Implications of Traditional Cooking on Air Quality and Female Health: An In-Depth Analysis of Particulate Matter, Carbon Monoxide, and Carbon Dioxide Exposure in a Rural Community
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Particulate Matter Distribution
3.2. CO Levels
3.3. CO2 Levels
3.4. Perception of Indoor Air Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Vliet, E.D.S.; Asante, K.; Jack, D.W.; Kinney, P.L.; Whyatt, R.M.; Chillrud, S.N.; Owusu-Agyei, S. Personal exposures to fine particulate matter and black carbon in households cooking with biomass fuels in rural Ghana. Environ. Res. 2013, 127, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, A.; Abera, A.; Malmqvist, E.; Isaxon, C. Characterization of fine particulate matter from indoor cooking with solid biomass fuels. Indoor Air 2022, 32, e13143. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Medrano, M.; Ghilardi, A.; Masera, O. Fuelwood use patterns in Rural Mexico: A critique to the conventional energy transition model. Hist. Agrar. 2019, 77, 81–104. [Google Scholar] [CrossRef]
- Zhang, J.; Smith, K.R. Household air pollution from coal and biomass fuels in China: Measurements, health impacts, and interventions. Environ. Health Perspect. 2007, 115, 848–855. [Google Scholar] [CrossRef]
- Awopeju, O.F.; Nemery, B.; Afolabi, O.T.; Poels, K.; Vanoirbeek, J.; Obaseki, D.O.; Adewole, O.O.; Lawin, H.A.; Vollmer, W.; Erhabor, G.E. Biomass smoke exposure as an occupational risk: Cross-sectional study of respiratory health of women working as street cooks in Nigeria. Occup. Environ. Med. 2017, 74, 737–744. [Google Scholar] [CrossRef]
- Nakora, N.; Byamugisha, D.; Birungi, G. Indoor air quality in rural Southwestern Uganda: Particulate matter, heavy metals and carbon monoxide in kitchens using charcoal fuel in Mbarara Municipality. SN Appl. Sci. 2020, 2, 2037. [Google Scholar] [CrossRef]
- Carazo-Fernández, L.; Fernández-Alvarez, R.; González-Barcala, F.J.; Rodríguez-Portal, J.A. Contaminación del aire interior y su impacto en la patología respiratoria. Arch. Bronconeumol. 2013, 49, 22–27. [Google Scholar] [CrossRef]
- Apte, K.; Salvi, S. Household air pollution and its effects on health. F1000Research 2016, 5, 2593. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liu, N.; Tang, H.; Gao, X.; Zhang, Y.; Kan, H.; Deng, F.; Zhao, B.; Zeng, X.; Sun, Y.; et al. Health effects of exposure to sulfur dioxide, nitrogen dioxide, ozone, and carbon monoxide between 1980 and 2019: A systematic review and meta-analysis. Indoor Air 2022, 32, e13170. [Google Scholar] [CrossRef]
- Balmes, J.R. Indoor biomass burning and health consequences. In Air Pollution and Health Effects; Nadadur, S., Hollingsworth, J., Eds.; Springer: London, UK, 2015; pp. 381–402. [Google Scholar] [CrossRef]
- Carmo-Moreira, M.A.; Barbosa, M.A.; Jardim, J.A.; Queiroz, M.C.C.A.M.; Inácio, L.U. Chronic obstructive pulmonary disease in women exposed to wood stove smoke. Rev. Assoc. Médica Bras. (Engl. Ed.) 2013, 59, 607–613. [Google Scholar] [CrossRef]
- Belkin, H.E. Environmental human health issues related to indoor air pollution from domestic biomass use in rural China: A review. In Environmental Geochemistry: Site Characterization, Data Análisis, Case Histories, and Associated Health Issues; De Vivo, B., Belkin, H.E., Lima, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 657–679. [Google Scholar] [CrossRef]
