Characterization of the Major Elements and Paleoenvironmental Significance of the Shiyang Profile in the Weinan Basin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Indicator Tests
2.3.1. Grain Size Testing
2.3.2. Magnetic Susceptibility Testing
2.3.3. Major Geochemical Element Testing
3. Results
3.1. Establishment of Loess-Paleosol Sequences in the Shiyang Profile
3.2. Characterization of the Composition of the Macronutrients
3.3. Chemical Weathering Characteristics and Intensity
4. Discussion
4.1. Source Analysis
4.2. The Indicative Significance of Comprehensive Parameters for Climate Evolution
5. Conclusions
- (1)
- The Shiyang profile exhibits a stratigraphic sequence consisting of modern meadow soil (MS), early Holocene loess (L0), middle Holocene paleosol (), Holocene transitional loess (Lx), Holocene paleosol (, Holocene transitional loess (Lt), and Malan loess (L1), arranged from top to bottom.
- (2)
- The primary chemical compositions of the Shiyang loess—paleosol—along with the curves obtained after UCC standardization, closely resemble those of typical wind-formed deposits, with the exception of the Xuancheng wind-dusted loess. This similarity indicates that the Shiyang loess-paleosol has a wind-formed origin;
- (3)
- The Shiyang profile is characterized by primary chemical weathering, and by comparing the intensity of chemical weathering among typical wind-formed deposits in other regions, the sequence from strongest to weakest is as follows: Xuancheng aeolian rea earth > Xifeng red clay, PAAS, and Zhenjiang Xiashu loess > Shiyang paleosol and Luochuan paleosol > Luochuan loess > Shiyang loess > UCC.
- (4)
- The K2O/Al2O3 and TiO2/Al2O3 ratios of Shiyang loess and paleosol are relatively similar to those of Luochuan loess, Luochuan paleosol, Zhenjiang Xiashu loess, and Xifeng red clay, suggesting a common source area. In contrast, the TiO2/Al2O3 and Fe2O3/Al2O3 ratios are significantly lower than those of other wind-formed deposits, indicating that the Shiyang profile may be influenced by different sedimentary materials.
- (5)
- The paleoclimate evolution of the Weinan Shiyang area can be divided into six distinct stages: 11,500 to 8500 a BP, marked by a continuously cold and dry climate; 8500 to 6000 a BP, which corresponds to the middle Holocene warm and humid period, during which the climate transitioned from cold–dry to warm–humid; 6000 to 5000 a BP, a period characterized by rapid and sudden cooling; 5000 to 3100 a BP, characterized by climatic fluctuations between warm-wet and cold-dry conditions, indicating climate change and instability; since 3100 a BP, the climate has once again become cooler.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, D.S.; Lu, Y.T.; Zheng, H.H. Loess and Environment; Beijing Science Press: Beijing, China, 1985. (In Chinese) [Google Scholar]
- Ding, Z.L.; Sun, J.M.; Yang, S.L.; Liu, T.S. Geochemistry of the Pliocene red clay formation in the Chinese Loess Plateau and implications for its origin, source provenance and paleoclimate change. Geochim. Cosmochem. Acta 2001, 65, 901–913. [Google Scholar] [CrossRef]
