Historical and Future Changes in Meteorological–Hydrological Compound Drought in China
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Definition of Drought Index
2.2.1. Meteorological Drought and Hydrological Drought Indexes
2.2.2. The Definition of Compound Drought
- Hydrological meteorological compound drought (HMD): The HMD involves an HD preceding an MD.
- Meteorological hydrological compound drought (MHD): The MHD involves an MD preceding an HD.
- Simultaneous compound drought (SD): The SD involves meteorological and hydrological droughts that coincide simultaneously.
3. Results
3.1. Historical Data Analysis
3.2. Future Projection
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, W.; Sun, F.; Lim, W.H.; Zhang, J.; Wang, H.; Shiogama, H.; Zhang, Y. Global drought and severe drought-affected populations in 1.5 and 2 °C warmer worlds. Earth Syst. Dynam. 2018, 9, 267–283. [Google Scholar] [CrossRef]
- Schubert, S.D.; Stewart, R.E.; Wang, H.; Barlow, M.; Berbery, E.H.; Cai, W.; Hoerling, M.; Kanikicharla, K.K.; Koster, R.D.; Lyon, B. Global meteorological drought: A synthesis of current understanding with a focus on SST drivers of precipitation deficits. J. Clim. 2016, 29, 3989–4019. [Google Scholar] [CrossRef]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Hermans, K.; McLeman, R. Climate change, drought, land degradation and migration: Exploring the linkages. Curr. Opin. Environ. Sustain. 2021, 50, 236–244. [Google Scholar] [CrossRef]
- López-Carr, D.; Pricope, N.G.; Mwenda, K.M.; Daldegan, G.A.; Zvoleff, A. A Conceptual Approach towards Improving Monitoring of Living Conditions for Populations Affected by Desertification, Land Degradation, and Drought. Sustainability 2023, 15, 9400. [Google Scholar] [CrossRef]
- Van Dijk, A.I.; Beck, H.E.; Crosbie, R.S.; De Jeu, R.A.; Liu, Y.Y.; Podger, G.M.; Timbal, B.; Viney, N.R. The Millennium Drought in southeast Australia (2001–2009): Natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour. Res. 2013, 49, 1040–1057. [Google Scholar] [CrossRef]
- Su, B.; Huang, J.; Fischer, T.; Wang, Y.; Kundzewicz, Z.W.; Zhai, J.; Sun, H.; Wang, A.; Zeng, X.; Wang, G. Drought losses in China might double between the 1.5 °C and 2.0 °C warming. Proc. Nat. Acad. Sci. USA 2018, 115, 10600–10605. [Google Scholar] [CrossRef] [PubMed]
- Ley, D.; Guillén Bolaños, T.; Castaneda, A.; Hidalgo, H.G.; Girot Pignot, P.O.; Fernández, R.; Alfaro, E.J.; Castellanos, E.J. Central America urgently needs to reduce the growing adaptation gap to climate change. Front. Clim. 2023, 5, 1215062. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Glantz, M.H. Understanding: The drought phenomenon: The role of definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Kchouk, S.; Melsen, L.A.; Walker, D.W.; van Oel, P.R. A review of drought indices: Predominance of drivers over impacts and the importance of local context. Nat. Hazards Earth Syst. Sci. Discuss. 2021, 2021, 1–28. [Google Scholar]
- Spinoni, J.; Naumann, G.; Carrao, H.; Barbosa, P.; Vogt, J. World drought frequency, duration, and severity for 1951–2010. Int. J. Climatol. 2014, 34, 2792–2804. [Google Scholar] [CrossRef]
- Peters, E.; Bier, G.; Van Lanen, H.A.; Torfs, P. Propagation and spatial distribution of drought in a groundwater catchment. J. Hydrol. 2006, 321, 257–275. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.; Yao, H.; Liu, Z.; Zhang, D. Hydrological drought instantaneous propagation speed based on the variable motion relationship of speed-time process. Water Resour. Res. 2018, 54, 9549–9565. [Google Scholar] [CrossRef]
- Bhardwaj, K.; Shah, D.; Aadhar, S.; Mishra, V. Propagation of meteorological to hydrological droughts in India. J. Geophys. Res. Atmos. 2020, 125, e2020JD033455. [Google Scholar] [CrossRef]
- Saharwardi, M.S.; Kumar, P.; Sachan, D. Evaluation and projection of drought over India using high-resolution regional coupled model ROM. Clim. Dyn. 2022, 58, 503–521. [Google Scholar] [CrossRef]
- Zheng, L.; Liu, Y.; Ren, L.; Zhu, Y.; Yin, H.; Yuan, F.; Zhang, L. Spatio-temporal characteristics and propagation relationship of meteorological drought and hydrological drought in the Yellow River Basin. Water Resour. Prot. 2022, 38, 87–95. (In Chinese) [Google Scholar]
