Does ERA5-Land Effectively Capture Extreme Precipitation in the Yellow River Basin?
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Station Observations
2.2.2. ERA5-Land Dataset
2.3. Methods
2.3.1. Evaluation Indices
2.3.2. Extreme Precipitation Indices
2.3.3. Extreme Precipitation Event and Its Characteristics
3. Results
3.1. Evaluation of ERA5-Land for Reflecting Precipitation Amount
3.2. Evaluation of ERA5-Land for Reflecting Extreme Precipitation Indices
3.3. Evaluation of ERA5-Land for Capturing Extreme Precipitation Event
4. Discussion
5. Conclusions
- (1)
- ERA5-Land effectively captures the spatial distribution and temporal trends in precipitation, indices, and extreme precipitation events in the Yellow River Basin. However, there are significant overestimation and underestimation errors. ERA5-Land generally overestimates the daily precipitation amounts across the basin, with the best capture ability in the middle basin, followed by the upper basin and lower basin. ERA5-Land generally overestimates the annual precipitation days in the Yellow River Basin.
- (2)
- ERA5-Land severely overestimates the total precipitation, with an error reaching up to 153%. It also significantly overestimates R95pTOT and R99pTOT, with 89.7% and 68.44% of stations showing overestimation errors, respectively. More stations exhibit underestimation errors for RX1day and overestimation errors for RX5day. For the number of rainy days, ERA5-Land tends to overestimate the number of days with precipitation greater than R10mm and CDD. Additionally, ERA5-Land systematically underestimates SDII. ERA5-Land can capture the temporal variation characteristics of extreme precipitation indicators in different regions of the Yellow River Basin.
- (3)
- ERA5-Land captures the spatiotemporal distribution characteristics of extreme precipitation events but consistently overestimates the frequency of these events, particularly in the western and central upper basin. It overestimates the duration of extreme precipitation for 95% of the stations in the basin while generally underestimating the average precipitation amount and total precipitation of extreme precipitation events. Specifically, EF, ED and ET are overestimated in the upper basin, middle basin and lower basin in each month, and the overestimation is more obvious in the upper basin.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Yellow River Basin | Upper | Middle | Lower | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RB | CC | RMSE | RB | CC | RMSE | RB | CC | RMSE | RB | CC | RMSE | |
PRCPTOT | 26.02 | 0.72 | 156.06 | 38.12 | 0.68 | 172.16 | 20.79 | 0.64 | 142.71 | 7.78 | 0.73 | 134.01 |
SDII | −18.35 | 0.53 | 2.13 | −16.03 | 0.42 | 1.60 | −18.68 | 0.60 | 2.21 | −26.31 | 0.57 | 3.97 |
R10mm | 21.13 | 0.60 | 5.18 | 25.73 | 0.46 | 5.23 | 18.91 | 0.67 | 5.23 | 15.55 | 0.76 | 4.82 |
R20mm | 1.36 | 0.47 | 2.69 | 3.38 | 0.35 | 2.28 | 0.93 | 0.55 | 2.88 | −3.60 | 0.51 | 3.39 |
RX1day | −11.15 | 0.17 | 25.49 | −6.32 | 0.17 | 17.90 | −13.26 | 0.17 | 27.95 | −19.33 | 0.12 | 43.33 |
RX5day | 3.03 | 0.38 | 31.37 | 8.23 | 0.33 | 24.57 | 0.80 | 0.45 | 32.47 | −6.01 | 0.17 | 53.84 |
R95pTOT | 28.71 | 0.40 | 53.17 | 43.67 | 0.38 | 48.77 | 20.78 | 0.43 | 54.01 | 12.65 | 0.28 | 68.50 |
R99pTOT | 38.28 | 0.18 | 34.69 | 27.94 | 0.22 | 23.82 | 40.47 | 0.17 | 37.03 | 97.73 | −0.02 | 63.24 |