- Chen, F.H.; Xu, Q.H.; Chen, J.H.; John, H.; Birks, B.; Liu, J.B.; Zhang, S.R.; Jin, L.Y.; An, C.B.; Telford, R.J.; et al. East Asian summer monsoon precipitation variability since the last deglaciation. Sci. Rep. 2015, 5, 11186. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.Z.; Xiang, L.X.; Lei, G.L.; Sun, M.J.; Qiu, M.H.; Storozum, M.; Huang, C.; Munkhbayar, C.; Demberel, O.; Zhang, J.; et al. Sedimentary Pediastrum record of middle-late Holocene temperature change and its impacts onearly human culture in the desert-oasis area of northwestern China. Quat. Sci. Rev. 2021, 265, 107054. [Google Scholar] [CrossRef]
- Porter, S.C.; An, Z.S. Correlation between climate events in the North Atlantic and China during the last glaciation. Nature 1995, 375, 305–308. [Google Scholar] [CrossRef]
- Xiao, J.L.; Porter, S.C.; An, Z.S.; Kumal, H.; Yoshikawa, S. Grain size of quart as an indicator of winter monsoon strength on the loess plateau of central China during the last 13000 yr. Quat. Res. 1995, 43, 22–29. [Google Scholar] [CrossRef]
- Paterson, G.A.; Heslop, D. New methods for unmixing sediment grain size data. Geochemistry 2015, 16, 4494–4506. [Google Scholar] [CrossRef]
- Lu, H.Y.; An, Z.S. Paleoclimatic significance of loess grain size composition in Luochuan. Chin. Sci. Bull. 1997, 42, 66–69, (In Chinese with English abstract). [Google Scholar]
- Kukla, G.; Heller, F.; Liu, X.M.; Chun, X.T.; Sheng, L.T.; An, Z.S. Pleistocene climates in China dated by magnetic-susceptibility. Geology 1988, 16, 811–814. [Google Scholar] [CrossRef]
- Liu, X.M.; Rolph, T.; Bloemendal, J.; Shaw, J.; Liu, T.S. Quantitative estimates of palaeoprecipitation at Xifeng, in the loess plateau of China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1995, 113, 243–248. [Google Scholar] [CrossRef]
- Heller, F.; Shen, C.D.; Beer, J.; Liu, X.M.; Liu, T.S.; Bronger, A.; Suter, M.; Bonani, G. Quantitative estimates of pedogenic ferromagnetic mineral formation in Chinese loess and paleoclimatic implications. Earth Planet. Sci. Lett. 1993, 114, 385–390. [Google Scholar] [CrossRef]
- Guo, Z.T.; Liu, T.S.; Fedoroff, N.; Wei, L.Y.; Ding, Z.L.; Wu, N.Q.; Lu, H.Y.; Jiang, W.Y.; An, Z.S. Climate extremes in Loess of China coupled with the strength of deep-water formation in the North Atlantic. Glob. Planet. Chang. 1998, 18, 113–128. [Google Scholar] [CrossRef]
- Liu, T.S.; Ding, Z.L. Loess and the environment: A review of the loess research in China. Quat. Sci. Rev. 1998, 17, 1037–1050. [Google Scholar]
- Sun, J.M.; Wang, Y.J. Geochemical characteristics of loess and their implications for climate change in the Loess Plateau, China. J. Geophys. Res. Earth Surf. 2016, 121, 743–758. [Google Scholar]
- Hao, Q.Z.; Guo, Z.T.; Qiao, Y.S.; Xu, B.; Oldfield, F. Geochemical evidence for the provenance of middle Pleistocene loess deposits in southern China. Quat. Sci. Rev. 2010, 29, 3317–3326. [Google Scholar] [CrossRef]
- Xie, Y.Y.; Kang, C.G.; Chi, Y.P.; Du, H.R.; Wang, J.X.; Sun, L. The loess deposits in Northeast China: The linkage of loess accumulation and geomorphic-climatic features at the easternmost edge of the Eurasian loess belt. J. Asian Earth Sci. 2019, 181, 103914. [Google Scholar] [CrossRef]
- Xiong, S.F.; Ding, Z.L.; Zhu, Y.J.; Zhou, R.; Lu, H.J. A ~6 Ma chemical weathering history, the grain size dependence of chemical weathering intensity, and its implications for provenance change of the Chinese loess-red clay deposit. Quat. Sci. Rev. 2010, 29, 1911–1922. [Google Scholar] [CrossRef]
