Relationship between Area Changes of Key Lakes and Evapotranspiration in Qinghai Province
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data and Methodology
2.2.1. The Data of Remote Sensing Image
2.2.2. Lake Area Data for Evaluation
2.2.3. Reanalysis ET
2.3. Main Methods of Research
2.3.1. Mann–Kendall (M–K) Method
2.3.2. Wavelet Coherence Analysis Method
2.3.3. Lake Surface Area Extraction Method
3. Results and Discussion
3.1. Evaluation of Observation Data and Satellite Data
3.2. Temporal Variation Characteristics of Lake Area and ET
3.2.1. Qinghai Lake
3.2.2. Hara Lake
3.2.3. Eling Lake
3.2.4. Gyaring Lake
3.2.5. Ulan Ula Lake
3.3. The Response Relationship between Lake Surface Area and Regional ET in Key Lakes of Qinghai Province
3.3.1. Qinghai Lake
3.3.2. Hara Lake
3.3.3. Eling Lake
3.3.4. Gyaring Lake
3.3.5. Ulan Ula Lake
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Gao, J.; Wang, Y.; Jin, L. Remote Sensing Measurement of Lake Changes on the Qinghai-Tibet Plateau. J. Mt. Sci. 2023, 41, 798. (In Chinese) [Google Scholar]
- Yu, H.; Wang, T. Application Research on Estimating Water Storage of Plateau Lakes Using Remote Sensing. Xinjiang Geol. 2024, 42, 170–173. (In Chinese) [Google Scholar]
- Miao, Q.; Liu, C.; Tan, X.; Liu, Z.; Gao, Y. Eutrophication assessment of nansi lake, China through remote sensing technology. In Proceedings of the 2009 ETP International Conference on Future Computer and Communication, Wuhan, China, 6–7 June 2009. [Google Scholar]
- Yan, L.; Zheng, M. Influence of climate change on saline lakes of the Tibet Plateau, 1973–2010. Geomorphology 2015, 246, 68–78. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, Y.; Zhao, H. Temporal and Spatial Variation Dataset of Water Storage in Major Lakes of Qinghai Province (2018–2022). China Sci. Data (Chin. Engl. Online Ed.) 2024, 9, 319–332. (In Chinese) [Google Scholar]
- Hao, J.; Li, J.; Lian, Z.; Ni, M.; Zhang, Y.; Zhao, W.; Xin, R. Analysis of Area Change Patterns and Influencing Factors of Lakes on the Qinghai-Tibet Plateau. Hydrology 2024, 44, 112–118. (In Chinese) [Google Scholar]
- Zhao, X.; Wang, H.; Liu, L.; Zhang, Y.; Liu, J.; Qu, T.; Tian, H.; Lu, Y. A Method for Extracting Lake Water Using ViTenc-UNet: Taking Typical Lakes on the Qinghai-Tibet Plateau as Examples. Remote Sens. 2023, 15, 4047. [Google Scholar] [CrossRef]
- Tian, B.; Li, Z.; Zhang, M.; Huang, L.; Qiu, Y.; Li, Z.; Tang, P. Mapping thermokarst lakes on the Qinghai–Tibet Plateau using nonlocal active contours in Chinese GaoFen-2 multispectral imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1687–1700. [Google Scholar] [CrossRef]
- Li, X.; Zhang, D.; Jiang, C.; Zhao, Y.; Li, H.; Lu, D.; Qin, K.; Chen, D.; Liu, Y.; Sun, Y.; et al. Comparison of lake area extraction algorithms in Qinghai Tibet plateau leveraging google earth engine and landsat-9 data. Remote Sens. 2022, 14, 4612. [Google Scholar] [CrossRef]
- Sha, T.; Yao, X.; Wang, Y.; Tian, Z. A Quick Detection of Lake Area Changes and Hazard Assessment in the Qinghai–Tibet Plateau Based on GEE: A Case Study of Tuosu Lake. Front. Earth Sci. 2022, 10, 934033. [Google Scholar] [CrossRef]