CDD | −24.45 | 0.48 | 18.36 | −35.16 | 0.36 | 25.85 | −18.73 | 0.53 | 13.90 | −12.38 | 0.69 | 12.69 |
CWD | 61.38 | 0.42 | 3.83 | 76.61 | 0.38 | 4.60 | 49.54 | 0.48 | 3.33 | 64.90 | 0.25 | 3.43 |
References
- Mishra, V.M.; Dominguez, F.; Lettenmaier, D.P. Urban precipitation extremes: How reliable are regional climate models? Geophys. Res. Lett. 2012, 39, 8. [Google Scholar] [CrossRef]
- Meyer, J.; Neuper, M.; Mathias, L.; Zehe, E.; Pfister, L. More frequent flash flood events and extreme precipitation favouring atmospheric conditions in temperate regions of Europe. Hydrol. Earth Syst. Sci. Discuss. 2021, 2021, 1–28. [Google Scholar]
- Dave, R.; Subramanian, S.S.; Bhatia, U. Extreme precipitation induced concurrent events trigger prolonged disruptions in regional road networks. Environ. Res. Lett. 2021, 16, 104050. [Google Scholar] [CrossRef]
- Ning, G.; Luo, M.; Zhang, Q.; Wang, S.; Liu, Z.; Yang, Y.; Wu, S.; Zeng, Z. Understanding the Mechanisms of Summer Extreme Precipitation Events in Xinjiang of Arid Northwest China. J. Geophys. Res. 2021, 126, e2020JD034111. [Google Scholar] [CrossRef]
- Luo, M.; Sa, C.; Meng, F.; Duan, Y.; Liu, T.; Bao, Y. Assessing extreme climatic changes on a monthly scale and their implications for vegetation in Central Asia. J. Clean. Prod. 2020, 271, 122396. [Google Scholar] [CrossRef]
- Zhai, P.; Sun, A.; Ren, F.; Liu, X.; Gao, B.; Zhang, Q. Changes of Climate Extremes in China. Weather. Clim. Extrem. Var. A Perspect. Insur. Ind. 1999, 42, 203–218. [Google Scholar]
- Jiang, L.; Liu, B.; Yuan, Y. Quantifying Vegetation Vulnerability to Climate Variability in China. Remote Sens. 2022, 14, 3491. [Google Scholar] [CrossRef]
- Qin, P.; Xie, Z.; Zou, J.; Liu, S.; Chen, S. Future Precipitation Extremes in China under Climate Change and Their Physical Quantification Based on a Regional Climate Model and CMIP5 Model Simulations. Adv. Atmos. Sci. 2021, 38, 460–479. [Google Scholar] [CrossRef]
- Wang, L.; Gu, X.; Slater, L.J.; Lai, Y.; Zheng, Y.; Gong, J.; Dembélé, M.; Tosunoğlu, F.; Liu, J.; Zhang, X.; et al. Attribution of the Record-Breaking Extreme Precipitation Events in July 2021 Over Central and Eastern China to Anthropogenic Climate Change. Earth’s Future 2023, 11, e2023EF003613. [Google Scholar] [CrossRef]
- Shen, Y.; Xiong, A. Validation and comparison of a new gauge-based precipitation analysis over mainland China. Int. J. Climatol. 2016, 36, 252–265. [Google Scholar] [CrossRef]
- Germann, U.; Galli, G.; Boscacci, M.; Bolliger, M. Radar precipitation measurement in a mountainous region. Q. J. R. Meteorol. Soc. 2006, 132, 1669–1692. [Google Scholar] [CrossRef]
- Wang, T.; Li, Z.; Ma, Z.; Gao, Z.; Tang, G. Diverging identifications of extreme precipitation events from satellite observations and reanalysis products: A global perspective based on an object-tracking method. Remote Sens. Environ. 2023, 288, 113490. [Google Scholar] [CrossRef]
- Behrangi, A.; Wen, Y. On the Spatial and Temporal Sampling Errors of Remotely Sensed Precipitation Products. Remote Sens. 2017, 9, 1127. [Google Scholar] [CrossRef]
- Sorooshian, S.; AghaKouchak, A.; Arkin, P.; Eylander, J.; Foufoula-Georgiou, E.; Harmon, R.; Hendrickx, J.M.H.; Imam, B.; Kuligowski, R.; Skahill, B.; et al. Advancing the remote sensing of precipitation. Bull. Am. Meteorol. Soc. 2011, 92, 1271–1272. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, W.; Fan, Z.; He, X.; Sun, W.; Chen, S.; Wen, J.; Gao, J.; Wang, J. Evaluation of the ERA5 reanalysis precipitation dataset over Chinese Mainland. J. Hydrol. 2021, 595, 125660. [Google Scholar] [CrossRef]