- Yang, Y.Z.; Yue, D.P.; Zhao, J.B.; Wang, X.N.; Liu, Y.T.; Liu, R. Characteristics of geochemical weathering of L3 and S3 loess-paleosol section in the Hengshan area, Shaanxi Province. Prog. Geogr. 2023, 42, 364–379, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Liu, A.N.; Pang, J.L.; Huang, C.C.; Wang, L.J. Element distributions of the Zhuanglang Holocene loess-paleosol sequence, Gansu Province and its significance. Geochimica 2006, 35, 453–458, (In Chinese with English abstract). [Google Scholar]
- Shi, T.Y.; Zhang, Y.Y.; Zhai, Q.M.; Li, H.B.; Liu, C.; Zhou, X.W.; Chen, P.; Chen, L. Characteristics of weathering of the loess-paleosol sequences in the Late Glacial Period to Middle Holocene in Linfen Basin and implication for climatic significance. Mar. Geol. Quat. Geol. 2023, 43, 181–191, (In Chinese with English abstract). [Google Scholar]
- Zhang, Y.Z.; Xiao, Q.L.; Zhu, Y.; Wang, N.L.; Wu, M.L.; Li, Y.F.; Li, J.X.; Chen, D.; Huang, X.L.; Wang, S.K.; et al. Char and soot records of the Holocene fire history and its implications for climate-vegetation change and human activities within the Guanzhong Basin, southern Loess Plateau, China. Sci. Total Environ. 2024, 911, 168564. [Google Scholar] [CrossRef]
- Rits, D.S.; Prins, M.A.; Troelstra, S.R.; Van, B.R.T.; Zheng, Y.; Beets, C.J.; Wang, B.; Li, X.Q.; Zhou, J.; Zheng, H.B. Facies analysis of the Middle and Late Quaternary sediment infill of the northern Weihe Basin, central China. J. Quat. Sci. 2016, 31, 152–165. [Google Scholar] [CrossRef]
- Wang, Y.C.; Lu, H.Y.; Wang, K.X.; Wang, Y.; Li, Y.X.; Clemens, S.; Lv, H.Z.; Huang, Z.H.; Wang, H.L.; Hu, X.Z.; et al. Combined high-and low-latitude forcing of East Asian monsoon precipitation variability in the Pliocene warm period. Sci. Adv. 2020, 6, eabc2414. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Lu, H.Y.; Tang, L.Y. Cenozoic palynological records and vegetation evolution in the Weihe Basin, Central China. Quat. Sci. 2018, 38, 1083–1093. [Google Scholar]
- Zhao, L.; Lu, H.Y.; Wang, H.L.; Zhang, H.Y.; Lei, F.; Tang, L.Y. Paleofire dynamics in response to climate change during Late Miocene derived from microcharcoal records in the Weihe Basin. Quat. Int. 2023, 671, 44–51. [Google Scholar] [CrossRef]
- Liu, X.X.; Sun, Y.B.; Vandenberghe, J.; Li, Y.; An, Z.S. Palaeoenvironmental implication of grain-size compositions of terrace deposits on the western Chinese Loess Plateau. Aeolian Res. 2018, 32, 202–209. [Google Scholar] [CrossRef]
- Geiss, C.E.; Zanner, C.W. Sediment magnetic signature of climate in modern loessic soils from the Great Plains. Quat. Int. 2007, 162–163, 97–110. [Google Scholar] [CrossRef]
- Jia, Y.F.; Pang, J.L.; Huang, C.C. PH value′s measurement and research of its palaeoclimatic meaning in the Holocene loess section. J. Shaanxi Norm. Univ. Nat. Sci. Ed. 2004, 32, 102–105. [Google Scholar]
- Li, P.H. The Environment Change and Its Social Impact during Holocene in Fufeng of Zhou Yuan Region; Shaanxi Normal University: Xi’an, China, 2002. [Google Scholar]
- Chen, J.; Liu, L.W.; Ji, J.F.; Yang, J.D.; Chen, Y.; An, Z.S.; Lu, H.Y. Variations in chemical compositions of the Aelion dust in Chinese Loess Plateau over the past 2.5 Ma and chemical weathering in Asian island. Sci. China Ser. D 2001, 31, 136–145. [Google Scholar]