- Wan, W.; Xiao, P.; Feng, X.; Li, H.; Ma, R.; Duan, H.; Zhao, L. Monitoring lake changes of Qinghai-Tibetan Plateau over the past 30 years using satellite remote sensing data. Chin. Sci. Bull. 2014, 59, 1021–1035. [Google Scholar] [CrossRef]
- Ding, L.; Qin, Z.; Mao, K. Research on the Window Algorithm Based on MODIS Image Data and Its Parameter Determination. Remote Sens. Technol. Appl. 2005, 2, 284–289. (In Chinese) [Google Scholar]
- Ding, L.; Wu, H.; Wang, C.; Qin, Z.; Zhang, Q. Rapid Identification and Mapping of Lake Water Body Information from MODIS Images. Mar. Surv. 2006, 6, 31–34. (In Chinese) [Google Scholar]
- Ding, L.; Wu, H.; Wang, C.; Qin, Z.; Zhang, Q. Study on Water Body Extraction from MODIS Remote Sensing Images Based on Spectral Relationship. Surv. Spat. Geogr. Inf. 2006, 6, 25–27. (In Chinese) [Google Scholar]
- Wu, S.; Zhang, Q. Research on Water Body Extraction Methods and Models Based on MODIS Remote Sensing Data. Comput. Digit. Eng. 2005, 7, 1–4. (In Chinese) [Google Scholar]
- McCullough, I.M.; Loftin, C.S.; Sader, S.A. High-frequency remote monitoring of large lakes with MODIS 500 m imagery. Remote Sens. Environ. 2012, 124, 234–241. [Google Scholar] [CrossRef]
- Hu, C.; Lee, Z.; Ma, R.; Yu, K.; Li, D.; Shang, S. Moderate resolution imaging spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China. J. Geophys. Res. Ocean. 2010, 115. [Google Scholar] [CrossRef]
- Liu, C.; Shi, J.; Liu, X.; Shi, Z.; Zhu, J. Subpixel mapping of surface water in the Tibetan Plateau with MODIS data. Remote Sens. 2020, 12, 1154. [Google Scholar] [CrossRef]
- Wang, X.; Gao, F.; Ma, M. Overview of Global Civil Land Imaging Satellites. Remote Sens. Technol. Appl. 2006, 6, 607–611. (In Chinese) [Google Scholar]
- Ma, M.; Wang, X.; Veroustraete, F.; Dong, L. Change in area of Ebinur Lake during the 1998–2005 period. Int. J. Remote Sens. 2007, 28, 5523–5533. [Google Scholar] [CrossRef]
- Ma, M.; Song, Y.; Wang, X. Remote Sensing Dynamic Monitoring of the Ruoqiang Lake Group in Xinjiang from 1973 to 2006. J. Glaciol. Geocryol. 2008, 2, 189–195. (In Chinese) [Google Scholar]
- Li, J.; Li, J.; Huang, S.; Zuo, C. Application of Terra/MODIS Time Series Data in Dynamic Monitoring of Lake Water Area: A Case Study of Dongting Lake Area. J. Nat. Resour. 2009, 24, 923–933. (In Chinese) [Google Scholar]
- Huang, S.; Li, J.; Xu, M. Water surface variations monitoring and flood hazard analysis in Dongting Lake area using long-term Terra/MODIS data time series. Nat. Hazards 2012, 62, 93–100. [Google Scholar] [CrossRef]
- Cao, M.; Mao, K.; Shen, X.; Xu, T.; Yan, Y.; Yuan, Z. Monitoring the spatial and temporal variations in the water surface and floating algal bloom areas in Dongting Lake using a long-term MODIS image time series. Remote Sens. 2020, 12, 3622. [Google Scholar] [CrossRef]
- Bian, D.; Bian, B.; La, B.; Wang, C.; Chen, T. Response of Surface Changes of Selinco Lake in Tibet to Climate Change from 1975 to 2008. Acta Geogr. Sin. 2010, 65, 313–319. (In Chinese) [Google Scholar]
