90.2 | 202.5 ± 122.5 | |
163 | 64.8 ± 9.4 | 119.0 ± 46.3 | 70.7 ± 36.4 | 105.0 ± 85.0 | |
175 | 20.1 ± 6.3 | - | - | - | |
182 | - | - | - | 24.5 ± 26.0 | |
203 | 50.0 ± 43.2 | 38.3 ± 24.2 | 21.5 ± 25.3 | 31.0 ± 17.3 | |
218 | 583.4 ± 502.3 | 230.2 ± 146.0 | 287.9 ± 102.8 | 127.1 ± 64.8 | |
219 | 230.9 ± 389.8 | 1274.4 ± 1017.1 | 2392.6 ± 700.3 | 1620.5 ± 795.9 | |
2022 | 90 | 20.4 ± 5.4 | 42.1 ± 40.9 | 25.0 ± 29.8 | - |
95 | 23.8 ± 7.7 | 25.7 ± 4.1 | 26.9 ± 17.3 | 22.0 ± 9.5 | |
97 | 64.0 ± 65.7 | 32.2 ± 10.5 | 32.8 ± 7.9 | 29.2 ± 19.9 | |
117 | 72.7 ± 88.8 | - | - | 83.4 ± 55.2 | |
123 | 55.0 ± 60.2 | 58.8 ± 100.7 | - | 190.1 ± 261.5 | |
125 | 34.2 ± 36.8 | 36.3 ± 18.3 | 43.8 ± 21.1 | 190.1 ± 261.5 | |
132 | 20.8 ± 24.1 | 45.7 ± 40.6 | |||
139 | 36.4 ± 7.2 | ||||
215 | 96.1 ± 27.1 | 91.3 ± 39.8 | 91.3 ± 53.2 | 317.1 ± 67.8 | |
216 | 92.7 ± 30.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, O.; Kang, N.; Soh, H.; Park, J.-S.; Choi, E.; Jeong, H. Nitrous Oxide Emissions during Cultivation and Fallow Periods from Rice Paddy Soil under Urea Fertilization. Atmosphere 2024, 15, 143. https://doi.org/10.3390/atmos15020143
Ju O, Kang N, Soh H, Park J-S, Choi E, Jeong H. Nitrous Oxide Emissions during Cultivation and Fallow Periods from Rice Paddy Soil under Urea Fertilization. Atmosphere. 2024; 15(2):143. https://doi.org/10.3390/atmos15020143
Chicago/Turabian StyleJu, Okjung, Namgoo Kang, Hoseup Soh, Jung-Soo Park, Eunjung Choi, and Hyuncheol Jeong. 2024. "Nitrous Oxide Emissions during Cultivation and Fallow Periods from Rice Paddy Soil under Urea Fertilization" Atmosphere 15, no. 2: 143. https://doi.org/10.3390/atmos15020143
APA StyleJu, O., Kang, N., Soh, H., Park, J. -S., Choi, E., & Jeong, H. (2024). Nitrous Oxide Emissions during Cultivation and Fallow Periods from Rice Paddy Soil under Urea Fertilization. Atmosphere, 15(2), 143. https://doi.org/10.3390/atmos15020143