- Zhang, Y.; Mao, G.; Chen, C.; Shen, L.; Xiao, B. Population Exposure to Compound Droughts and Heatwaves in the Observations and ERA5 Reanalysis Data in the Gan River Basin, China. Land 2021, 10, 1021. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. Era5-land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Graham, R.M.; Hudson, S.R.; Maturilli, M. Improved performance of ERA5 in Arctic gateway relative to four global atmospheric reanalyses. Geophys. Res. Lett. 2019, 46, 6138–6147. [Google Scholar] [CrossRef]
- Albergel, C.; Dutra, E.; Munier, S.; Calvet, J.C.; Munoz-Sabater, J.; De Rosnay, P.; Balsamo, G. ERA-5 and ERA-Interim driven ISBA land surface model simulations: Which one performs better? Hydrol. Earth Syst. Sci. 2018, 22, 3515–3532. [Google Scholar] [CrossRef]
- Zhao, P.; He, Z. A first evaluation of ERA5-Land reanalysis temperature product over the Chinese Qilian Mountains. Front. Earth Sci. 2022, 10, 907730. [Google Scholar] [CrossRef]
- Wu, X.; Su, J.; Ren, W.; Lv, H.; Yuan, F. Statistical comparison and hydrological utility evaluation of ERA5-Land and IMERG precipitation products on the Tibetan Plateau. J. Hydrol. 2023, 620, 129384. [Google Scholar] [CrossRef]
- Li, Y.; Qin, X.; Liu, Y.; Jin, Z.; Liu, J.; Wang, L.; Chen, J. Evaluation of long-term and high-resolution gridded precipitation and temperature products in the Qilian Mountains, Qinghai–Tibet Plateau. Front. Environ. Sci. 2022, 10, 906821. [Google Scholar] [CrossRef]
- Chang, Y.; Qi, Y.; Wang, Z. Comprehensive evaluation of IMERG, ERA5-Land and their fusion products in the hydrological simulation of three karst catchments in Southwest China. J. Hydrol. Reg. Stud. 2024, 52, 101671. [Google Scholar] [CrossRef]
- Huang, X.; Han, S.; Shi, C. Multiscale assessments of three reanalysis temperature data systems over China. Agriculture 2021, 11, 1292. [Google Scholar] [CrossRef]
- Xu, C.; Wang, W.; Hu, Y.; Liu, Y. Evaluation of ERA5, ERA5-Land, GLDAS-2.1, and GLEAM potential evapotranspiration data over mainland China. J. Hydrol. Reg. Stud. 2024, 51, 101651. [Google Scholar] [CrossRef]
- Ippolito, M.; De Caro, D.; Cannarozzo, M.; Provenzano, G.; Ciraolo, G. Evaluation of daily crop reference evapotranspiration and sensitivity analysis of FAO Penman-Monteith equation using ERA5-Land reanalysis database in Sicily, Italy. Agric. Water Manag. 2024, 295, 108732. [Google Scholar] [CrossRef]
- Espinosa, L.A.; Portela, M.M.; Gharbia, S. Assessing Changes in Exceptional Rainfall in Portugal Using ERA5-Land Reanalysis Data. Water 2024, 16, 628. [Google Scholar] [CrossRef]
- Bonshoms, M.; Ubeda, J.; Liguori, G.; Körner, P.; Navarro, A.; Cruz, R. Validation of ERA5-Land temperature and relative humidity on four Peruvian glaciers using on-glacier observations. J. Mt. Sci. 2022, 19, 1849–1873. [Google Scholar] [CrossRef]
- Malayeri, A.K.; Saghafian, B.; Raziei, T. Performance evaluation of ERA5 precipitation estimates across Iran. Arab. J. Geosci. 2021, 14, 2676. [Google Scholar] [CrossRef]
- Jiao, D.L.; Xu, N.N.; Yang, F.; Xu, K. Evaluation of spatial-temporal variation performance of ERA5 precipitation data in China. Sci. Rep. 2021, 11, 17956. [Google Scholar] [CrossRef]