- Du, J.; Bian, D.; Bao, J.; La, B.; Lu, H. Variation Characteristics of Evaporation from Evaporation Pans and Its Influencing Factors in the Northern Tibetan Plateau. Adv. Water Sci. 2008, 19, 786–791. (In Chinese) [Google Scholar]
- El-Asmar, H.M.; Hereher, M.E. Change detection of the coastal zone east of the Nile Delta using remote sensing. Environ. Earth Sci. 2011, 62, 769–777. [Google Scholar] [CrossRef]
- Elnmer, A.; Khadr, M.; Kanae, S.; Tawfik, A. Mapping daily and seasonally ET using remote sensing techniques over the Nile delta. Agric. Water Manag. 2019, 213, 682–692. [Google Scholar] [CrossRef]
- Youssef, Y.M.; Gemail, K.S.; Atia, H.M.; Mahdy, M. Insight into land cover dynamics and water challenges under anthropogenic and climatic changes in the eastern Nile Delta: Inference from remote sensing and GIS data. Sci. Total Environ. 2024, 913, 169690. [Google Scholar] [CrossRef] [PubMed]
- Elagouz, M.H.; Abou-Shleel, S.M.; Belal, A.A. Detection of land use/cover change in Egyptian Nile Delta using remote sensing. Egypt. J. Remote Sens. Space Sci. 2020, 23, 57–62. [Google Scholar] [CrossRef]
- Badreldin, N.; Hatab, A.A.; Lagerkvist, C. Spatiotemporal dynamics of urbanization and cropland in the Nile Delta of Egypt using machine learning and satellite big data: Implications for sustainable development. Environ. Monit. Assess. 2019, 191, 1–23. [Google Scholar] [CrossRef]
- Wang, Y.; Jing, C.; Bai, J.; Li, L.; Chen, X. Characteristics of Water and Carbon Fluxes during the Growing Season in Three Typical Ecosystems of the Arid Central Asia. Chin. J. Plant Ecol. 2014, 38, 795–808. (In Chinese) [Google Scholar]
- Meng, Q.; Gao, Z.; Wu, H.; Gen, J.; Fan, C.; Liu, J. Remote Sensing Monitoring and Driving Force Analysis of Lake Area Changes in Daihai over the Past 30 Years. Anhui Agric. Bull. 2021, 27, 106–108+124. (In Chinese) [Google Scholar]
- Besser, H.; Hamed, Y. Environmental impacts of land management on the sustainability of natural resources in Oriental Erg Tunisia, North Africa. Environ. Dev. Sustain. 2021, 23, 11677–11705. [Google Scholar] [CrossRef]
- Al-Hussein, A.A.M.; Khan, S.; Ncibi, K.; Hamdi, N.; Hamed, Y. Flood analysis using HEC-RAS and HEC-HMS: A case study of Khazir River (Middle East—Northern Iraq). Water 2022, 14, 3779. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Feng, C.; Pang, L.; Pan, X. Analysis of Lake Area Change Patterns and Causes in the Huihe Nature Reserve from 1975 to 2010. J. Hebei Norm. Univ. (Nat. Sci. Ed.) 2015, 39, 173–179. (In Chinese) [Google Scholar]
- Chen, Q.; Wang, S.; Xiang, C.; Liu, H. Analysis of Lake Area Change and Its Climate Response of Aksai Chin Lake Based on GEE. J. Suzhou Univ. Sci. Technol. (Nat. Sci. Ed.) 2023, 40, 43–50. (In Chinese) [Google Scholar]
- Gao, Y.; A, L.; Tan, N.; Ao, R. Analysis of Lake Changes and Influencing Factors on the Mongolian Plateau from 2000 to 2020. Arid. Zone Geogr. 2023, 46, 191–200. (In Chinese) [Google Scholar]