- Mtilatila, L.; Bronstert, A.; Bürger, G.; Vormoor, K. Meteorological and hydrological drought assessment in Lake Malawi and Shire River basins (1970–2013). Hydrol. Sci. J. 2020, 65, 2750–2764. [Google Scholar] [CrossRef]
- Feng, G.; Chen, Y.; Mansaray, L.R.; Xu, H.; Shi, A.; Chen, Y. Propagation of Meteorological Drought to Agricultural and Hydrological Droughts in the Tropical Lancang–Mekong River Basin. Remote Sens. 2023, 15, 5678. [Google Scholar] [CrossRef]
- Zscheischler, J.; Fischer, E.M. The record-breaking compound hot and dry 2018 growing season in Germany. Weather. Clim. Extrem. 2020, 29, 100270. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Chiang, F.; Huning, L.S.; Love, C.A.; Mallakpour, I.; Mazdiyasni, O.; Moftakhari, H.; Papalexiou, S.M.; Ragno, E.; Sadegh, M. Climate extremes and compound hazards in a warming world. Annu. Rev. Earth Planet. Sci. 2020, 48, 519–548. [Google Scholar] [CrossRef]
- IPCC. Summary for policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Wu, J.; Chen, X.; Yuan, X.; Yao, H.; Zhao, Y.; AghaKouchak, A. The interactions between hydrological drought evolution and precipitation-streamflow relationship. J. Hydrol. 2021, 597, 126210. [Google Scholar] [CrossRef]
- Wu, J.; Yao, H.; Chen, X.; Wang, G.; Bai, X.; Zhang, D. A framework for assessing compound drought events from a drought propagation perspective. J. Hydrol. 2022, 604, 127228. [Google Scholar] [CrossRef]
- Xue, R.; Sun, B.; Li, W.; Li, H.; Zhou, B. Future changes in compound drought events and associated population and GDP exposure in China based on CMIP6. Atmos. Oceanic Sci. Lett. 2024, 17, 100461. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; et al. Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Mason-Delmotte, V., Ed.; Cambridge University Press: Cambridge, UK, 2021; Volume 11, pp. 1–345. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Becker; Finger, P.; Meyer-Christoffer, A.; Rudolf, B.; Schamm, K.; Schneider, U.; Ziese, M. A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data 2013, 5, 71–99. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; Van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, P.; Kriegler, E.; Lamarque, J.-F.; Lowe, J.; et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- Riahi, K.; Van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef]
- Mckee, T.B.; Doesken, N.J.; Kleist, J.R. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; Volume 17, pp. 179–183. [Google Scholar]
- Shukla, S.; Wood, A.W. Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett. 2008, 35, L02405. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; Lorenzo-Lacruz, J.; Camarero, J.J.; López-Moreno, J.I.; Azorin-Molina, C.; Revuelto, J.; Morán-Tejeda, E.; Sanchez-Lorenzo, A. Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interact. 2012, 16, 1–27. [Google Scholar] [CrossRef]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Loukas, A.; Vasiliades, L.; Vasilief, N. Drought management in the eastern Mediterranean: A comparative analysis of drought indices. Water Resour. Manag. 2014, 28, 1155–1174. [Google Scholar]
- Morid, S.; Smakhtin, V.; Moghaddasi, M. Comparison of seven meteorological indices for drought monitoring in Iran. Int. J. Climatol. 2006, 26, 971–985. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.M. SPEI: A drought index based on the Standardized Precipitation Evapotranspiration Index. Remote Sens. 2013, 5, 860–880. [Google Scholar]
- Yevjevich, V.M. An Objective Approach to Definitions and Investigations of Continental Hydrologic Droughts; Colorado State University: Fort Collins, CO, USA, 1967. [Google Scholar]
- Xu, K.; Yang, D.; Yang, H.; Li, Z.; Qin, Y.; Shen, Y. Spatio-temporal variation of drought in China during 1961–2012: A climatic perspective. J. Hydrol. 2015, 526, 253–264. [Google Scholar] [CrossRef]
- Aksoy, H.; Cetin, M.; Eris, E.; Burgan, H.I.; Cavus, Y.; Yildirim, I.; Sivapalan, M. Critical drought intensity-duration-frequency curves based on total probability theorem-coupled frequency analysis. Hydrol. Sci. J. 2021, 66, 1337–1358. [Google Scholar] [CrossRef]
- Su, L.; Cao, Q.; Xiao, M.; Mocko, D.M.; Barlage, M.; Li, D.; Peters-Lidard, C.D.; Lettenmaier, D.P. Drought Variability over the Conterminous United States for the Past Century. J. Hydrometeorol. 2021, 22, 1153–1168. [Google Scholar] [CrossRef]
