Seasonal–Diurnal Distribution of Lightning over Bulgaria and the Black Sea and Its Relationship with Sea Surface Temperature
Abstract
:1. Introduction
2. Data and Methodology
3. Results
3.1. Seasonal, Monthly and Diurnal Variation of Lightning over Bulgaria and Black Sea
3.2. Relationship between Lightning Activity and Sea-Surface Temperature (SST) of the Black Sea in Autumn
4. Conclusions and Discussion
- The maximum flash density over Bulgaria and the Black Sea is in the summer, with the peak in Bulgaria observed in June and the peak over the Black Sea in July.
- In winter, spring and summer the flash density over Bulgaria (land) is higher than over the Black Sea, while in autumn it is the opposite.
- Over land (Bulgaria), 92% of the total number of lightning occur in May, June, July, and August, and over the Black Sea, 90% of the total number of lightning is registered in June, July, August, and September.
- In spring, flash density over Bulgaria is higher than over the Black Sea during all time intervals, except for the night interval (2100–2400 UTC).
- In summer and winter, lightning activity is higher over the Black Sea than over Bulgaria during the night and morning hours. However, between 0900 and 1800 UTC, lightning is predominantly more frequent over land. It should be noted that in winter, flash density is three orders of magnitude smaller than in summer.
- In autumn, flash density is higher over the Black Sea than over land in most of the considered time intervals, except for the afternoon hours between 1200 and 1500 UTC, when it is higher over land. From 1500 UTC to 1800 UTC, flash density values are equal over both regions.
- The seasonal–diurnal maximum of flash density over the Black Sea occurs at (0900–1200) UTC in winter, at (1200–1500) UTC in spring, and at (0600–0900) UTC during summer and autumn. However, over Bulgaria, the maximum lightning activity occurs during the same time interval, (1200–1500) UTC, across all four seasons.
- The mean and median sea surface temperature (SST) over the Black Sea in autumn are higher when lightning occurs compared to when it is absent. This difference is more pronounced during the night intervals.
- For the investigated night intervals, as the sea surface temperature increases, the mean values of flash frequency also increase (linear correlation coefficients for night intervals are very high R = 0.99 and R = 0.92). In contrast, this trend is less pronounced during the daytime hours.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jelić, D.; Telišman Prtenjak, M.; Malečić, B.; Belušić Vozila, A.; Megyeri, O.A.; Renko, T. A New Approach for the Analysis of Deep Convective Events: Thunderstorm Intensity Index. Atmosphere 2021, 12, 908. [Google Scholar] [CrossRef]
- Sun, J.; Xiao, Y.; Li, Y.; Du, M.; Fu, Z.; Leng, L.; Cai, R.; Wu, H. Lightning activity and microphysical structure characteristics during the convective cell mergers in an extreme mesoscale convective system. Atmos. Res. 2024, 301, 107266. [Google Scholar] [CrossRef]
- Shi, Z.; Hu, J.; Tan, Y.; Guo, X.; Wang, H.; Guan, X.; Wu, Z. Significant influence of aerosol on cloud-to-ground lightning in the Sichuan Basin. Atmos. Res. 2022, 278, 106330. [Google Scholar] [CrossRef]
- Qie, X.; Yair, Y.; Di, S.; Huang, Z.; Jianget, R. Lightning response to temperature and aerosols. Environ. Res. Lett. 2024, 19, 083003. [Google Scholar] [CrossRef]
- Matsangouras, T.; Nastos, P.; Kapsomenakis, J. Cloud-to-ground lightning activity over Greece: Spatio-temporal analysis and impacts. Atmos. Res. 2016, 169, 485–496. [Google Scholar] [CrossRef]
