Bicentennial Volcanic Activity Cycles and Their Long-Term Impact on Northern Hemisphere Climate
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andreu-Hayles, L.; Leland, C. Dendrochronology, progress. In Encyclopedia of Scientific Dating Methods; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–12. [Google Scholar] [CrossRef]
- Raspopov, O.M.; Dergachev, V.A.; Esper, J.; Kozyreva, O.V.; Frank, D.; Ogurtsov, M.; Shao, X. The influence of the de Vries (∼200-year) solar cycle on climate variations: Results from the Central Asian Mountains and their global link. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008, 259, 6–16. [Google Scholar] [CrossRef]
- Ogurtsov, M.; Veretenenko, S.; Lindholm, M.; Jalkanen, R. Possible solar-climate imprint in temperature proxies from the middle and high latitudes of North America. Adv. Space Res. 2016, 57, 1112–1117. [Google Scholar] [CrossRef]
- Liu, X.Q.; Dong, H.L.; Yang, X.D.; Herzschuh, U.; Zhang, E.L.; Stuut, J.B.W.; Wang, Y.B. Late Holocene forcing of the Asian winter and summer monsoon as evidenced by proxy records from the northern Qinghai–Tibetan Plateau. Earth Planet. Sci. Lett. 2009, 280, 276–284. [Google Scholar] [CrossRef]
- Novello, V.F.; Vuille, M.; Cruz, F.W.; Stríkis, N.M.; de Paula, M.S.; Edwards, R.L.; Cheng, H.; Karmann, I.; Jaqueto, P.F.; Trindade, R.I.F.; et al. Centennial-scale solar forcing of the South American Monsoon System recorded in stalagmites. Sci. Rep. 2016, 6, 24762. [Google Scholar] [CrossRef]
- Ogurtsov, M. Long-term variability of summer temperature in the southern part of South America – is there a connection with changes in solar activity? Atmosphere 2022, 13, 1360. [Google Scholar] [CrossRef]
- Ogurtsov, M. Study on possible solar influence on the climate of the Southern Hemisphere. Atmosphere 2022, 13, 680. [Google Scholar] [CrossRef]
- Breitenmoser, P.; Beer, J.; Brönnimann, S.; Frank, D.; Steinhilber, F.; Wanner, H. Solar and volcanic fingerprints in tree-ring chronologies over the past 2000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 313–314, 127–139. [Google Scholar] [CrossRef]
- Schneider, L.; Smerdon, J.E.; Büntgen, U.; Myglan, V.; Kirdyanov, A.V.; Esper, J. Revising midlatitude summer temperatures back to A.D. 600 based on a wood density network. Geophys. Res. Lett. 2015, 42, 4556–4562. [Google Scholar] [CrossRef]
- Wilson, R.; Anchukaitis, K.; Briffa, K.; Büntgen, U.; Cook, E.; D’Arrigo, R. Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term context. Quat. Sci. Rev. 2016, 134, 1–18. [Google Scholar] [CrossRef]
- Guillet, S.; Corona, C.; Stoffel, M.; Khodri, M.; Lavigne, F.; Ortega, P.; Eckert, N.; Sielenou, P.D.; Daux, V.; Churakova (Sidorova), O.V.; et al. Climate response to the Samalas volcanic eruption in 1257 revealed by proxy records. Nat. Geosci. 2017, 10, 123–128. [Google Scholar] [CrossRef]
- Büntgen, U.; Allen, K.; Anchukaitis, K.J.; Arseneault, D.; Boucher, E.; Chatterjee, S. The influence of decision-making in tree ring-based climate reconstructions. Nat. Commun. 2021, 12, 3411. [Google Scholar] [CrossRef] [PubMed]
- Neukom, R.; Gergis, J.; Karoly, D.J.; Wanner, H.; Curran, M.; Elbert, J.; González-Rouco, F.; Linsley, B.K.; Moy, A.D.; Mundo, I.; et al. Inter-hemispheric temperature variability over the last millennium. Nat. Clim. Change 2014, 4, 362–367. [Google Scholar] [CrossRef]
- PAGES 2k Consortium. Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era. Nat. Geosci. 2019, 12, 643–649. [Google Scholar] [CrossRef]
- Gao, C.; Robock, A.; Ammann, C. Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models. J. Geophys. Res. 2008, 113, D23111. [Google Scholar] [CrossRef]
