Comprehensive Air Quality Model with Extensions: Formulation and Evaluation for Ozone and Particulate Matter over the US
Abstract
:1. Introduction
- Flexible domain definitions with two-way grid nesting on a variety of Cartesian map projections or geodetic (latitude/longitude) coordinates;
- Multiple gas phase chemistry mechanism options;
- Multiple comprehensive inorganic and organic aerosol chemistry treatments;
- Probing Tools including source apportionment, sensitivity analysis, process analysis, and adjunct reactive tracer chemistry to address specific user-defined air toxics;
- A sub-grid convective cloud mixing module;
- Surface bi-directional ammonia exchange;
- A surface heterogenous chemistry/reemission model;
- Shared and distributed memory parallelization.
2. Core Model Formulation
2.1. Emissions
2.2. Transport
2.2.1. Advection
2.2.2. Diffusion
2.3. Dry Deposition
Bidirectional Ammonia Scheme
2.4. Sub-Grid Convective Cloud Mixing
2.5. Wet Deposition
2.6. Chemistry
2.6.1. Gas-Phase Photochemistry
- Reaction parameters that contribute most to uncertainty in ozone predictions as determined by Dunker et al. [77];
- Reactions of simpler organic compounds (i.e., methane, ethane, propane, ethene, ethyne, formaldehyde, acetaldehyde, acetone, benzene, and toluene) with oxidants (i.e., OH, NO3, ozone);
- Reactions of NOx, HOx, and Ox.
- Rate constants for thermal reactions, i.e., reactions that occur when atoms and/or molecules collide;
- Stoichiometric coefficients that define product yields for thermal reactions;
- Absorption cross-sections and quantum yields for photolysis reactions, i.e., reactions that occur when molecules absorb sunlight and chemical bonds are broken.
2.6.2. Photolysis Rates
2.6.3. Gas-Phase Chemistry Solvers
2.6.4. Aerosol Chemistry
- Inorganic gas-particle partitioning is determined using ISORROPIA v1.7 [40,41] or EQSAM4clim [42]; ISORROPIA addresses sulfate, nitrate, chloride, ammonium, and sodium, with an update for calcium nitrate on dust particles, while EQSAM addresses the same species and includes the additional cations of magnesium and potassium.
3. Model Application and Evaluation
3.1. Model Performance Evaluation Methodology
3.2. Evaluation for Ozone
3.3. Evaluation for PM2.5
3.3.1. Warm Season
3.3.2. Cool Season
3.4. Ammonia Sensitivity to the Bidirectional Scheme
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics, From Air Pollution to Climate Change; John Wiley and Sons, Inc.: New York, NY, USA, 1998. [Google Scholar]
- Guttikunda, S.K.; Jawahar, P. Atmospheric emissions and pollution from the coal-fired thermal power plants in India. Atmos. Environ. 2014, 92, 449–460. [Google Scholar] [CrossRef]
- Huszar, P.; Bartík, L.; Karlický, J.; Villalba-Pradas, A. Impact of urbanization on fine particulate matter concentrations over central Europe. Atmos. Chem. Phys. 2024, 24, 397–425. [Google Scholar] [CrossRef]
- Basla, B.; Agresti, V.; Balzarini, A.; Giani, P.; Pirovano, G.; Gilardoni, S.; Paglione, M.; Colombi, C.; Belis, C.A.; Poluzzi, V.; et al. Simulations of organic aerosol with CAMx over the Po Valley during the summer season. Atmosphere 2022, 13, 1996. [Google Scholar] [CrossRef]
- Garland, R.M.; Naidoo, M.; Sibiya, B.; Naidoo, S.; Bird, T.; von Gruenewaldt, R.; Liebenberg-Enslin, H.; Nekhwalivhe, M.; Netshandama, J.; Mahlatji, M. Importance and Challenges in Use and Uptake of Air Quality Modelling in Developing Countries: Use of CAMx for Air Quality Management in the City of Johannesburg. In AGU Fall Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2017; Volume 2017, p. A32C-07. [Google Scholar]
- Li, L.; An, J.; Zhou, M.; Qiao, L.; Zhu, S.; Yan, R.; Ooi, C.G.; Wang, H.; Huang, C.; Huang, L.; et al. An integrated source apportionment methodology and its application over the Yangtze River Delta region, China. Environ. Sci. Technol. 2018, 52, 14216–14227. [Google Scholar] [CrossRef]
- Du, X.; Tang, W.; Cheng, M.; Zhang, Z.; Li, Y.; Li, Y.; Meng, F. Modeling of spatial and temporal variations of ozone-NOx-VOC sensitivity based on photochemical indicators in China. J. Environ. Sci. 2022, 114, 454–464. [Google Scholar] [CrossRef]
- EPA. 2017 National Emission Inventory Based Photochemical Modeling for Sector Specific Air Quality Assessments; EPA-454/R-21-005; US Environmental Protection Agency, Office of Air Quality Planning and Standards: Research Triangle Park, NC, USA, 2021. Available online: https://www.epa.gov/system/files/documents/2021-08/epa-454-r-21-005.pdf (accessed on 12 August 2024).