- Changnon, S.A. Temporal and Spatial Relations between Hail and Lightning. J. Appl. Meteorol. Climatol. 1992, 31, 587–604. [Google Scholar] [CrossRef]
- Iordanidou, V.; Koutroulis, A.; Tsanis, I. Investigating the relationship of lightning activity and rainfall: A case study for Crete Island. Atmos. Res. 2016, 172–173, 16–27. [Google Scholar] [CrossRef]
- Yusop, N.; Ahmad, M.R.; Ching, T.S.; Baharin, S.A.S.; Esa, M.R.M.; Sidik, M.A.B. Correlation analysis between lightning flashes and rainfall rate during a flash flood thunderstorm. Ind. J. Electr. Eng. Comp. Sci. 2022, 28, 1322–1329. [Google Scholar] [CrossRef]
- Romps, D.M.; Charn, A.B.; Holzworth, R.H.; Lawrence, W.E.; Molinari, J.; Vollaro, D. CAPE times P explains lightning over land but not the land-ocean contrast. Geophys. Res. Lett. 2018, 45, 12623–12630. [Google Scholar] [CrossRef]
- Mahmoudian, A.; Gharaylou, M.; Holzworth, R. Detail study of time evolution of three thunderstorm events in Tehran area using observations and numerical simulations for lightning nowcasting. Nat. Hazards 2021, 109, 1481–1508. [Google Scholar] [CrossRef]
- Christian, H.; Blakeslee, R.; Boccippio, D.; Boeck, W.; Buechler, D.; Driscoll, K.; Goodman, S.; Hall, J.; Koshak, W.; Mach, D.; et al. Global Frequency and Distribution of Lightning as Observed from Space by the Optical Transient Detector. J. Geophys. Res. 2003, 108, 4005. [Google Scholar] [CrossRef]
- Liu, C.; Zipser, A. Diurnal cycles of precipitation, clouds, and lightning in the tropics from 9 years of TRMM observations. Geophys. Res. Lett. 2008, 35, L04819. [Google Scholar] [CrossRef]
- Virts, K.; Wallace, J.M.; Hutchins, M.L.; Holzworth, R.H. Highlights of a new ground-based hourly global lightning climatology. Bull. Am. Meteorol. 2013, 94, 1381–1391. [Google Scholar]
- Cecil, D.J.; Buechler, D.; Blakeslee, R.J. Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmos. Res. 2014, 136, 404–414. [Google Scholar] [CrossRef]
- Rivas Soriano, L.; De Pablo, F.; Tomas, C. Ten-year study of cloudto-ground lightning activity in the Iberian Peninsula. J. Atmos. Sol.—Terr. Phys. 2005, 67, 1632–1639. [Google Scholar] [CrossRef]
- Kotroni, V.; Lagouvardos, K. Lightning occurrence in relation with elevation, terrain slope, and vegetation cover in the Mediterranean. J. Geophys. Res. 2008, 113, D21118. [Google Scholar] [CrossRef]
- Bourscheidt, V.; Pinto Junior, O.; Naccarato, K.P.; Pinto, I.R.C.A. The influence of topography on the cloud-to-ground lightning density in South Brazil. Atmos. Res. 2009, 91, 508–513. [Google Scholar] [CrossRef]
- Goswami, B.; Mukhopadhyay, P.; Mahanta, R.; Goswami, B.N. Multiscale interaction with topography and extreme rainfall events in the northeast Indian region. J. Geophys. Res. 2010, 115, D12114. [Google Scholar] [CrossRef]
- Galanaki, V.; Vassiliki, K.; Konstantinos, L.; Athanassios, A. Aten-year analysis of lightning activity over the Eastern Mediterranean. Atmos. Res. 2015, 166, 213–222. [Google Scholar] [CrossRef]
- Tsenova, B.D.; Gospodinov, I. Temporal and Spatial Distribution of Lightning Activity over Bulgaria during the Period 2012–2021 Based on ATDnet Lightning Data. Climate 2020, 10, 184. [Google Scholar] [CrossRef]
- Mazarakis, N.; Kotroni, V.; Lagouvardos, K.; Argiriou, A. Storms and lightning activity in Greece during the warm periods of 2003–2006. J. Appl. Meteorol. Climatol. 2008, 47, 3089–3098. [Google Scholar] [CrossRef]
- Altaratz, O.; Levin, Z.; Yair, Y.; Ziv, B. Lightning activity over land and sea on the eastern coast of the Mediterranean. Mon. Weather Rev. 2003, 131, 2060–2070. [Google Scholar] [CrossRef]