- Dai, X.; Yang, X.; Wang, M.; Gao, Y.; Liu, S.; Zhang, J. The dynamic change of bosten lake area in response to climate in the past 30 years. Water 2019, 12, 4. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, J.; Yu, T.; Li, L. Analysis of Area Changes and Influencing Factors of Major Lakes in Gansu Province over the Past 30 Years. Plateau Meteorol. 2023, 42, 150–162. (In Chinese) [Google Scholar]
- Fu, J.; Wang, W.; Liu, B.; Lu, Y.; Xing, W.; Cao, M.; Zhu, S.; Guan, T.; Wei, J.; Chen, Z. Seasonal divergence of ET sensitivity to vegetation changes—A proportionality-hypothesis-based analytical solution. J. Hydrol. 2023, 617, 129055. [Google Scholar] [CrossRef]
- Policelli, F.; Hubbard, A.; Jung, H.C.; Zaitchik, B.; Ichoku, C. A predictive model for Lake Chad total surface water area using remotely sensed and modeled hydrological and meteorological param and multivariate regression analysis. J. Hydrol. 2019, 268, 1071–1080. [Google Scholar] [CrossRef]
- Zhao, G.; Li, Y.; Zhou, L.; Gao, H. Evaporative water loss of 1.42 million global lakes. Nat. Commun. 2022, 13, 3686. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhang, Y.; Ma, N.; Xu, J.; Zhang, T. Long-term changes in evaporation over Siling Co Lake on the Tibetan Plateau and its impact on recent rapid lake expansion. Atmos. Res. 2019, 216, 141–150. [Google Scholar] [CrossRef]
- Liu, X.; Yu, J.; Wang, P.; Zhang, Y.; Du, C. Lake evaporation in a hyper-arid environment, northwest of China—Measurement and estimation. Water 2016, 8, 527. [Google Scholar] [CrossRef]
- Rong, Y.; Su, H.; Zhang, R.; Duan, Z. Effects of climate variability on evaporation in Dongping Lake, China, during 2003–2010. Adv. Meteorol. 2013, 2013, 789290. [Google Scholar] [CrossRef]
- Hu, Z.; Tan, D.; Wen, X.; Chen, B.; Shen, D. Investigation of dynamic lake changes in Zhuonai Lake–Salt Lake Basin, Hoh Xil, using remote sensing images in response to climate change (1989–2018). J. Water Clim. Chang. 2021, 12, 2199–2216. [Google Scholar] [CrossRef]
- Zhao, G.; Gao, H.; Cai, X. Estimating lake temperature profile and evaporation losses by leveraging MODIS LST data. Remote Sens. Environ. 2020, 251, 112104. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, X.; Zhou, H. Patterns and Causes of Changes in Surface Area and Water Level of Qinghai Lake over the Past Decade. Qinghai Sci. Technol. 2022, 29, 59–62. (In Chinese) [Google Scholar]
- Wang, R.; Liu, B.; Huang, B. Dynamic Changes in the Area of Hara Lake from 1986 to 2019 and Analysis of Its Causes. People’s Pearl River 2021, 42, 20–25+33. (In Chinese) [Google Scholar]
- Qu, Z.; Luo, M.; Zhao, Y.; Yang, S.; Han, L. Spatiotemporal Dynamics of Area and Shoreline Morphology of Large Natural Lakes in the Yellow River Basin. J. Appl. Ecol. 2023, 34, 1102–1108. (In Chinese) [Google Scholar]
- Cao, W.; Li, W.; Fu, S.; Zhao, L.; Wei, D. Characteristics of Water Environment in Regions of Gyaring and Eling Lakes near Waterhead of Yellow River. J. Earth Sci. 2001, 12, 137–141. [Google Scholar]
- Yan, Q.; Liao, J.; Shen, G. Remote Sensing Analysis and Hydrological Model Simulation of Ulan Ula Lake Changes over the Past 40 Years. Land Resour. Remote Sens. 2014, 26, 152–157. (In Chinese) [Google Scholar]
