Improving a WRF-Based High-Impact Weather Forecast System for a Northern California Power Utility
Abstract
:1. Introduction
1.1. PG&E’s Mandate and Operations
1.2. PG&E’s Operational Mesoscale Modeling System (POMMS)
POMMS Version | Year Implemented | WRF Version | Key Features |
---|---|---|---|
1 | 2014 | 3.5.1 | Single 3 km grid using boundary conditions from a 12 km WRF run. |
2 | 2018 | 4.0.2 | Nested 3 km grid, MYNN surface layer scheme, RUC land surface model, 30-year reanalysis. |
3 | 2020 | 4.1.2 | Nested 2 km grid, Noah–MP land surface model, stochastically perturbed ensemble, 30-year reanalysis. See text and Table 2 for details. |
4 | 2024 | 4.5.2 | Nested 2 km grid, irrigation triggered by crop-growing season, GEFS-based ensemble, 30-year reanalysis. |
Parameter | Setting |
---|---|
Horizontal grid | 18 km outer grid with nests of 6 and 2 km. |
Vertical grid | 51 levels with a 20 hPa top. Thickness of lowest level is 50 m. |
Time step | Adaptive. Maximum time step is 144, 48, 16, and 5.33 s on the respective grids, where the fourth value refers to the 0.67 km on-demand nests. For 0.67 km grids spanning the Sierra Nevada, the maximum time step is reduced slightly for stability (120, 40, 13.33, 4.44 s). |
Land use | MODIS 30 arcsec with lakes.Roughness length adjusted for two land use categories (see Table 3). |
Radiation | Rapid Radiative Transfer Model for General Circulation (RRTMG) models for both long- and shortwave radiation. |
Land surface model | Noah–MP. Using climatological albedo and Leaf Area Index (LAI) from GEOGRID files. |
Surface layer scheme | MYNN surface layer. |
PBL scheme | MYNN 3rd-order PBL scheme. |
Microphysics | Thompson microphysics, which has ice, snow, and graupel processes suitable for high-resolution simulations, along with ice and rain number concentrations.The Kain–Fritsch cumulus parameterization is applied on the outer grid. |
Diffusion and dispersion | Smagorinsky first-order closure is used for horizontal turbulent diffusion.Upper-level damping is applied. |
Background models | GFS (0.25° grid) or ECMWF (0.125° grid). NOAA 1/12° SST analysis. |
Data assimilation | 3DVAR data assimilation is applied on the outer grid at T−3 h. Data assimilated include conventional surface and upper-air observations, aircraft data, and satellite-derived winds. |
Category (LUINDEX) | Default Value (m) | Adjusted Value (m) |
---|---|---|
Evergreen broadleaf forest (2) | 1.10 | 0.70 |
Urban (13) | 1.00 | 0.60 |
1.3. Fire Potential Index and Fuel Moisture Calculations
1.4. Motivation for Upgrading
2. Current Operational WRF Configuration
2.1. Stochastically Perturbed Ensemble
2.2. Schedule
2.3. Historical Reanalysis
3. Methodology
3.1. WRF Experiments
3.1.1. Initialization
3.1.2. Control Experiments
3.1.3. Irrigation and Gravity Wave Drag
3.1.4. Higher-Resolution Horizontal Grid
3.1.5. Initialization with GEFS Forecasts
3.2. Validation
3.3. Case Descriptions
3.3.1. Case 1: Intense Downslope Windstorm, October 2019
3.3.2. Case 2: Offshore Wind Event, January 2021
3.3.3. Case 3: Dixie Fire in Northern Sierra Nevada, July 2022
3.3.4. Case 4: Heat Wave and Wildfire Conditions, September 2022
3.3.5. Case 5: Northwesterly Wind Event, February 2023
3.3.6. Case 6: Late Winter Storm, March 2023
4. Results
4.1. Control Experiments
4.2. Irrigation and Gravity Wave Drag
4.3. Higher-Resolution Horizontal Grid
4.4. Ensemble Forecasts Initialized with GEFS
5. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Computing
References
- Pacific Gas and Electric Co. Company Profile. Available online: https://www.pge.com/en/about/company-information/company-profile.html (accessed on 26 July 2024).