- EPA. Air Quality Modeling Technical Support Document: 2016 CAMx PM2.5 Model Evaluation to Support of EGU Benefits Assessments; US Environmental Protection Agency, Office of Air Quality Planning and Standards: Research Triangle Park, NC, USA, 2022. Available online: https://www.epa.gov/system/files/documents/2023-01/PMmodelperformance_2026fj_NH3Rscale0_Final2.pdf (accessed on 12 August 2024).
- EPA. Air Quality Modeling Final Rule, Technical Support Document: 2015 Ozone NAAQS Good Neighbor Plan; US Environmental Protection Agency, Office of Air Quality Planning and Standards: Research Triangle Park, NC, USA, 2023. Available online: https://www.epa.gov/system/files/documents/2023-03/AQ%20Modeling%20Final%20Rule%20TSD.pdf (accessed on 12 August 2024).
- EPA. Technical Support Document (TSD): Preparation of Emissions Inventories for the 2016v3 North American Emissions Modeling Platform; EPA 454/B-23-002; US Environmental Protection Agency, Office of Air Quality Planning and Standards: Research Triangle Park, NC, USA, 2023. Available online: https://www.epa.gov/system/files/documents/2023-03/2016v3_EmisMod_TSD_January2023_1.pdf (accessed on 12 August 2024).
- EPA. Technical Support Document for EPA’s Updated 2028 Regional Haze Modelling; US Environmental Protection Agency, Office of Air Quality Planning and Standards: Research Triangle Park, NC, USA, 2019. Available online: https://www.epa.gov/sites/default/files/2020-10/documents/updated_2028_regional_haze_modeling-tsd-2019.pdf (accessed on 12 August 2024).
- Gao, Z.; Zhou, X. A review of the CAMx, CMAQ, WRF-Chem and NAQPMS models: Application, evaluation and uncertainty factors. Environ. Pollut. 2024, 343, 123183. [Google Scholar] [CrossRef]
- Shu, Q.; Napelenok, S.L.; Hutzell, W.T.; Baker, K.R.; Henderson, B.H.; Murphy, B.N.; Hogrefe, C. Comparison of ozone formation attribution techniques in the northeastern United States. Geosci. Model Dev. 2023, 16, 2303–2322. [Google Scholar] [CrossRef]
- Itahashi, S.; Yamaji, K.; Chatani, S.; Hisatsune, K.; Saito, S.; Hayami, H. Model Performance Differences in Sulfate Aerosol in Winter over Japan Based on Regional Chemical Transport Models of CMAQ and CAMx. Atmosphere 2018, 9, 488. [Google Scholar] [CrossRef]
- Shimadera, H.; Kojima, T.; Kondo, A.; Inoue, Y. Performance comparison of CMAQ and CAMx for one-year PM2.5 simulation in Japan. Int. J. Environ. Pollut. 2015, 57, 146–161. [Google Scholar] [CrossRef]
- Ramboll. User’s Guide: Comprehensive Air Quality Model with Extensions, Version 7.20. Available online: www.camx.com (accessed on 12 August 2024).