- Hu, X.; Yuan, W. Evaluation of ERA5 precipitation over the eastern periphery of the Tibetan plateau from the perspective of regional rainfall events. Int. J. Climatol. 2021, 41, 2625–2637. [Google Scholar] [CrossRef]
- Crossett, C.C.; Betts, A.K.; Dupigny-Giroux, L.A.L.; Bomblies, A. Evaluation of daily precipitation from the ERA5 global reanalysis against GHCN observations in the northeastern United States. Climate 2020, 8, 148. [Google Scholar] [CrossRef]
- Sharifi, E.; Eitzinger, J.; Dorigo, W. Performance of the state-of-the-art gridded precipitation products over mountainous terrain: A regional study over Austria. Remote Sens. 2019, 11, 2018. [Google Scholar] [CrossRef]
- Amjad, M.; Yilmaz, M.T.; Yucel, I.; Yilmaz, K.K. Performance evaluation of satellite- and model-based precipitation products over varying climate and complex topography. J. Hydrol. 2020, 584, 124707. [Google Scholar] [CrossRef]
- Kolluru, V.; Kolluru, S.; Konkathi, P. Evaluation and integration of reanalysis rainfall products under contrasting climatic conditions in India. Atmos. Res. 2020, 246, 105121. [Google Scholar] [CrossRef]
- Xu, J.; Ma, Z.; Yan, S.; Peng, J. Do ERA5 and ERA5-Land precipitation estimates outperform satellite-based precipitation products? A comprehensive comparison between state-of-the-art model-based and satellite-based precipitation products over mainland China. J. Hydrol. 2022, 605, 127353. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, W.; Huai, B.; Wang, Y.; Ji, K.; Yang, X.; Du, W.; Qin, X.; Wang, L. Comparison and evaluation of the performance of reanalysis datasets for compound extreme temperature and precipitation events in the Qilian Mountains. Atmos. Res. 2024, 304, 107375. [Google Scholar] [CrossRef]
- Deng, Y.; Cao, G.; Jiang, W.; Wu, J.; Li, Z.; Wang, X. Spatiotemporal changes in heavy precipitation events in the Beijing-Tianjin-Hebei region revealed by hourly meteorological station observations. Theor. Appl. Climatol. 2020, 141, 483–494. [Google Scholar] [CrossRef]
- Zhao, Y.; Cao, W.; Hu, C.; Wang, Y.; Wang, Z.; Zhang, X.; Zhu, B.; Cheng, C.; Yin, X.; Liu, B.; et al. Analysis of changes in characteristics of flood and sediment yield in typical basins of the Yellow River under extreme rainfall events. Catena 2019, 177, 31–40. [Google Scholar] [CrossRef]
- Zhang, D.D.; Yan, D.H.; Wang, Y.C.; Lu, F.; Wu, D. Changes in extreme precipitation in the Huang-Huai-Hai River basin of China during 1960–2010. Theor. Appl. Climatol. 2015, 120, 195–209. [Google Scholar] [CrossRef]
- Guo, H.; Li, M.; Nzabarinda, V.; Bao, A.; Meng, X.; Zhu, L.; De Maeyer, P. Assessment of three long-term satellite-based precipitation estimates against ground observations for drought characterization in northwestern China. Remote Sens. 2022, 14, 828. [Google Scholar] [CrossRef]
- Yin, C.; Chen, X.; Luo, M.; Meng, F.; Sa, C.; Bao, S.; Yuan, Z.; Zhang, X.; Bao, Y. Quantifying the Contribution of Driving Factors on Distribution and Change of Net Primary Productivity of Vegetation in the Mongolian Plateau. Remote Sens. 2023, 15, 1986. [Google Scholar] [CrossRef]
- Wang, C.; Graham, R.M.; Wang, K.; Gerland, S.; Granskog, M.A. Comparison of ERA5 and ERA-Interim near-surface air temperature, snowfall and precipitation over Arctic sea ice: Effects on sea ice thermodynamics and evolution. Cryosphere 2019, 13, 1661–1679. [Google Scholar] [CrossRef]