- Adah, A.J.; Daniel, T.; Akpaso, D.U. Estimation of indoor air pollutants and health implications due to biomass burning in rural household kitchens in Jos, Plateau State, Nigeria. Environ. Sci. Proc. 2023, 27, 29. [Google Scholar] [CrossRef]
- Raju, S.; Siddharthan, T.; McCormack, M.C. Indoor air pollution and respiratory health. Clin. Chest Med. 2020, 41, 825–843. [Google Scholar] [CrossRef] [PubMed]
- Salthammer, T. Carbon monoxide as an indicator of indoor air quality. Environ. Sci. Atmos. 2024, 4, 291–305. [Google Scholar] [CrossRef]
- Bartington, S.E.; Bakolis, I.; Devakumar, D.; Kurmi, O.P.; Gulliver, J.; Chaube, G.; Ayres, J.G. Patterns of domestic exposure to carbon monoxide and particulate matter in households using biomass fuel in Janakpur, Nepal. Environ. Pollut. 2017, 220, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Shan, B.; Peng, X.; Chang, H.; Cui, L. An urgent health problem of indoor air pollution: Results from a 15-years carbon monoxide poisoning observed study in Jinan City. Sci. Rep. 2023, 13, 1619. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, D.; Mondal, N.K.; Datta, J.K. Indoor pollution from solid biomass fuel and rural health damage: A micro-environmental study in rural area of Burdwan, West Bengal. Int. J. Sustain. Built Environ. 2014, 3, 262–271. [Google Scholar] [CrossRef]
- Medgyesi, D.N.; Holmes, H.A.; Angermann, J.E. Investigation of acute pulmonary deficits associated with biomass fuel cookstove emissions in rural Bangladesh. Int. J. Environ. Res. Public Health 2017, 14, 641. [Google Scholar] [CrossRef]
- Sukhsohale, N.; Narlawar, U.; Phatak, M. Indoor air pollution from biomass combustion and its adverse health effects in central India: An exposure-response study. Indian J. Community Med. 2013, 38, 162–167. [Google Scholar] [CrossRef]
- Barría, P.R.M. Indoor Air Pollution by Particulate Matter from Wood Fuel: An Unresolved Problem. Environ. Pollut. Clim. Chang. 2016, 1, 1–3. [Google Scholar] [CrossRef]
- Chowdhury, M.; Ghosh, S.; Padhy, P.K. Effects of indoor air pollution on tribal community in rural India and health risk assessment due to domestic biomass burning: A realistic approach using the lung deposition model. Environ. Sci. Pollut. Res. 2022, 29, 59606–59618. [Google Scholar] [CrossRef]
- Geng, X.; Bai, L. Characteristics of particulate matter and polycyclic aromatic hydrocarbon pollution generated during kitchen cooking and health risk assessment. Indoor Built Environ. 2024, 33, 722–740. [Google Scholar] [CrossRef]
- Maynard, R.L. Health effects of indoor air pollution. In Indoor Air Pollution; Harrison, R.M., Hester, R.E., Eds.; The Royal Society of Chemistry: London, UK, 2019; Volume 48, pp. 196–218. [Google Scholar]
- Luo, Z.; Shen, G. Household air pollution in rural area. In Handbook of Indoor Air Quality; Zhang, Y., Hopke, P.K., Mandin, C., Eds.; Springer: Singapore, 2022; pp. 2125–2143. [Google Scholar] [CrossRef]