- Petrova, S.; Mitzeva, R.; Kotroni, V. Summer-time lightning activity and its relation with precipitation: Diurnal variation over maritime, coastal and continental areas. Atmos. Res. 2014, 135, 388–396. [Google Scholar] [CrossRef]
- Kikuchi, K.; Wang, B. Diurnal precipitation regimes in the global tropics. J. Clim. 2008, 21, 2680–2696. [Google Scholar] [CrossRef]
- De Pablo, F.; Rivas Soriano, L. Relationship between cloud to ground lightning flashes over the Iberian Peninsula and sea surface temperature. Q. J. R. Meteorol. Soc. 2002, 128, 173–183. [Google Scholar] [CrossRef]
- Virts, K.S.; Wallace, J.M.; Hutchins, M.L.; Holzworth, R.H. Seasonal Lightning Variability over the Gulf Stream and the Gulf of Mexico. J. Atmos. Sci. 2015, 72, 2657–2665. [Google Scholar] [CrossRef]
- Tinmaker, I.; Kaushar, A.; Beig, G. Relationship between lightning activity over peninsular India and sea surface temperature. J. Appl. Meteorol. Climatol. 2010, 49, 828–835. [Google Scholar] [CrossRef]
- Kotroni, V.; Lagouvardos, K. Lightning in the Mediterranean and its relation with sea-surface temperature. Environ. Res. Letters. 2016, 11, 034006. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Pe, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Price, C. Thunderstorms, Lightning and Climate Change. In Lightning: Principles, Instruments and Applications; Price, C., Betz, H., Schumann, U., Laroche, P., Eds.; Springer: Amsterdam, The Netherlands, 2009; pp. 521–535. [Google Scholar]
- Marinova, T.; Malcheva, K.; Bocheva, L.; Trifonova, L. Climate profile of Bulgaria in the period 1988–2016 and brief climatic assessment of 2017. Bulg. J. Meteorol. Hydrol. 2017, 22, 2–15. [Google Scholar]
- Bocheva, L.; Malcheva, K. Climatological assessment of extreme 24-h precipitation in Bulgaria during the period 1931–2019. In Proceedings of the 20th International Multidisciplinary Scientific Geo Conference Proceedings SGEM 2020, Albena, Bulgaria, 18–24 August 2020; Volume 20, pp. 357–364. [Google Scholar]
- Malcheva, K.; Bocheva, L.; Chervenkov, H. Spatio-Temporal Variation of Extreme Heat Events in Southeastern Europe. Atmosphere 2022, 13, 1186. [Google Scholar] [CrossRef]
- Bocheva, L.; Malcheva, K.; Chervenkov, H.; Georgieva, V.; Kazandjiev, V.; Rankova, M.; Bozhilova, E.; Ivanov, M.; Damyanova, E.; Galabov, V.; et al. Climate Variation and Climate Change Projection for Bulgaria; Bolid Ins Polygraphy: Sofia, Bulgaria, 2024; pp. 4–28. ISBN 978-954-394-408-8. [Google Scholar]
- Bocheva, L.; Marinova, T. Recent trends of thunderstorms over Bulgaria–climatological analysis. J. Int. Sci. Publ. 2016, 10, 136–144. [Google Scholar]
- Mulet, S.; Nardelli, B.B.; Good, S.; Pisano, A.; Greiner, E.; Monier, M.; Autret, E.; Axell, L.; Boberg, F.; Ciliberti, S.; et al. Ocean temperature and salinity, in von Schuckmann Copernicus Marine Service Ocean State Report. J. Oper. Oceanogr. 2018, 11 (Suppl. S1), S1–S142. [Google Scholar] [CrossRef]
- Betz, H.D.; Schmidt, K.; Laroche, P.; Blanchet, P.; Oettinger, W.P.; Defer, E.; Dziewit, Z.; Konarski, J. LINET-An international lightning detection network in Europe. Atmos. Res. 2009, 91, 564–573. [Google Scholar] [CrossRef]
- Lagouvardos, K.; Kotroni, V.; Betz, H.-D.; Schmidt, K. A comparison of lightning data provided by ZEUS and LINET networks over Western Europe. Nat. Hazards Earth Syst. Sci. 2009, 9, 1713–1717. [Google Scholar] [CrossRef]