- Crowley, T.; Unterman, M. Technical details concerning development of a 1200 yr proxy index for global volcanism. Earth Syst. Sci. Data 2013, 5, 187–197. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Ebisuzaki, W. A Method to Estimate the Statistical Significance of a Correlation When the Data Are Serially Correlated. J. Clim. 1997, 10, 2147–2153. [Google Scholar] [CrossRef]
- Sugihara, G.; May, R.; Ye, H.; Hsieh, C.-H.; Deyle, E.; Fogarty, M.; Munch, S. Detecting causality in complex ecosystems. Science 2012, 338, 496–500. [Google Scholar] [CrossRef]
- Poluianov, S.; Usoskin, I. Critical Analysis of a Hypothesis of the Planetary Tidal Influence on Solar Activity. Sol. Phys. 2014, 289, 2333–2342. [Google Scholar] [CrossRef]
- Ma, L.; Vaquero, J.M. New evidence of the Suess/de Vries cycle existing in historical naked-eye observations of sunspots. Open Astron. 2020, 29, 28–31. [Google Scholar] [CrossRef]
- Vaquero, J.M.; Gallego, M.C.; García, J.A. A 250-year cycle in naked-eye observations of sunspots Geophys. Res. Lett. 2002, 29, 58-1–58-4. [Google Scholar] [CrossRef]
- Bard, E.; Raisbeck, G.; Yiou, F.; Jouzel, J. Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus B Chem. Phys. Meteorol. 2000, 52, 985–992. [Google Scholar] [CrossRef]
- Delaygue, G.; Bard, E. An Antarctic view of Beryllium-10 and solar activity for the past millennium. Clim. Dyn. 2011, 36, 2201–2218. [Google Scholar] [CrossRef]
- Steinhilber, F.; Abreu, J.A.; Beer, J.; Brunner, I.; Christl, M.; Fischer, H.; Heikkilä, U.; Kubik, P.W.; Mann, M.; McCracken, K.G.; et al. 9400 years of cosmic radiation and solar activity from ice cores and tree rings. Proc. Nat. Acad. Sci. USA 2012, 109, 5967–5971. [Google Scholar] [CrossRef]
- Roth, R.; Joos, F. A reconstruction of radiocarbon production and total solar irradiance from the Holocene 14C and CO2 records: Implications of data and model uncertainties. Clim. Past 2013, 9, 1879–1909. [Google Scholar] [CrossRef]
- Egorova, T.; Schmutz, W.; Rozanov, E.; Shapiro, A.I.; Usoskin, I.; Beer, J.; Tagirov, R.V.; Peter, T. Revised historical solar irradiance forcing. Astron. Astrophys. 2018, 615, A85. [Google Scholar] [CrossRef]
- Usoskin, I.; Solanki, S.; Krivova, N.; Hofer, B.; Kovaltsov, G.A.; Wacker, L.; Brehm, N.; Kromer, B. Solar cyclic activity over the last millennium reconstructed from annual 14C data. Astron. Astrophys. 2021, 649, A141. [Google Scholar] [CrossRef]
- Fisher, R.A. Statistical methods for research workers. In Breakthroughs in Statistics; Springer Series in Statistics; Springer: Berlin/Heidelberg, Germany, 1925; Oliver and Boyd, Edinburgh. [Google Scholar]
- Gleckler, P.; Achutarao, K.; Gregory, J.; Santer, B.D.; Taylor, K.E.; Wigley, T.M. Krakatoa lives: The effect of volcanic eruptions on ocean heat content and thermal expansion. Geophys. Res. Lett. 2006, 33, L17702. [Google Scholar] [CrossRef]
- Zhong, Y.; Miller, G.; Otto-Bliesner, B.; Holland, M.M.; Bailey, D.A.; Schneider, D.P.; Geirsdottir, A. Centennial-scale climate change from decadally-paced explosive volcanism: A coupled sea ice-ocean mechanism. Clim. Dyn. 2011, 37, 2373–2387. [Google Scholar] [CrossRef]
- McGregor, H.V.; Evans, M.N.; Goosse, H.; Leduc, G.; Martrat, B.; Addison, J.A.; Mortyn, P.G.; Oppo, D.W.; Seidenkrantz, M.S.; Sicre, M.A.; et al. Robust global ocean cooling trend for the pre-industrial Common Era. Nat. Geosci. 2015, 8, 671–677. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dunne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C.; Jones, C.; et al. Climate Change 2021—The Physical Science Basis Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2021—The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2021; pp. 553–672. Available online: https://www.cambridge.org/core/books/climate-change-2021-the-physical-science-basis/future-global-climate-scenariobased-projections-and-nearterm-information/309359EDDCFABB031C078AE20CEE04FD (accessed on 1 January 2024.).