- Pacific Gas and Electric Co. 2023–2025 Wildfire Mitigation Plan R4. 2024. Available online: https://www.pge.com/assets/pge/docs/outages-and-safety/outage-preparedness-and-support/pge-wmp-r4-010824.pdf (accessed on 22 July 2024).
- Mass, C.F.; Ovens, D. The Synoptic and Mesoscale Evolution Accompanying the 2018 Camp Fire of Northern California. Bull. Am. Meteorol. Soc. 2021, 102, E168–E192. [Google Scholar] [CrossRef]
- Brewer, M.J.; Clements, C.B. The 2018 Camp Fire: Meteorological Analysis Using In Situ Observations and Numerical Simulations. Atmosphere 2020, 11, 47. [Google Scholar] [CrossRef]
- Durran, D.R. Mountain Waves and Downslope Winds. In Atmospheric Processes over Complex Terrain; Meteorological Monographs; American Meteorological Society: Boston, MA, USA, 1990; Volume 45, pp. 59–81. [Google Scholar]
- Mass, C.F.; Ovens, D. The Northern California Wildfires of 8–9 October 2017: The Role of a Major Downslope Wind Event. Bull. Am. Meteorol. Soc. 2019, 100, 235–256. [Google Scholar] [CrossRef]
- The Weather Channel. How The California Bomb Cyclone Happened. The Weather Channel. Available online: https://weather.com/storms/severe/news/2023-03-22-california-bomb-cyclone (accessed on 24 July 2024).
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, J.G.; Barker, D.; et al. A Description of the Advanced Research WRF Model Version 4.3; National Center for Atmospheric Research: Boulder, CO, USA, 2021. [Google Scholar] [CrossRef]
- National Center for Atmospheric Research (NCAR). WRF Users Guide Documentation. Available online: https://www2.mmm.ucar.edu/wrf/users/wrf_users_guide/build/html/ (accessed on 10 July 2024).
- Nelson Jr, R.M. Prediction of Diurnal Change in 10-h Fuel Stick Moisture Content. Can. J. For. Res. 2000, 30, 1071–1087. [Google Scholar] [CrossRef]
- Carlson, J.D.; Bradshaw, L.S.; Nelson, R.M.; Bensch, R.R.; Jabrzemski, R. Application of the Nelson Model to Four Timelag Fuel Classes Using Oklahoma Field Observations: Model Evaluation and Comparison with National Fire Danger Rating System Algorithms. Int. J. Wildland Fire 2007, 16, 204–216. [Google Scholar] [CrossRef]
- Capps, S.B.; Zhuang, W.; Liu, R.; Rolinski, T.; Qu, X. Modelling Chamise Fuel Moisture Content across California: A Machine Learning Approach. Int. J. Wildland Fire 2021, 31, 136–148. [Google Scholar] [CrossRef]
- He, C.; Valayamkunnath, P.; Barlage, M.; Chen, F.; Gochis, D.; Cabell, R.; Schneider, T.; Rasmussen, R.; Niu, G.-Y.; Yang, Z.-L.; et al. The Community Noah-MP Land Surface Modeling System Technical Description Version 5.0; National Oceanic and Atmospheric Administration: Washington, DC, USA, 2023. [Google Scholar] [CrossRef]