- Lee, A.; Kinney, P.; Chillrud, S.; Jack, D. A systematic review of innate immunomodulatory effects of household air pollution secondary to the burning of biomass fuels. Ann. Glob. Health 2015, 81, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, V.B.; Meshram, P.; Raj, S. Impact of indoor air pollution exposure from traditional stoves on lung functions in adult women of a rural Indian district. J. Air Pollut. Health 2024, 9, 15–28. [Google Scholar] [CrossRef]
- Clark, M.L.; Peel, J.L.; Balakrishnan, K.; Breysse, P.N.; Chillrud, S.N.; Naeher, L.P.; Rodes, C.E.; Vette, A.F.; Balbus, J.M. Health and household air pollution from solid fuel use: The need for improved exposure assessment. Environ. Health Perspect. 2013, 121, 1120–1128. [Google Scholar] [CrossRef] [PubMed]
- Hosgood, H.D.; Lan, Q. Indoor air pollution attributed to solid fuel use for heating and cooking and cancer risk. Encycl. Environ. Health 2011, 3, 198–200. [Google Scholar] [CrossRef]
- International Energy Agency. A Visión for Clean Cooking Access for All: World Energy Outlook Special Report; IEA Publications: Paris, France, 2023; p. 86. [Google Scholar]
- Vadrevu, K.P.; Ohara, T.; Justice, C. Biomass Burning in South and Southeast Asia: Impacts on the Biosphere, 1st ed.; CRC Press: Boca Raton, FL, USA, 2021; Volume 2, p. 342. [Google Scholar] [CrossRef]
- Rajkumar, S.; Clark, M.L.; Young, B.N.; Benka-Coker, M.L.; Bachand, A.M.; Brook, R.D.; Nelson, T.L.; Volckens, J.; Reynolds, S.J.; L’Orange, C.; et al. Exposure to household air pollution from biomass-burning cookstoves and HbA1c and diabetic status among Honduran women. Indoor Air 2018, 28, 768–776. [Google Scholar] [CrossRef]
- Gioda, A. Residential fuelwood consumption in Brazil: Environmental and social implications. Biomass Bioenergy 2019, 120, 367–375. [Google Scholar] [CrossRef]
- Hallworth, M. Isokinetic Sdampling in Unidirectional Flow; Particle Measuring Systems Inc.: Boulder, CO, USA, 2023; pp. 1–3. [Google Scholar]
- Extech Instruments. Video Particle Counter with Built-In Camara Model Vpc300: User Manual; Flir Systems Inc.: Washington, DC, USA, 2016; pp. 1–16. [Google Scholar]
- ISO 14644-1; Parte 1: Clasificación de la Limpieza del Aire por Concentración de Partículas: Salas Limpias y Entornos Controlados Asociados. ISO: Geneva, Switzerland, 2015; pp. 1–37.
- Tang, R.; Pfrang, C. Indoor particulate matter (PM) from cooking in UK students’ studio flats and associated intervention strategies: Evaluation of cooking methods, PM concentrations and personal exposures using low-cost sensors. Environ. Sci. Atmos. 2023, 3, 537–551. [Google Scholar] [CrossRef]
- Karaca, F.; Guney, M.; Agibayeva, A.; Otesh, N.; Kulimbet, M.; Glushkova, N.; Chang, Y.; Sekikawa, A.; Davletov, K. Indoor air quality in Kazakh households: Evaluating PM2.5 levels generated by cooking activities. Eng. Rep. 2024, 6, e12845. [Google Scholar] [CrossRef]
- Extech Instruments Corporation. Carbon Monoxide Meter: Model CO-10, User’s Guide; Extech Instruments Corporation: Nashua, NH, USA, 2005; pp. 1–4. [Google Scholar]
- Mendell, M.J.; Chen, W.; Ranasinghe, D.R.; Castorina, R.; Kumagai, K. Carbon dioxide guidelines for indoor air quality: A review. J. Expo. Sci. Environ. Epidemiol. 2024, 34, 555–569. [Google Scholar] [CrossRef]
- Wiyeysundera, N.E. Principles of Heating, Ventilation and Air Conditioning with Worked Exampes; World Scientific Publishing Corporation: Hackensack, NJ, USA, 2016; pp. 1–15. [Google Scholar] [CrossRef]