- Li, X.S.; Han, Z.Y.; Yang, S.Y.; Chen, Y.Y.; Wang, Y.B.; Yang, D.Y. Chemical Weathering Intensity and Element Mi-gration Features of the Xiashu Loess Profile in Zhenjiang. Acta Geogr. Sin. 2007, 62, 1174–1184, (In Chinese with English abstract). [Google Scholar]
- Chen, Y.; Chen, J.; Liu, L.W. Chemical composition and characterization of chemical weathering of late tertiary red clay in Xifeng, Gansu province. J. Geomech. 2001, 7, 167–175, (In Chinese with English abstract). [Google Scholar]
- Li, X.S.; Yang, D.Y.; Lu, H.Y. Oxide-geochemistry features and paleoclimatic record of the aeolian-dust depositional sequence in southern Anhui. Mar. Geol. Quat. Geol. 1999, 19, 75–82, (In Chinese with English abstract). [Google Scholar]
- Taylor, S.R.; McLennan, S.M. The Continental Crust Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks; Blackwell: Oxford, UK, 1985. [Google Scholar]
- Iturri, L.A.; Funk, R.; Sommer, M.; Buschiazzo, D.E. Elemental composition of wind-blown sediments from contrasting textured soils. Aeolian Res. 2021, 48, 100656. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- Nesbitt, H.W. Mobility and Fractionation of Rare Earth Elements during Weathering of a Granodiorite. Nature 1979, 279, 206–210. [Google Scholar] [CrossRef]
- Young, G.M.; Nesbitt, H.W. Paleoclimatology and provenance of the glaciogenic Gowganda Formation (Paleoproterozoic), Ontario, Canada: A chemostratigraphic approach. GSA Bull. 1999, 111, 264–274. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Markovics, G. Chemical Processes Affecting Alkalis and Alkaline Earths during Continental Weathering. Geochim. Cosmochim. Acta 1980, 44, 1659–1666. [Google Scholar] [CrossRef]
- Sun, J.M. Provence of loess material and formation of loess deposits on the Chinese Loess Plateau. Earth Planet. Sci. Lett. 2002, 203, 845–859. [Google Scholar] [CrossRef]
- Sheldon, N.D. Abrupt chemical weathering increases across the Permian-Triassic boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 231, 315–321. [Google Scholar] [CrossRef]
- Guo, Y.Q.; Huang, C.C.; Pang, J.L.; Zhou, Y.L.; Zha, X.C.; Mao, P.N. Reconstruction paleoflood hydrologyusing slackwater flow depth method in the Yanhe River valley, middle YellowRiver Basin, China. J. Hydrol. 2017, 544, 156–171. [Google Scholar] [CrossRef]
- Li, X.G.; Huang, C.C. Holocene palaeoflood events recorded by slackwater deposits along the Jin-shan Gorges of the middle Yellow River, China. Quat. Int. 2017, 453, 85–95. [Google Scholar] [CrossRef]
- Zhang, W.X.; Shi, Z.T.; Zhang, H.C.; Ming, Q.Z.; Su, H.; Liu, Y. Geochemical characteristics and environmental significance of the loess-paleosol sequence in the westerly area of China. Quat. Sci. 2011, 31, 812–821, (In Chinese with English abstract). [Google Scholar]
- Hu, M.J.; Yang, A.L.; Zhang, W.L. Environmental Evolution since the Middle-Late Holocene in the Maqu Plateau Reflected by Constant Element Oxides Content and Ratios. J. Desert Res. 2015, 35, 313–321, (In Chinese with English abstract). [Google Scholar]
- Chen, Y.M.; Shu, Q.; Zhang, M.H. Environmental evolution information recorded in the Xiashu loess (250–100 ka) in Nanjing, China. Geol. Sci. Technol. Inf. 2014, 33, 55–59. [Google Scholar]