- Olson, J.B.; Kenyon, J.S.; Angevine, W.A.; Brown, J.M.; Pagowski, M.; Sušelj, K. A Description of the MYNN-EDMF Scheme and the Coupling to Other Components in WRF–ARW; National Oceanic and Atmospheric Administration: Washington, DC, USA, 2019; No. 61. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.-T.; Chuang, H.; Iredell, M.; et al. The NCEP Climate Forecast System Version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- McClure, C.D.; Pavlovic, N.R.; Huang, S.; Chaveste, M.; Wang, N. Consistent, High-Accuracy Mapping of Daily and Sub-Daily Wildfire Growth with Satellite Observations. Int. J. Wildland Fire 2023, 32, 694–708. [Google Scholar] [CrossRef]
- Zhou, X.; Zhu, Y.; Hou, D.; Fu, B.; Li, W.; Guan, H.; Sinsky, E.; Kolczynski, W.; Xue, X.; Luo, Y.; et al. The Development of the NCEP Global Ensemble Forecast System Version 12. Weather Forecast. 2022, 37, 1069–1084. [Google Scholar] [CrossRef]
- Qian, Y.; Yang, Z.; Feng, Z.; Liu, Y.; Gustafson, W.I.; Berg, L.K.; Huang, M.; Yang, B.; Ma, H.-Y. Neglecting Irrigation Contributes to the Simulated Summertime Warm-and-Dry Bias in the Central United States. Npj Clim. Atmos. Sci. 2020, 3, 1–10. [Google Scholar] [CrossRef]
- Capps, S.; Qu, X. Sampling Global Ensemble Members for Operational Downscaling in Forecasting Weather Events (Patent Pending). 2024. [Google Scholar]
- Liu, Y.; Weisberg, R.H. A Review of Self-Organizing Map Applications in Meteorology and Oceanography. In Self Organizing Maps—Applications and Novel Algorithm Design; IntechOpen: London, UK, 2011. [Google Scholar] [CrossRef]
- Skific, N.; Francis, J. Self-Organizing Maps: A Powerful Tool for the Atmospheric Sciences. In Applications of Self-Organizing Maps; Johnsson, M., Ed.; InTechOpen: London, UK, 2012. [Google Scholar] [CrossRef]
- Wilks, D.S. Principal Component (EOF) Analysis. In International Geophysics; Wilks, D.S., Ed.; Statistical Methods in the Atmospheric Sciences; Academic Press: Cambridge, MA, USA, 2011; Volume 100, pp. 519–562. [Google Scholar] [CrossRef]
- Cao, Y.; Fovell, R.G. Downslope Windstorms of San Diego County. Part I: A Case Study. Mon. Weather Rev. 2016, 144, 529–552. [Google Scholar] [CrossRef]
- Cao, Y.; Fovell, R.G. Downslope Windstorms of San Diego County. Part II: Physics Ensemble Analyses and Gust Forecasting. Weather Forecast. 2018, 33, 539–559. [Google Scholar] [CrossRef]
- Srock, A.F.; Charney, J.J.; Potter, B.E.; Goodrick, S.L. The Hot-Dry-Windy Index: A New Fire Weather Index. Atmosphere 2018, 9, 279. [Google Scholar] [CrossRef]
- California Department of Forestry and Fire Protection (CAL FIRE). Incidents. Available online: https://www.fire.ca.gov/incidents (accessed on 10 July 2024).
- Hua, W.; Dong, X.; Liu, Q.; Zhou, L.; Chen, H.; Sun, S. High-Resolution WRF Simulation of Extreme Heat Events in Eastern China: Large Sensitivity to Land Surface Schemes. Front. Earth Sci. 2021, 9. [Google Scholar] [CrossRef]
- Molteni, F.; Buizza, R.; Palmer, T.N.; Petroliagis, T. The ECMWF Ensemble Prediction System: Methodology and Validation. Q. J. R. Meteorol. Soc. 1996, 122, 73–119. [Google Scholar] [CrossRef]