- Arakawa, A.; Lamb, V.R. Computational design of the basic dynamical processes of the UCLA general circulation model. In Methods in Computational Physics; Chang, J., Ed.; Academic Press: Cambridge, MA, USA, 1977; pp. 174–267. [Google Scholar]
- Colella, P.; Woodward, P.R. The Piecewise Parabolic Method (PPM) for Gas-dynamical Simulations. J. Comp. Phys. 1984, 54, 174–201. [Google Scholar] [CrossRef]
- Odman, M.T.; Ingram, C.L. Multiscale Air Quality Simulation Platform (MAQSIP): Source Code Documentation and Validation; Technical Report (ENV-96TR002); MCNC–North Carolina Supercomputing Center: Research Triangle Park, NC, USA, 1996; 83p. [Google Scholar]
- Bott, A. A Positive Definite Advection Scheme Obtained by Nonlinear Renormalization of the Advective Fluxes. Mon. Weather Rev. 1989, 117, 1006–1015. [Google Scholar] [CrossRef]
- Emery, C.; Tai, E.; Yarwood, G.; Morris, R. Investigation into approaches to reduce excessive vertical transport over complex terrain in a regional photochemical grid model. Atmos. Environ. 2011, 45, 7341–7351. [Google Scholar] [CrossRef]
- Pleim, J. A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Met. Clim. 2007, 46, 1383–1395. [Google Scholar] [CrossRef]
- Wesely, M.L. Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmos. Environ. 1989, 23, 1293–1304. [Google Scholar] [CrossRef]
- Zhang, L.; Brook, J.R.; Vet, R. A revised parameterization for gaseous dry deposition in air-quality models. Atmos. Chem. Phys. 2003, 3, 2067–2082. [Google Scholar] [CrossRef]
- Slinn, S.A.; Slinn, W.G.N. Predictions for particle deposition on natural waters. Atmos. Environ. 1980, 24, 1013–1016. [Google Scholar] [CrossRef]
- Zhang, L.; Gong, S.; Padro, J.; Barrie, L. A size-segregated particle dry deposition scheme for an atmospheric aerosol module. Atmos. Environ. 2001, 35, 549–560. [Google Scholar] [CrossRef]
- Zhang, L.; Wright, L.P.; Asman, W.A.H. Bi-directional air-surface exchange of atmospheric ammonia: A review of measurements and a development of a big-leaf model for applications in regional-scale air-quality models. J. Geophys. Res. Atmos. 2010, 115, D20310. [Google Scholar] [CrossRef]
- Emery, C.; Johnson, J.; Rasmussen, D.J.; Hsieh, W.C.; Yarwood, G.; Nielsen-Gammon, J.; Bowman, K.; Zhang, R.; Lin, Y.; Siu, L. Development and Evaluation of an Interactive Sub-Grid Cloud Framework for the CAMx Photochemical Model; Prepared for the Texas Air Quality Research Program; University of Texas at Austin: Austin, TX, USA, 2015; Available online: https://people.tamu.edu/~k-bowman/pdf/AQRP_14-025_final_report_31Jul15.pdf (accessed on 30 August 2024).
- Yarwood, G.; Jung, J.; Whitten, G.Z.; Heo, G.; Mellberg, J.; Estes, E. Updates to the Carbon Bond mechanism for version 6 (CB6). In Proceedings of the 9th Annual CMAS Conference, Chapel Hill, NC, USA, 11–13 October 2010. [Google Scholar]
- Yarwood, G.; Gookyoung, H.; Carter, W.P.L.; Whitten, G.Z. Environmental Chamber Experiments to Evaluate NOx Sinks and Recycling in Atmospheric Chemical Mechanisms; Texas AQRP (Project 10-042); Prepared for the University of Texas at Austin: Austin, TX, USA, 2012. [Google Scholar]