- Muñoz Sabater, J. ERA5-Land monthly averaged data from 1981 to present. Copernic. Clim. Chang. Serv. (C3S) Clim. Data Store (CDS) 2019, 10. [Google Scholar] [CrossRef]
- Foroumandi, E.; Nourani, V.; Sharghi, E. Climate change or regional human impacts? Remote sensing tools, artificial neural networks, and wavelet approaches aim to solve the problem. Hydrol. Res. 2021, 52, 176–195. [Google Scholar] [CrossRef]
- Zhao, W.; Xiong, D.; Wen, F.; Wang, X. Lake area monitoring based on land surface temperature in the Tibetan Plateau from 2000 to 2018. Environ. Res. Lett. 2020, 15, 084033. [Google Scholar] [CrossRef]
- Seka, A.M.; Zhang, J.; Ayele, G.T.; Demeke, Y.G.; Han, J.; Prodhan, F.A. Spatio-temporal analysis of water storage variation and temporal correlations in the East Africa lake basins. J. Hydrol. Reg. Stud. 2022, 41, 101094. [Google Scholar] [CrossRef]
- Tayyab, M.; Zhou, J.; Zeng, X.; Ahmed, I.; Adnan, R. Application of statistical nonparametric tests in dongting lake, China: 1961–2012. In Proceedings of the 2016 IEEE International Conference on Knowledge Engineering and Applications (ICKEA), Singapore, 28–30 September 2016; pp. 197–201. [Google Scholar]
- Nourani, V.; Mehr, A.D.; Azad, N. Trend analysis of hydroclimatological variables in Urmia lake basin using hybrid wavelet Mann–Kendall and Şen tests. Environ. Earth Sci. 2018, 77, 1–18. [Google Scholar] [CrossRef]
- Yu, W.; Fu, A.; Shao, L.; Liu, H.; Yao, X.; Chen, T.; Zhang, H. Characteristics of Climate Change in the Lake Basin Area of Gangcha County. Comput. Mater. Contin. 2022, 73, 364–379. [Google Scholar] [CrossRef]
- Yao, H.; James, A.; McConnell, C.; Turnbull, B. Relative contributions of stream concentration, stream discharge and shoreline load to base cation trends in Red Chalk and Harp lakes, south-central Ontario, Canada. Hydrol. Process. 2016, 30, 858–872. [Google Scholar] [CrossRef]
- Liu, Q.; Hao, Y.; Stebler, E.; Tanaka, N.; Zou, C.B. Impact of plant functional types on coherence between precipitation and soil moisture: A wavelet analysis. Geophys. Res. Lett. 2017, 44, 12197–12207. [Google Scholar] [CrossRef]
- Han, Q.; Zhou, L.; Sun, W.; Wang, G.; Shrestha, S.; Xue, B.; Li, Z. Assessing alterations of water level due to environmental water allocation at multiple temporal scales and its impact on water quality in Baiyangdian Lake, China. Environ. Res. 2022, 212, 113366. [Google Scholar] [CrossRef] [PubMed]
- Amantai, N.; Ding, J. Analysis on the spatio-temporal changes of LST and its influencing factors based on VIC model in the arid region from 1960 to 2017: An example of the Ebinur Lake Watershed, Xinjiang, China. Remote Sens. 2021, 13, 4867. [Google Scholar] [CrossRef]
- Foroumandi, E.; Nourani, V.; Dąbrowska, D.; Kantoush, S.A. Linking spatial–temporal changes of vegetation cover with hydroclimatological variables in terrestrial environments with a focus on the lake Urmia Basin. Land 2022, 11, 115. [Google Scholar] [CrossRef]
- Cengiz, T. Periodic structures of great lakes levels using wavelet analysis. J. Hydrol. Hydromech. 2011, 59, 24–35. [Google Scholar] [CrossRef]