- Dujardin, J.; Lehning, M. Wind-Topo: Downscaling near-Surface Wind Fields to High-Resolution Topography in Highly Complex Terrain with Deep Learning. Q. J. R. Meteorol. Soc. 2022, 148, 1368–1388. [Google Scholar] [CrossRef]
Experiment ID | WRF Version | Grid Spacing (km) | Irrigation | Gravity Wave Drag | Description |
---|---|---|---|---|---|
C41 | 4.1.2 | 2.0 | No | No | POMMS v3 Control |
C45 | 4.5.2 | 2.0 | No | No | POMMS v4 Control |
IRR | 4.5.2 | 2.0 | Yes | No | Triggered irrigation |
F45 | 4.5.2 | 2.0 | No | Option 1 (outermost two grids) | Final POMMS v4 configuration |
F1P5 | 4.5.2 | 1.5 | No | Option 1 (outermost two grids) | Final POMMS v4 configuration (1.5 km grid) |
F1P0 | 4.5.2 | 1.0 | No | Option 1 (outermost two grids) | Final POMMS v4 configuration (1.0 km grid) |
FGM | 4.5.2 | 2.0 | No | Option 1 (outermost two grids) | Final POMMS v4 configuration (GEFS initialization, mean value) |
FG25, FG75 | 4.5.2 | 2.0 | No | Option 1 (outermost two grids) | Final POMMS v4 configuration (GEFS initialization, 25th and 75th percentiles) |
Experiment | Outer Grid | Middle Grid | Inner Grid |
---|---|---|---|
All except F1P5, F1P0 | 18 km (270 × 270) | 6 km (316 × 316) | 2 km (397 × 481) |
F1P5 | 22.5 km (150 × 157) | 7.5 km (208 × 229) | 1.5 km (531 × 641) |
F1P0 | 15 km (206 × 217) | 5 km (256 × 289) | 1 km (796 × 961) |
Network | Number Used |
---|---|
ASOS | 44 |
RAWS | 46 |
PG&E mesonet | 1152 |
Case | Description | Classification | WRF Start Time (UTC) | Validation Start (UTC) | Validation Period (h) |
---|---|---|---|---|---|
1 | Intense downslope windstorm | High winds; hot and dry | 2019-10-24 00:00 | 2019-10-25 00:00 | 72 |
2 | Late-season strong offshore wind event | High winds | 2021-01-17 00:00 | 2021-01-18 00:00 | 48 |
3 | Dixie Fire in northern Sierra Nevada | Hot and dry | 2021-07-11 12:00 | 2021-07-12 12:00 | 48 |
4 | Heat wave and Mosquito Fire (northern Sierra Nevada) | Hot and dry | 2022-09-04 00:00 | 2022-09-05 00:00 | 72 |
5 | Northwesterly wind event in Central and Southern California | High winds | 2023-02-19 12:00 | 2023-02-20 12:00 | 48 |
6 | Late winter storm | High winds; heavy precipitation | 2023-03-19 12:00 | 2023-03-20 12:00 | 48 |
Wind Speed (All Speeds; m s−1) | Wind Speed (Speeds ≥ 5 m s−1) | Wind Speed (Speeds ≥ 10 m s−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Experiment | N | RMSE | Bias | Correlation | N | RMSE | Bias | N | RMSE | Bias |
C41 | 324,769 | 2.04 | 0.39 | 0.48 | 63,663 | 3.96 | −0.37 | 8406 | 6.81 | −3.40 |
C45 | 324,769 | 1.99 | 0.32 | 0.55 | 65,346 | 3.91 | −0.05 | 9118 | 6.44 | −2.27 |
IRR | 324,769 | 1.98 | 0.30 | 0.56 | 64,781 | 3.92 | −0.08 | 9226 | 6.41 | −2.18 |
F45 | 324,769 | 1.96 | 0.28 | 0.57 | 64,669 | 3.94 | −0.05 | 9517 | 6.34 | −1.91 |
F1P5 | 324,769 | 1.92 | 0.27 | 0.60 | 64,110 | 3.83 | −0.05 | 9306 | 6.18 | −1.95 |