- Yarwood, G.; Sakulyanontvittaya, T.; Nopmongcol, U.; Koo, B. Ozone Depletion by Bromine and Iodine over the Gulf of Mexico; Prepared by Ramboll, Novato, CA for the Texas Commission on Environmental Quality: Austin, TX, USA, 2014. [Google Scholar]
- Yarwood, G.; Shi, Y.; Beardsley, R. Impact of CB6r5 Mechanism Changes on Air Pollutant Modeling in Texas; Prepared for the Texas Commission on Environmental Quality: Austin, TX, USA, 2020. [Google Scholar]
- Hildebrandt Ruiz, L.H.; Yarwood, G. Interactions between Organic Aerosol and NOy: Influence on Oxidant Production; Texas AQRP (Project 12-012); Prepared by Ramboll, Novato, CA for the University of Texas at Austin: Austin, TX, USA, 2013. [Google Scholar]
- Emery, C.; Jung, J.; Koo, B.; Yarwood, G. Improvements to CAMx Snow Cover Treatments and Carbon Bond Chemical Mechanism for Winter Ozone, Utah Department of Environmental Quality; Prepared by Ramboll, Novato, CA for the Division of Air Quality: Salt Lake City, UT, USA, 2015. [Google Scholar]
- Carter, W.P.L. Development of the SAPRC-07 chemical mechanism. Atmos. Environ. 2010, 44, 5324–5335. [Google Scholar] [CrossRef]
- Hutzell, W.T.; Luecken, D.J.; Appel, K.W.; Carter, W.P.L. Interpreting predictions from the SAPRC07 mechanism based on regional and continental simulations. Atmos. Environ. 2012, 46, 417–429. [Google Scholar] [CrossRef]
- Hertel, O.; Berkowics, R.; Christensen, J.; Hov, O. Test of two numerical schemes for use in atmospheric transport-chemistry models. Atmos. Environ. 1993, 27, 2591–2611. [Google Scholar] [CrossRef]
- Byrne, G.D.; Hindmarsh, A.C. Stiff ODE solvers: A review of current and coming attractions. J. Comput. Phys. 1987, 70, 1–62. [Google Scholar] [CrossRef]
- Nenes, A.; Pilinis, C.; Pandis, S.N. ISORROPIA: A new thermodynamic model for multiphase multicomponent inorganic aerosols. Aquat. Geochem. 1998, 4, 123–152. [Google Scholar] [CrossRef]
- Nenes, A.; Pilinis, C.; Pandis, S.N. Continued development and testing of a new thermodynamic aerosol module for urban and regional air quality models. Atmos. Environ. 1999, 33, 1553–1560. [Google Scholar] [CrossRef]
- Metzger, S.; Steil, B.; Abdelkader, M.; Klingmüller, K.; Xu, L.; Penner, J.E.; Fountoukis, C.; Nenes, A.; Lelieveld, J. Aerosol water parameterisation: A single parameter framework. Atmos. Chem. Phys. 2016, 16, 7213–7237. [Google Scholar] [CrossRef]
- Chang, J.S.; Brost, R.A.; Isaksen, I.S.A.; Madronich, S.; Middleton, P.; Stockwell, W.R.; Walcek, C.J. A Three-dimensional Eulerian Acid Deposition Model: Physical Concepts and Formulation. J. Geophys. Res. 1987, 92, 14681–14700. [Google Scholar] [CrossRef]
- Strader, R.; Lurmann, F.; Pandis, S.N. Evaluation of secondary organic aerosol formation in winter. Atmos. Environ. 1999, 33, 4849–4863. [Google Scholar] [CrossRef]
- Koo, B.; Knipping, E.; Yarwood, G. 1.5-dimensional volatility basis set approach for modeling organic aerosol in CAMx and CMAQ. Atmos. Environ. 2014, 95, 158–164. [Google Scholar] [CrossRef]
- Turner, D.B.; Chico, T.; Catalano, A. TUPOS: A Multiple Source Gaussian Dispersion Algorithm Using On-Site Turbulence Data (EPA-600/8-86/010); U.S. Environmental Protection Agency: Research Triangle Park, NC, USA, 1986. Available online: https://cfpub.epa.gov/si/si_public_record_Report.cfm?Lab=ORD&dirEntryID=34599 (accessed on 12 August 2024).