- Tan, M.L.; Santo, H. Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia. Atmos. Res. 2018, 202, 63–76. [Google Scholar] [CrossRef]
- Rodriguez-Sola, R.; Casas-Castillo, M.C.; Zhang, J.J.H.; Kirchner, R.; Alarcon, M.; Periago, C.; De Linares, C.; Belmonte, J. A study on correlations between precipitation ETCCDI and airborne pollen/fungal spore parameters in the NE Iberian Peninsula. Int. J. Biometeorol. 2022, 66, 1173–1187. [Google Scholar] [CrossRef]
- She, D.; Shao, Q.; Xia, J.; Taylor, J.A.; Zhang, Y.; Zhang, L.; Zhang, X.; Zou, L. Investigating the variation and non-stationarity in precipitation extremes based on the concept of event-based extreme precipitation. J. Hydrol. 2015, 530, 785–798. [Google Scholar] [CrossRef]
- Tian, Y.; Lv, X.; Guo, H.; Li, J.; Meng, X.; Guo, C.; Zhu, L.; De Maeyer, P. Evaluation of GPM IMERG product over the Yellow River Basin using an Improved Error-Component Procedure. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 8918–8937. [Google Scholar] [CrossRef]
- Gao, L.; Hao, L.; Chen, X. Evaluation of ERA-Interim monthly temperature data over the Tibetan Plateau. J. Mt. Sci. 2014, 11, 1154–1168. [Google Scholar] [CrossRef]
- Miao, C.; Ashouri, H.; Hsu, K.; Sorooshian, S.; Duan, Q. Evaluation of the PERSIANN-CDR daily rainfall estimates in capturing the behavior of extreme precipitation events over China. J. Hydrometeorol. 2015, 16, 1387–1396. [Google Scholar] [CrossRef]
Name | Formula | Optimal Value |
---|---|---|
Relative bias (RB) | RB = | 0 |
Correlation coefficient (CC) | CC = | 1 |
Root mean square error (RMSE) | RMSE = | 0 |
Index | Description | Unit |
---|---|---|
PRCPTOT | Total wet day precipitation (mm) in the year | mm |
R10mm | Number of days in the year with rainfall greater than 10 mm | days |
R20mm | Number of days in the year with rainfall greater than 20 mm | days |
RX1day | Maximum daily rainfall amount (mm) in the year | mm |
RX5day | Maximum rainfall amount (mm) over five consecutive days in the year | mm |
R95pTOT | Total rainfall (mm) in the year from days exceeding the 95th percentile | mm |
R99pTOT | Total rainfall (mm) in the year from days exceeding the 99th percentile | mm |
CDD | Maximum number of consecutive drought days (<1 mm) in the year | days |
CWD | Maximum number of consecutive wet days (≥1 mm) in the year | days |
SDII | Simple Daily Intensity Index. The ratio of total yearly rainfall to the number of yearly wet days (≥1 mm) | mm/day |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, C.; Ning, N.; Guo, H.; Tian, Y.; Bao, A.; De Maeyer, P. Does ERA5-Land Effectively Capture Extreme Precipitation in the Yellow River Basin? Atmosphere 2024, 15, 1254. https://doi.org/10.3390/atmos15101254
Guo C, Ning N, Guo H, Tian Y, Bao A, De Maeyer P. Does ERA5-Land Effectively Capture Extreme Precipitation in the Yellow River Basin? Atmosphere. 2024; 15(10):1254. https://doi.org/10.3390/atmos15101254
Chicago/Turabian StyleGuo, Chunrui, Ning Ning, Hao Guo, Yunfei Tian, Anming Bao, and Philippe De Maeyer. 2024. "Does ERA5-Land Effectively Capture Extreme Precipitation in the Yellow River Basin?" Atmosphere 15, no. 10: 1254. https://doi.org/10.3390/atmos15101254
APA StyleGuo, C., Ning, N., Guo, H., Tian, Y., Bao, A., & De Maeyer, P. (2024). Does ERA5-Land Effectively Capture Extreme Precipitation in the Yellow River Basin? Atmosphere, 15(10), 1254. https://doi.org/10.3390/atmos15101254