- Farah, N.; Khan, I.A. Awareness about the health impacts of indoor air pollution on rural women in District Faisalabad. J. Glob. Innov. Agric. Soc. Sci. 2015, 3, 90–95. [Google Scholar] [CrossRef]
- Namazzi, G.; Musoke, D.; Matovu, J.K. Awareness of indoor air pollution and factors associated with the use of unclean cooking fuels among residents of Mbalala town, Mukono District, Uganda: A cross-sectional study. Stud. J. Health Res. Afr. 2024, 5, 11. [Google Scholar] [CrossRef]
- ESCAP (Economic and Social Commision for Asia and the Pacific). Universal Access to All: Maximizing the Impact of Clean Cooking; United Nations: ManhatTan, NY, USA, 2021; pp. 1–8. [Google Scholar]
- Quinn, A.K.; Bruce, N.; Puzzolo, E.; Dickinson, K.; Sturke, R.; Jack, D.W.; Mehta, S.; Shankar, A.; Rosenthal, J.P. An analysis of efforts to scale up clean household energy for cooking around the world. Energy Sustain. Dev. 2018, 46, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Akintan, O.; Jewitt, S.; Clifford, M. Culture, tradition, and taboo: Understanding the social shaping of fuel choices and cooking practices in Nigeria. Energy Res. Soc. Sci. 2018, 40, 14–22. [Google Scholar] [CrossRef]
- Brouwer, I.D.; Hoorweg, J.C.; Van Liere, M.J. When households run out of fuel: Responses of rural households to decreasing fuelwood availability, Ntcheu District, Malawi. World Dev. 1997, 25, 255–266. [Google Scholar] [CrossRef]
- Feyisa, B.N.; Feyssa, D.H.; Jiru, D.B. Fuel wood utilization impacts on forest resources of Gechi District, South Western Ethiopia. J. Ecol. Nat. Environ. 2017, 9, 140–150. [Google Scholar] [CrossRef]
- Arnold, J.M.; Köhlin, G.; Persson, R. Woodfuels, livelihoods, and policy interventions: Changing perspectives. World Dev. 2006, 34, 596–611. [Google Scholar] [CrossRef]
- Sharma, D.; Jain, S. Impact of intervention of biomass cookstove technologies and kitchen characteristics on indoor air quality and human exposure in rural settings of India. Environ. Int. 2019, 123, 240–255. [Google Scholar] [CrossRef]
- Das, I.; Lewis, J.J.; Ludolph, R.; Bertram, M.; Adair-Rohani, H.; Jeuland, M. The benefits of action to reduce household air pollution (BAR-HAP) model: A new decision support tool. PLoS ONE 2021, 16, e0245729. [Google Scholar] [CrossRef]
- Pant, K.P. Valuing interventions to reduce indoor air pollution fuelwood, deforestation, and health in Rural Nepal. Pak. Dev. Rev. 2007, 46, 1169–1187. [Google Scholar] [CrossRef]
- World Health Organization. Who Guidelines for Indoor Air Quality: Household Fuel Combustion; World Health Organization: Geneva, Switzerland, 2014; pp. 1–172. [Google Scholar]
- Juarez, M.; Dionicio, C.; Sacuj, N.; Lopez, W.; Miller, A.C.; Rohloff, P. Community-based interventions to reduce child stunting in rural Guatemala: A quality improvement model. Int. J. Environ. Res. Public Health 2021, 18, 773. [Google Scholar] [CrossRef] [PubMed]
- Adane, M.M.; Alene, G.D.; Mereta, S.T. Biomass-fuelled improved cookstove intervention to prevent household air pollution in Northwest Ethiopia: A cluster randomized controlled trial. Environ. Health Prev. Med. 2021, 26, 1. [Google Scholar] [CrossRef] [PubMed]
Size of Particle (µm) | Reference Values | ||
---|---|---|---|
Good | Caution | Danger | |
0.3 | 0–100,000 | 100,001–250,000 | 250,001–500,000 |