- Price, C.; Yair, Y.; Mugnai, A.; Lagouvardos, K.; Llasat, M.C.; Michaelides, S.; Dayan, U.; Dietrich, S.; Galanti, E.; Garrote, L.; et al. The FLASH Project: Using lightning data to better understand and predict flash floods. Environ. Sci. Policy. 2011, 14, 898–911. [Google Scholar] [CrossRef]
- Price, C.; Yair, Y.; Mugnai, A.; Lagouvardos, K.; Llasat, M.C.; Michaelides, S.; Dayan, U.; Dietrich, S.; Galanti, E.; Garrote, L.; et al. Using lightning data to better understand and predict flash floods in the Mediterranean. Surv. Geophys. 2011, 32, 733–751. [Google Scholar] [CrossRef]
- Copernicus Climate Change Service. ERA5 Hourly Data on Single Levels from 1940 to Present; Copernicus Climate Change Service (C3S) Climate Data Store (CDS); European Union: Brussels, Belgium, 2023. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels from 1940 to Present; Copernicus Climate Change Service (C3S) Climate Data Store (CDS); European Union: Brussels, Belgium, 2018. [Google Scholar] [CrossRef]
- Blakeslee, R.J.; Mach, D.M.; Bateman, M.G.; Bailey, J.C. Seasonal variations in the lightning diurnal cycle and implications for the global electric circuit. Atmos. Res. 2024, 135–136, 228–243. [Google Scholar] [CrossRef]
- Anderson, G.; Klugmann, D. A European lightning density analysis using 5 years of ATDnet data. Nat. Hazards Earth Syst. Sci. 2014, 14, 815–829. [Google Scholar] [CrossRef]
- Price, C.; Federmesser, B. Lightning-rainfall relationships in Mediterranean winter thunderstorms. Geophys. Res. Lett. 2006, 33, L07813. [Google Scholar] [CrossRef]
- Yamamotu, K.; Nakashima, T.; Sumi, S.; Ametani, A. About 100 years survey of the surface temperatures of Japan sea and lightning days along the coast. In Proceedings of the 33rd International Conference on Lightning Protection (ICLP), Estoril, Portugal, 25–30 September 2016. [Google Scholar] [CrossRef]
- Noyelle, R.; Ulbrich, U.; Becker, N.; Meredith, E.P. Assessing the impact of sea surface temperatures on a simulated medicane using ensemble simulations. Nat. Hazards Earth Syst. Sci. 2019, 19, 941–955. [Google Scholar] [CrossRef]
- Miglietta, M.; Moscatello, A.; Conte, D.; Mannarini, G.; Lacorata, G.; Rotunno, R. Numerical analysis of a Mediterranean ‘hurricane’ over south-eastern Italy: Sensitivity experiments to sea surface temperature. Atmos. Res. 2011, 101, 412–426. [Google Scholar] [CrossRef]
- Varlas, G.; Pytharoulis, I.; Steeneveld, G.; Katsafados, P.; Papadopoulos, A. Investigating the impact of sea surface temperature on the development of the Mediterranean tropical-like cyclone “Ianos” in 2020. Atmos. Res. 2023, 291, 106827. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrova, S.; Mitzeva, R.; Kotroni, V.; Peneva, E. Seasonal–Diurnal Distribution of Lightning over Bulgaria and the Black Sea and Its Relationship with Sea Surface Temperature. Atmosphere 2024, 15, 1233. https://doi.org/10.3390/atmos15101233
Petrova S, Mitzeva R, Kotroni V, Peneva E. Seasonal–Diurnal Distribution of Lightning over Bulgaria and the Black Sea and Its Relationship with Sea Surface Temperature. Atmosphere. 2024; 15(10):1233. https://doi.org/10.3390/atmos15101233
Chicago/Turabian StylePetrova, Savka, Rumjana Mitzeva, Vassiliki Kotroni, and Elisaveta Peneva. 2024. "Seasonal–Diurnal Distribution of Lightning over Bulgaria and the Black Sea and Its Relationship with Sea Surface Temperature" Atmosphere 15, no. 10: 1233. https://doi.org/10.3390/atmos15101233
APA StylePetrova, S., Mitzeva, R., Kotroni, V., & Peneva, E. (2024). Seasonal–Diurnal Distribution of Lightning over Bulgaria and the Black Sea and Its Relationship with Sea Surface Temperature. Atmosphere, 15(10), 1233. https://doi.org/10.3390/atmos15101233