- Baldini, J.; Brown, R.; Mcelwaine, J. Was millennial scale climate change during the Last Glacial triggered by explosive volcanism? Sci. Rep. 2015, 5, 17442. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.H.; Geirsdóttir, Á.; Zhong, Y.; Larsen, D.J.; Otto-Bliesner, B.L.; Holland, M.M.; Bailey, D.A.; Refsnider, K.A.; Lehman, S.J.; Southon, J.R.; et al. Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys. Res. Lett. 2012, 39, L02708. [Google Scholar] [CrossRef]
- Waple, A.M.; Mann, M.E.; Bradley, R.S. Long-term patterns of solar irradiance forcing in model experiments and proxy- based surface temperature reconstructions. Clim. Dynam. 2002, 18, 563–657. [Google Scholar] [CrossRef]
- Monerie, P.-A.; Moine, M.-P.; Terray, L.; Valcke, S. Quantifying the impact of early 21st century volcanic eruptions on global-mean surface temperature Environ. Res. Lett. 2017, 12, 054010. [Google Scholar] [CrossRef]
- Wilmes, S.B.; Raible, C.C.; Stocker, T.F. Climate variability of the mid- and high-latitudes of the Southern Hemisphere in ensemble simulations from 1500 to 2000 AD. Clim. Past 2012, 8, 373–390. [Google Scholar] [CrossRef]
- Stouffer, R.J.; Manabe, S.; Bryan, K. Interhemispheric asymmetry in climate response to a gradual increase of atmospheric CO2. Nature 1989, 342, 660–662. [Google Scholar] [CrossRef]
- Chim, M.M.; Aubry, T.J.; Abraham, N.L.; Marshall, L.; Mulcahy, J.; Walton, J.; Schmidt, A. Climate projections very likely underestimate future volcanic forcing and its climatic effects. Geophys. Res. Lett. 2023, 50, e2023GL103743. [Google Scholar] [CrossRef]
Source | Abbreviation | Time Span | Reconstructed Value | Geographic Area | Data Type |
---|---|---|---|---|---|
Crowley and Unterman [16] | SLF | 501–2000 | aerosol optical depth | Greenland, Antarctica | SO4 concentration, conductivity, 21 records |
Gao et al. [15] | AOD | 800–2000 | stratospheric sulfate aerosol injection | Greenland, Antarctica | SO4 concentration, conductivity, 36 records |
Schneider et al. [9] | NHS | 600–2002 | June–August temperature | Extratropical part of the Hemisphere (Φ > 30° N) | Tree-ring (MXD), 15 regional records |
Wilson et al. [10] | NHW | 800–2010 | May–August temperature | Northern Hemisphere | Tree-ring (MXD), 54 records |
Guillet et al. [11] | NHG | 500–2000 | June–August temperature | Northern Hemisphere | Multi-proxy (TRW, MXD, δ18O), 27 records |
Büntgen et al. [12] | NHB | 1–2016 | June–August temperature | Northern Hemisphere | TRW, 9 regional records |
The median of the full ensemble of the PAGES2k [14] | GLB | 1–2017 | Annual | Globe | Multi-proxy (TRW, MXD, ice core, corals, historic documents, sediments, boreholes, speleothems) 692 individual records |
Neukom et al. [13] | SHN | May–April temperature | Southern Hemisphere | Multi-proxy (TRW, MXD, ice core, corals, historic documents, sediments), 111 individual records |
Source | Temperature in the NH [9] | Temperature in the NH [10] | Temperature in the NH [11] | Temperature in the NH [12] | Global Temperature [14] | Temperature in the SH [13] |
---|---|---|---|---|---|---|
Sulfate injection [15] | −0.38 ** (0.21) | −0.67 * (0.011) | −0.05 *** (0.75) | −0.55 *** (0.039) | −0.35 *** (0.174) | 0.30 + (0.292) |
Aerosol optical depth [16] | −0.43 * (0.137) | −0.68 * (0.009) | −0.06 * (0.87) | −0.61 * (0.018) | −0.43 * (0.123) | 0.09 + (0.703) |
Source | Temperature in the NH [9] | Temperature in the NH [10] | Temperature in the NH [11] | Temperature in the NH [12] | Global Temperature [14] | Temperature in the SH [13] |
---|---|---|---|---|---|---|
Sulfate injection [15] | −0.52 (0.078) | −0.70 (0.027) | −0.38 (0.191) | −0.58 (0.067) | −0.50 (0.131) | −0.05 (0.901) |
Aerosol optical depth [16] | −0.59 (0.068) | −0.72 (0.021) | −0.50 (0.113) | −0.72 (0.019) | −0.58 (0.068) | −0.20 (0.534) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogurtsov, M. Bicentennial Volcanic Activity Cycles and Their Long-Term Impact on Northern Hemisphere Climate. Atmosphere 2024, 15, 1373. https://doi.org/10.3390/atmos15111373
Ogurtsov M. Bicentennial Volcanic Activity Cycles and Their Long-Term Impact on Northern Hemisphere Climate. Atmosphere. 2024; 15(11):1373. https://doi.org/10.3390/atmos15111373
Chicago/Turabian StyleOgurtsov, Maxim. 2024. "Bicentennial Volcanic Activity Cycles and Their Long-Term Impact on Northern Hemisphere Climate" Atmosphere 15, no. 11: 1373. https://doi.org/10.3390/atmos15111373
APA StyleOgurtsov, M. (2024). Bicentennial Volcanic Activity Cycles and Their Long-Term Impact on Northern Hemisphere Climate. Atmosphere, 15(11), 1373. https://doi.org/10.3390/atmos15111373