- Wu, L.; Wang, X.Y.; Mo, D.W.; Zhou, K.S.; Guan, H.C.; Zhu, C. Elemental geochemistry of the Lingjiatan site in Hanshan, east Chaohu Lake Basin. J. Stratigr. 2015, 39, 443–453, (In Chinese with English abstract). [Google Scholar]
- Zheng, Y.H.; Kang, S.G.; Li, J.H.; Yu, S.Y.; Lan, M.W.; Wang, J.Y. A sedimentary lipid biomarker record of Holocene temperature variations and drought events in northern China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2024, 654, 112468. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, Y.Z.; Wang, N.L.; Li, S.H.; Wu, M.L.; Li, Y.F.; Li, J.X.; Pang, J.L.; Jin, Y.; Chen, D.; et al. Weathering and pedogenesis of the Holocene aeolian loess-paleosol sections in the Guanzhong Basin on the Chinese Loess Plateau. J. Asian Earth Sci. 2024, 276, 1367–9120. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, Z.C.; Tang, Y.; Li, H.; Yang, B.; Li, F.R.; Zhao, W.W.; Sun, J.H.; Chen, J.H.; Li, Q.; et al. Peatland initiation and carbon accumulation in China over the last 50,000 years. Earth-Sci. Rev. 2014, 128, 139–146. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, J.W.; Cheng, B.; Zhu, H.N.; Lin, J.X. Holocene pollen record from Lake Gahai, NE Tibetan Plateau and its implications for quantitative reconstruction of regional precipitation. Quat. Sci. Rev. 2024, 326, 108504. [Google Scholar] [CrossRef]
- An, Z.; Colman, S.M.; Zhou, W.J.; Li, X.Q.; Brown, E.T.; Jull, A.J.T.; Cai, Y.J.; Huang, Y.S.; Lu, X.F.; Chang, H.; et al. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 Ka. Sci. Rep. 2012, 2, 619. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.C.; Pang, J.L.; Huan, P.A. An early Holocene erosion phase on the loess tableland in the southern Loess Plateau of China. Geomorphology 2002, 43, 209–218. [Google Scholar] [CrossRef]
- Huang, C.C.; Pang, J.L.; Huang, P.; Hou, C.H.; Han, Y.P. Holocene climatic events on the loess tableland in western Guanzhong Basin, China. Arid Land Geogr. 2002, 25, 10–15. [Google Scholar]
- Huang, C.C.; Pang, J.L.; Huang, P.; Hou, C.H.; Han, Y.P. High-resolution studies of the oldest cultivated soils in the southern Loess Plateau of China. Catena 2002, 47, 29–42. [Google Scholar] [CrossRef]
- Wang, H.S.; Huang, C.C.; Zhou, Y.L.; Pang, J.L.; Zha, X.C.; Gu, H.L. OSL Dating of the Palaeoflood Events in the Middle Reaches of the Weihe River. Acta Sedimentol. Sin. 2012, 30, 346–355, (In Chinese with English abstract). [Google Scholar]
- Zha, X.C.; Huang, C.C.; Pang, J.L. Holocene Extreme Floods and Environmental Change of Qishuihe River in Western Guanzhong Basin. Acta Geogr. Sin. 2007, 3, 291–300, (In Chinese with English abstract). [Google Scholar]
- Zhang, M.L. A 6000-year high-resolution climatic record from a stalagmite in Xiangshui Cave, Guilin, China. Holocene 2004, 14, 697–702. [Google Scholar] [CrossRef]
- Bian, H.Y.; Pang, J.L.; Huang, C.C.; Zhou, Y.L. Geochemical characterization of loess-paleosol sequences: Comparison between the upper reaches of the Hanjiang and Weihe river valleys, China. J. Geogr. Sci. 2017, 27, 95–108. [Google Scholar] [CrossRef]
Depth/(m) | Stratum | Stratigraphic Characterization |
---|---|---|