- Zhang, Y.; You, Q.; Chen, C.; Wang, H.; Ullah, S.; Shen, L. Characteristics of flash droughts and their association with compound meteorological extremes in China: Observations and model simulations. Sci. Total Environ. 2024, 916, 170133. [Google Scholar] [CrossRef]
- Jiao, D.; Xu, N.; Yang, F.; Xu, K. Evaluation of spatial-temporal variation performance of ERA5 precipitation data in China. Sci. Rep. 2021, 11, 17956. [Google Scholar] [CrossRef]
- Vitart, F.; Balsamo, G.; Bidlot, J.-R.; Lang, S.; Tsonevsky, I.; Richardson, D.; Balmaseda, M. Use of ERA5 reanalysis to initialise re-forecasts proves beneficial. ECMWF Newsl. 2019, 161, 26–31. [Google Scholar]
- Wang, C.; Huang, M.; Zhai, P.; Yu, R. Change of summer drought over China during 1961–2020 based on standardized precipitation evapotranspiration index. Theor. Appl. Climatol. 2023, 153, 297–309. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, W.; Yang, B.; Xie, W.; Tao, C.; Hong, Z.; Xie, Y.; Li, J.; Li, L.; Meng, L. Long-term spatiotemporal characteristics of meteorological drought in China from a three-dimensional (longitude, latitude, time) perspective. Int. J. Appl. Earth Obs. Geoinf. 2024, 126, 103633. [Google Scholar] [CrossRef]
- Zhou, J.; Lu, H.; Yang, K.; Jiang, R.; Yang, Y.; Wang, W.; Zhang, X. Projection of China’s future runoff based on the CMIP6 mid-high warming scenarios. Sci. China Earth Sci. 2023, 66, 528–546. [Google Scholar] [CrossRef]
Mode Abbreviation | Mode Full Name | Mode Resolution |
---|---|---|
ACCESS-CM2 (r1i1p1f1) | Australian Community Climate and Earth System Simulator—Coupled Model 2 | 192 × 144 |
ACCESS-ESM1-5 (r1i1p1f1) | Australian Community Climate and Earth System Simulator—Earth System Model 1.5 | 192 × 145 |
BCC-CSM2-MR (r1i1p1f1) | Beijing Climate Center Climate System Model version 2—Medium Resolution | 320 × 160 |
CAS-ESM2-0 (r1i1p1f1) | Chinese Academy of Sciences Earth System Model version 2—Medium Resolution | 256 × 128 |
CESM2-WACCM (r1i1p1f1) | Community Earth System Model version 2—Whole Atmosphere Community Climate Model | 144 × 96 |
CMCC-CM2-SR5 (r1i1p1f1) | Centro Euro-Mediterraneo sui Cambiamenti Climatici—Coupled Model 2—Standard Resolution 5 | 288 × 192 |
CMCC-ESM2 (r1i1p1f1) | Centro Euro-Mediterraneo sui Cambiamenti Climatici—Earth System Model version 2 | 288 × 192 |
CanESM5 (r1i1p1f1) | Community Earth System Model version 2—Whole Atmosphere Community Climate Model | 128 × 64 |
CanESM5-1 (r1i1p1f1) | Canadian Earth System Model version 5.1 | 128 × 64 |
FGOALS-f3-L (r1i1p1f1) | Flexible Global Ocean-Atmosphere-Land System model version f3-L | 288 × 180 |
FIO-ESM-2-0 (r1i1p1f1) | First Institute of Oceanography-Earth System Model version 2.0 | 288 × 192 |
GFDL-ESM4 (r1i1p1f1) | Geophysical Fluid Dynamics Laboratory Earth System Model version 4.1 | 288 × 180 |
IPSL-CM6A-LR (r1i1p1f1) | Institut Pierre Simon Laplace Climate Model version 6A-Low Resolution | 144 × 143 |
INM-CM4-8 (r1i1p1f1) | Institute for Numerical Mathematics Climate Model version 4.8 | 180 × 120 |
KIOST-ESM (r1i1p1f1) | Korea Institute of Ocean Science and Technology Earth System Model | 192 × 96 |
MRI-ESM2-0 (r1i1p1f1) | Meteorological Research Institute Earth System Model version 2.0 | 320 × 160 |
TaiESM1 (r1i1p1f1) | Taiwan Earth System Model version 1 | 288 × 192 |
Category | SPEI/SRI |
---|---|
Extreme wet | [2, +∞) |
Severe wet | [1.5, 2) |
Moderate wet | [1, 1.5) |
Slight wet | [0.5, 1) |
Normal | (−0.5, 0.5) |
Mild drought | (−1, −0.5] |
Moderate drought | (−1.5, −1] |
Severe drought | (−2, −1.5] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Lu, E.; Tu, J.; Yuan, D. Historical and Future Changes in Meteorological–Hydrological Compound Drought in China. Atmosphere 2024, 15, 1459. https://doi.org/10.3390/atmos15121459
Li Z, Lu E, Tu J, Yuan D. Historical and Future Changes in Meteorological–Hydrological Compound Drought in China. Atmosphere. 2024; 15(12):1459. https://doi.org/10.3390/atmos15121459
Chicago/Turabian StyleLi, Zhuoyuan, Er Lu, Juqing Tu, and Dian Yuan. 2024. "Historical and Future Changes in Meteorological–Hydrological Compound Drought in China" Atmosphere 15, no. 12: 1459. https://doi.org/10.3390/atmos15121459
APA StyleLi, Z., Lu, E., Tu, J., & Yuan, D. (2024). Historical and Future Changes in Meteorological–Hydrological Compound Drought in China. Atmosphere, 15(12), 1459. https://doi.org/10.3390/atmos15121459