F1P0 | 324,769 | 1.91 | 0.29 | 0.61 | 65,071 | 3.80 | 0.10 | 9709 | 6.02 | −1.53 |
FGM | 324,769 | 1.80 | 0.24 | 0.65 | 60,424 | 3.57 | −0.54 | 7744 | 6.20 | −3.87 |
FG25 | 324,769 | 1.81 | −0.13 | 0.62 | 54,469 | 3.87 | −1.46 | 7280 | 6.82 | −5.12 |
FG75 | 324,769 | 1.92 | 0.60 | 0.65 | 69,885 | 3.58 | 0.47 | 9225 | 5.83 | −1.82 |
Temperature (°C) | Vapor Pressure Deficit (hPa) | |||||||
---|---|---|---|---|---|---|---|---|
Experiment | N | RMSE | Bias | Correlation | N | RMSE | Bias | Correlation |
C41 | 328,497 | 3.40 | 0.40 | 0.88 | 328,490 | 6.59 | 2.98 | 0.82 |
C45 | 328,497 | 3.50 | 1.24 | 0.89 | 328,490 | 7.38 | 4.46 | 0.84 |
IRR | 328,497 | 3.43 | 1.12 | 0.89 | 328,490 | 6.98 | 4.01 | 0.84 |
F45 | 328,497 | 3.34 | 1.11 | 0.89 | 328,490 | 6.83 | 3.90 | 0.85 |
F1P5 | 328,497 | 3.28 | 1.04 | 0.89 | 328,490 | 6.72 | 3.71 | 0.85 |
F1P0 | 328,497 | 3.13 | 0.98 | 0.90 | 328,490 | 6.44 | 3.54 | 0.86 |
FGM | 328,497 | 3.23 | 1.07 | 0.90 | 328,490 | 6.43 | 3.51 | 0.86 |
FG25 | 328,497 | 3.15 | 0.60 | 0.90 | 328,490 | 5.95 | 2.54 | 0.86 |
FG75 | 328,497 | 3.42 | 1.54 | 0.89 | 328,490 | 7.10 | 4.44 | 0.85 |
Case | Temperature | Vapor Pressure Deficit | All Wind Speeds | Winds ≥ 5 m s−1 | Winds ≥ 10 m s−1 |
---|---|---|---|---|---|
1 | 42,762 | 42,758 | 41,869 | 7860 | 1386 |
2 | 38,248 | 38,248 | 37,975 | 19,405 | 4002 |
3 | 51,990 | 51,989 | 51,381 | 5896 | 408 |
4 | 88,078 | 88,077 | 81,071 | 4920 | 58 |
5 | 53,280 | 53,279 | 52,725 | 15,939 | 2197 |
6 | 54,139 | 54,139 | 53,748 | 10,649 | 1466 |
All | 328,497 | 328,490 | 324,769 | 64,669 | 9517 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carpenter, R.L., Jr.; Gowan, T.A.; Lillo, S.P.; Strenfel, S.J.; Eiserloh, A.J., Jr.; Duffey, E.J.; Qu, X.; Capps, S.B.; Liu, R.; Zhuang, W. Improving a WRF-Based High-Impact Weather Forecast System for a Northern California Power Utility. Atmosphere 2024, 15, 1244. https://doi.org/10.3390/atmos15101244
Carpenter RL Jr., Gowan TA, Lillo SP, Strenfel SJ, Eiserloh AJ Jr., Duffey EJ, Qu X, Capps SB, Liu R, Zhuang W. Improving a WRF-Based High-Impact Weather Forecast System for a Northern California Power Utility. Atmosphere. 2024; 15(10):1244. https://doi.org/10.3390/atmos15101244
Chicago/Turabian StyleCarpenter, Richard L., Jr., Taylor A. Gowan, Samuel P. Lillo, Scott J. Strenfel, Arthur. J. Eiserloh, Jr., Evan J. Duffey, Xin Qu, Scott B. Capps, Rui Liu, and Wei Zhuang. 2024. "Improving a WRF-Based High-Impact Weather Forecast System for a Northern California Power Utility" Atmosphere 15, no. 10: 1244. https://doi.org/10.3390/atmos15101244
APA StyleCarpenter, R. L., Jr., Gowan, T. A., Lillo, S. P., Strenfel, S. J., Eiserloh, A. J., Jr., Duffey, E. J., Qu, X., Capps, S. B., Liu, R., & Zhuang, W. (2024). Improving a WRF-Based High-Impact Weather Forecast System for a Northern California Power Utility. Atmosphere, 15(10), 1244. https://doi.org/10.3390/atmos15101244