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Model Version 4. NCAR Technical Notes (NCAR/TN-556+STR, March 2019). 2019. Available online: https://n2t.org/ark:/85065/d72r3vrp (accessed on 12 August 2024). [CrossRef]
- Smagorinsky, J. General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weather Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Anthes, R.A.; Warner, T.T. Development of hydrodynamic models suitable for air pollution and other mesometeorological studies. Mon. Weather Rev. 1978, 106, 1045–1078. [Google Scholar] [CrossRef]
- Whaley, C.H.; Makar, P.A.; Shephard, M.W.; Zhang, L.; Zhang, J.; Zheng, Q.; Akingunola, A.; Wentworth, G.R.; Murphy, J.G.; Kharol, S.K.; et al. Contributions of natural and anthropogenic sources to ambient ammonia in the Athabasca Oil Sands and north-western Canada. Atmos. Chem. Phys. 2018, 18, 2011–2034. [Google Scholar] [CrossRef]
- Louis, J.F. A parametric model of vertical eddy fluxes in the atmosphere. Bound. Lay. Meteor. 1979, 17, 187–202. [Google Scholar] [CrossRef]
- Huebert, B.J.; Robert, C.H. The dry deposition of nitric acid to grass. J. Geophys. Res. 1985, 90, 2085–2090. [Google Scholar] [CrossRef]
- Wesely, M.L.; Hicks, B.B. A review of the current status of knowledge on dry deposition. Atmos. Environ. 2000, 34, 2261. [Google Scholar] [CrossRef]
- Kumar, N.; Lurmann, F.W.; Wexler, A.S.; Pandis, S.; Seinfeld, J.H. Development and application of a three dimensional aerosol model. In Proceedings of the A&WMA Specialty Conference on Computing in Environmental Resource Management, Research Triangle Park, NC, USA, 2–4 December 1996. [Google Scholar]
- Sehmel, G.A. Particle and gas deposition, a review. Atmos. Environ. 1980, 14, 983–1011. [Google Scholar] [CrossRef]
- Helmig, D.; Lang, E.K.; Bariteau, L.; Boylan, P.; Fairall, C.W.; Ganzeveld, L.; Hare, J.E.; Hueber, J.; Pallandt, M. Atmospheric-ocean ozone fluxes during the TexAQS 2006, STRATUS 2006, GOMECC 2007, GasEx 2008 and AMMA 2008 Cruises. J. Geophys. Res. 2012, 117, D04305. [Google Scholar] [CrossRef]
- Kain, J.S. The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Alapaty, K.; Herwehe, J.A.; Otte, T.L.; Nolte, C.G.; Bullock, O.R.; Mallard, M.S.; Kain, J.S.; Dudhia, J. Introducing subgrid-scale cloud feedbacks to radiation for regional meteorological and climate modelling. Geophys. Res. Lett. 2012, 39, L24809. [Google Scholar] [CrossRef]
- Herwehe, J.A.; Alapaty, K.; Spero, T.L.; Nolte, C.G. Increasing the credibility of regional climate simulations by introducing subgrid-scale cloud-radiation interactions. J. Geophys. Res. 2014, 119, 5317–5330. [Google Scholar] [CrossRef]
- Bullock, O.R.; Alapaty, K.; Herwehe, J.A.; Kain, J.S. A Dynamically Computed Convective Time Scale for the Kain–Fritsch Convective Parameterization Scheme. Mon. Wea. Rev. 2015, 143, 2105–2120. [Google Scholar] [CrossRef]
- Zheng, Y.; Alapaty, K.; Herwehe, J.A.; Del Genio, A.D.; Niyogi, D. Improving high-resolution weather forecasts using the Weather Research and Forecasting (WRF) model with an updated Kain–Fritsch Scheme. Mon. Weather Rev. 2016, 144, 833–860. [Google Scholar] [CrossRef]
- Scott, B.C. Parameterization of sulfate removal by precipitation. J. Appl. Meteor. 1978, 17, 1375–1389. [Google Scholar] [CrossRef]
- Sauter, D.P.; Wang, P.K. An experimental study of the scavenging of aerosol particles by natural snow crystals. J. Atmos. Sci. 1989, 46, 1650–1655. [Google Scholar] [CrossRef]
- Gery, M.W.; Whitten, G.Z.; Killus, J.P.; Dodge, M.C. A photochemical kinetics mechanism for urban and regional scale computer modelling. J. Geophys. Res. 1989, 94, 925–956. [Google Scholar]