0.5 | 0–35,200 | 35,201–87,500 | 87,501–175,000 |
1.0 | 0–8320 | 8321–20,800 | 20,801–41,600 |
2.5 | 0–545 | 546–1362 | 1363–2724 |
5.0 | 0–193 | 194–483 | 484–966 |
10 | 0–68 | 69–170 | 171–340 |
Size of Particle (µm) | Good | Caution | Danger | Row Total |
---|---|---|---|---|
0.3 | 0 | 18 | 30 | 48 |
0.00% | 37.5% | 62.5% | 100% | |
0.5 | 6 | 20 | 22 | 48 |
12.5% | 41.67% | 45.83% | 100% | |
1.0 | 17 | 18 | 13 | 48 |
35.42% | 37.5% | 27.08% | 100% | |
2.5 | 9 | 19 | 20 | 48 |
18.75% | 39.58% | 41.67% | 100% | |
5.0 | 11 | 24 | 13 | 48 |
22.92% | 50% | 27.08% | 100% | |
10 | 10 | 22 | 16 | 48 |
20.83% | 45.83% | 33.33% | 100% |
Concentration (ppm) | Condition and Possible Health Effects |
---|---|
0–1 | Normal ambient level |
9 | Threshold of good indoor air quality |
50 | Limit of eight-hour exposition |
200 | Mild headache, fatigue, nausea, and dizziness |
400 | Strong headache, life-threatening after 3 h of exposition |
800 | Dizziness, nausea, convulsions, death after 2 to 3 h |
1600 | Nausea occurs within 20 min, death might occur within 1 h |
12,800 | Death occurs in 2 to 3 min |
ENERGY SOURCE | Wood * | LP Gas | Electricity | Row Total | |||
37 | 1 | 1 | 39 | ||||
94.97% | 2.56% | 2.56% | 100% | ||||
DAILY EXPOSURE (Hrs) | 4–7 | 8–11 | 12–15 | ||||
10 | 18 | 11 | 39 | ||||
25.64% | 46.15% | 28.21% | 100% | ||||
LONG-TERM EXPOSURE (Yrs) | 1–20 | 21–40 | >40 | ||||
12 | 17 | 10 | 39 | ||||
30.77% | 43.59% | 25.64% | 100% | ||||
INDOOR CONDITION | GOOD | REGULAR | BAD | ||||
8 | 10 | 21 | 39 | ||||
20.51% | 25.64% | 53.85% | 100% | ||||
HEALTH THREATENING | YES | NO | |||||
15 | 24 | 39 | |||||
38.46% | 61.54% | 100% | |||||
SYMPTOMS | OCULAR | RESPIRATORY | HEADACHE | DIZZINESS | NONE | ||
7 | 7 | 4 | 3 | 18 | 39 | ||
18% | 18% | 10% | 8% | 46% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Pedraza, K.; Figueroa-Montaño, A.; Orozco-Medina, M.; Lozano-Kasten, F.; Davydova Belitskaya, V. Implications of Traditional Cooking on Air Quality and Female Health: An In-Depth Analysis of Particulate Matter, Carbon Monoxide, and Carbon Dioxide Exposure in a Rural Community. Atmosphere 2024, 15, 1232. https://doi.org/10.3390/atmos15101232
González-Pedraza K, Figueroa-Montaño A, Orozco-Medina M, Lozano-Kasten F, Davydova Belitskaya V. Implications of Traditional Cooking on Air Quality and Female Health: An In-Depth Analysis of Particulate Matter, Carbon Monoxide, and Carbon Dioxide Exposure in a Rural Community. Atmosphere. 2024; 15(10):1232. https://doi.org/10.3390/atmos15101232
Chicago/Turabian StyleGonzález-Pedraza, Kenia, Arturo Figueroa-Montaño, Martha Orozco-Medina, Felipe Lozano-Kasten, and Valentina Davydova Belitskaya. 2024. "Implications of Traditional Cooking on Air Quality and Female Health: An In-Depth Analysis of Particulate Matter, Carbon Monoxide, and Carbon Dioxide Exposure in a Rural Community" Atmosphere 15, no. 10: 1232. https://doi.org/10.3390/atmos15101232
APA StyleGonzález-Pedraza, K., Figueroa-Montaño, A., Orozco-Medina, M., Lozano-Kasten, F., & Davydova Belitskaya, V. (2024). Implications of Traditional Cooking on Air Quality and Female Health: An In-Depth Analysis of Particulate Matter, Carbon Monoxide, and Carbon Dioxide Exposure in a Rural Community. Atmosphere, 15(10), 1232. https://doi.org/10.3390/atmos15101232