0–0.6 | 1 | Grayish-yellow sub-sandy soil, modern till layer, loose structure, modern wormholes, well-developed root system, clear signs of human activity, high porosity, and more homogeneous texture |
0.6–1.2 | 2 | Gray-yellow loess layer, subclay; dense, hard structure with multiple layers of horizontally developed laminae with abundant mycorrhizal bodies and modern punching holes; roots are rare |
1.2–2.2 | 3 | Dark yellow paleo-soil layer, clayey, dense, and homogeneous structure with abundant development of mycorrhizae |
2.2–2.6 | 4 | Gray-yellow subclay, weakly developed degree of paleo-soil interbedding, agglomerates, looser structure, pore development |
2.6–3.4 | 5 | Dark gray and black clayey, sub-clayey soil, dense and hard texture, with a large number of snails and other animal fossils in between |
3.4–3.6 | 6 | Light yellow loam, fine powdery sandy, loose structure, no fungus bodies, few modern roots |
3.6–5.0 | 7 | Pale yellow loam, fine chalky sandy, structurally homogeneous, loose, and numerous modern wormholes present |
Sample Location | SiO2 | Al2O3 | TiO2 | Fe2O3 | CaO | MgO | K2O | Na2O | MnO | P2O5 | CIA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SYP | Max | 66 | 16 | 1 | 55 | 8.00 | 3 | 3 | 2 | 0 | 00 | 70 |
Min | 51 | 12 | 1 | 3 | 4 | 2 | 2 | 1 | 0 | 0 | 58 | |
Avg | 60 | 13 | 1 | 4 | 6 | 2 | 3 | 2 | 0 | 0 | 62 | |
SYL | Max | 64 | 15 | 1 | 5 | 1 | 3 | 3 | 3 | 2 | 0 | 67 |
Min | 52 | 11 | 1 | 3 | 1 | 2 | 2 | 2 | 1 | 0 | 60 | |
Avg | 55 | 12 | 1 | 3 | 10 | 2 | 2 | 2 | 0 | 0 | 61 | |
LCP [30] | Avg | 65.18 | 14.79 | 0.75 | 5.12 | 0.83 | 2.21 | 3.15 | 1.41 | 0.08 | 0.11 | 67.36 |
LCL [30] | Avg | 66.40 | 14.20 | 0.73 | 4.81 | 1.02 | 2.29 | 3.01 | 1.66 | 0.07 | 0.15 | 63.73 |
ZJL [31] | Avg | 68.07 | 13.32 | 0.81 | 5.3 | 1.00 | 1.61 | 2.35 | 0.92 | 0.09 | 0.18 | 70.45 |
XF [32] | Avg | 63.75 | 15.05 | 0.76 | 5.28 | 0.90 | 2.89 | 3.00 | 1.16 | 0.08 | 0.15 | 70.04 |
XC [33] | Avg | 68.77 | 13.71 | 1.06 | 6.52 | 0.11 | 0.54 | 1.38 | 0.14 | 0.04 | 0.06 | 87.55 |
UCC [34] | Avg | 66.00 | 15.20 | 0.50 | 5.00 | 4.20 | 2.20 | 3.40 | 3.90 | 0.06 | 0.50 | 47.92 |
PASS [34] | Avg | 62.80 | 18.90 | 0.16 | 7.22 | 1.30 | 2.20 | 3.70 | 1.20 | 0.11 | 1.00 | 70.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, J.; Dong, Q.; Li, C.; Wang, P.; Yang, Z.; Chen, H. Characterization of the Major Elements and Paleoenvironmental Significance of the Shiyang Profile in the Weinan Basin, China. Atmosphere 2024, 15, 1227. https://doi.org/10.3390/atmos15101227
Cao J, Dong Q, Li C, Wang P, Yang Z, Chen H. Characterization of the Major Elements and Paleoenvironmental Significance of the Shiyang Profile in the Weinan Basin, China. Atmosphere. 2024; 15(10):1227. https://doi.org/10.3390/atmos15101227
Chicago/Turabian StyleCao, Jing, Qiuyao Dong, Chengxiang Li, Pan Wang, Zhenjing Yang, and Hongyun Chen. 2024. "Characterization of the Major Elements and Paleoenvironmental Significance of the Shiyang Profile in the Weinan Basin, China" Atmosphere 15, no. 10: 1227. https://doi.org/10.3390/atmos15101227
APA StyleCao, J., Dong, Q., Li, C., Wang, P., Yang, Z., & Chen, H. (2024). Characterization of the Major Elements and Paleoenvironmental Significance of the Shiyang Profile in the Weinan Basin, China. Atmosphere, 15(10), 1227. https://doi.org/10.3390/atmos15101227