- Nourani, V.; Ghasemzade, M.; Mehr, A.D.; Sharghi, E. Investigating the effect of hydroclimatological variables on Urmia Lake water level using wavelet coherence measure. J. Water Clim. Chang. 2019, 10, 13–29. [Google Scholar] [CrossRef]
- Lei, X.; Gao, L.; Ma, M.; Dang, H.; Gao, J. Spatiotemporal Distribution and Non-stationarity Characteristics of Extreme Precipitation in the Poyang Lake Basin. J. Appl. Ecol. 2021, 32, 3277–3287. (In Chinese) [Google Scholar]
- Zhang, S.; Wang, Y.; Hou, Q.; Dong, X.; Sun, K. Spatiotemporal Variation Characteristics of Drought Index in Qinghai Province and Its Relationship with Climate Indices. Pratacult. Sci. 2015, 32, 1980–1987. (In Chinese) [Google Scholar]
- Ling, X.; Tang, Z.; Gao, J.; Li, C.; Liu, W. Changes in Qinghai Lake Area and Their Interactions with Climatic Factors. Remote Sens. 2023, 16, 129. [Google Scholar] [CrossRef]
- Zhan, S.; Song, C.; Wang, J.; Sheng, Y.; Quan, J. A global assessment of terrestrial evapotranspiration increase due to surface water area change. Earth’s Future 2019, 7, 266–282. [Google Scholar] [CrossRef]
- Nichols, W.D. Regional Ground-Water Evapotranspiration and Ground-Water Budgets, Great Basin, Nevada; US Geological Survey: Reston, VA, USA, 2000. [Google Scholar]
Lake | Latitude | Longitude |
---|---|---|
Qinghai Lake | 36°28′27″ N~37°16′50″ N | 99°34′08″ E~100°54′04″ E |
Hara Lake | 38°09′37″ N~38°09′37″ N | 97°22′38″ E~97°51′33″ E |
Eling Lake | 34°43′41″ N~35°05′02″ N | 97°30′18″ E~97°57′29″ E |
Gyaring Lake | 34°43′41″ N~35°05′02″ N | 96°59′24″ E~97°31′27″ E |
Ulan Ula Lake | 34°39′51″ N~34°55′09″ N | 90°13′55″ E~90°44′42″ E |
Names of Lakes | Indices | Deviation (km2) | RMSE (km2) | Relative Deviation (%) |
---|---|---|---|---|
Qinghai Lake | NDWI | −1.78 | 3.37 | −0.04 |
MNDWI | 2.36 | 3.26 | 0.05 | |
Hara Lake | NDWI | 4.17 | 3.57 | 0.68 |
MNDWI | 7.57 | 6.01 | 1.24 | |
Eling Lake | NDWI | −0.44 | 2.76 | −0.07 |
MNDWI | 2.09 | 2.79 | 0.33 | |
Gyaring Lake | NDWI | 0.82 | 2.70 | 0.16 |
MNDWI | 3.58 | 4.35 | 0.68 | |
Ulan Ula Lake | NDWI | −6.44 | 10.73 | 1.02 |
MNDWI | 4.82 | 6.86 | 0.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, S.; Tang, Z.; Xue, Y.; Wu, X.; Li, C.; Wu, X. Relationship between Area Changes of Key Lakes and Evapotranspiration in Qinghai Province. Atmosphere 2024, 15, 1210. https://doi.org/10.3390/atmos15101210
Meng S, Tang Z, Xue Y, Wu X, Li C, Wu X. Relationship between Area Changes of Key Lakes and Evapotranspiration in Qinghai Province. Atmosphere. 2024; 15(10):1210. https://doi.org/10.3390/atmos15101210
Chicago/Turabian StyleMeng, Suju, Zeyu Tang, Yong Xue, Xiaotian Wu, Chenggang Li, and Xinghuan Wu. 2024. "Relationship between Area Changes of Key Lakes and Evapotranspiration in Qinghai Province" Atmosphere 15, no. 10: 1210. https://doi.org/10.3390/atmos15101210
APA StyleMeng, S., Tang, Z., Xue, Y., Wu, X., Li, C., & Wu, X. (2024). Relationship between Area Changes of Key Lakes and Evapotranspiration in Qinghai Province. Atmosphere, 15(10), 1210. https://doi.org/10.3390/atmos15101210