- Sarwar, G.; Luecken, D.; Yarwood, G.; Whitten, G.Z.; Carter, W.P. Impact of an updated carbon bond mechanism on predictions from the CMAQ modeling system: Preliminary assessment. J. Appl. Meteorol. Climatol. 2008, 47, 3–14. [Google Scholar] [CrossRef]
- Yarwood, G.; Jung, J.; Nopmongcol, U.; Emery, C. Improving CAMx Performance in Simulating Ozone Transport from the Gulf of Mexico; Prepared by Ramboll, Novato, CA for the Texas Commission on Environmental Quality: Austin, TX, USA, 2012. [Google Scholar]
- Tanaka, P.L.; Allen, D.T.; McDonald-Buller, E.C.; Chang, S.; Kimura, Y.; Mullins, C.B.; Yarwood, G.; Neece, J.D. Development of a chlorine mechanism for use in the carbon bond IV chemistry model. J. Geophys. Res. Atmos. 2003, 108, 1984–2012. [Google Scholar] [CrossRef]
- Yeh, G.K.; Ziemann, P.J. Alkyl nitrate formation from the reactions of C8–C14 n-alkanes with OH radicals in the presence of NOx: Measured yields with essential corrections for gas–wall partitioning. J. Phys. Chem. 2014, 118, 8797–8806. [Google Scholar] [CrossRef]
- Lee, L.; Wooldridge, P.J.; Gilman, J.B.; Warneke, C.; de Gouw, J.; Cohen, R.C. Low temperatures enhance organic nitrate formation: Evidence from observations in the 2012 Uintah Basin Winter Ozone Study. Atmos. Chem. Phys. 2014, 14, 12441–12454. [Google Scholar] [CrossRef]
- Perring, A.E.; Pusede, S.E.; Cohen, R.C. An observational perspective on the atmospheric impacts of alkyl and multifunctional nitrates on ozone and secondary organic aerosol. Chem. Rev. 2013, 113, 5848–5870. [Google Scholar] [CrossRef]
- Carpenter, L.J.; MacDonald, S.M.; Shaw, M.D.; Kumar, R.; Saunders, R.W.; Parthipan, R.; Wilson, J.; Plane, J.M.C. Atmospheric iodine levels influenced by sea surface emissions of inorganic iodine. Nat. Geosci. 2013, 6, 108–111. [Google Scholar] [CrossRef]
- Lamarque, J.F.; Emmons, L.K.; Hess, P.G.; Kinnison, D.E.; Tilmes, S.; Vitt, F.; Heald, C.L.; Holland, E.A.; Lauritzen, P.H.; Neu, J.; et al. CAM-chem: Description and evaluation of interactive atmospheric chemistry in the Community Earth System Model. Geosci. Model. Dev. 2012, 5, 369–411. [Google Scholar] [CrossRef]
- Jacobs, M.I.; Burke, W.J.; Elrod, M.J. Kinetics of the reactions of isoprene-derived hydroxynitrates: Gas phase epoxide formation and solution phase hydrolysis. Atmos. Chem. Phys. 2014, 14, 8933–8946. [Google Scholar] [CrossRef]
- Fisher, J.A.; Jacob, D.J.; Travis, K.R.; Kim, P.S.; Marais, E.A.; Chan Miller, C.; Yu, K.; Zhu, L.; Yantosca, R.M.; Sulprizio, M.P.; et al. Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and monoterpene-rich atmosphere: Constraints from aircraft (SEAC4RS) and ground-based (SOAS) observations in the Southeast US. Atmos. Chem. Phys. 2016, 16, 5969–5991. [Google Scholar] [CrossRef]
- Rollins, A.W.; Pusede, S.; Wooldridge, P.; Min, K.-E.; Gentner, D.R.; Goldstein, A.H.; Liu, S.; Day, D.A.; Russell, L.M.; Rubitschun, C.L.; et al. Gas/particle partitioning of total alkyl nitrates observed with TD-LIF in Bakersfield. J. Geophys. Res. Atmos. 2013, 118, 6651–6662. [Google Scholar] [CrossRef]
- Burkholder, J.B.; Sander, S.P.; Abbatt, J.P.D.; Barker, J.R.; Cappa, C.; Crounse, J.D.; Dibble, T.S.; Huie, R.E.; Kolb, C.E.; Kurylo, M.J.; et al. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies; Evaluation Number 19; Jet Propulsion Laboratory, National Aeronautics and Space Administration: Pasadena, CA, USA, 2020. Available online: https://jpldataeval.jpl.nasa.gov/pdf/NASA-JPL%20Evaluation%2019-5.pdf (accessed on 21 September 2024).
- Dunker, A.M.; Wilson, G.; Bates, J.T.; Yarwood, G. Chemical sensitivity analysis and uncertainty analysis of ozone production in the Comprehensive Air Quality Model with extensions applied to Eastern Texas. Environ. Sci. Technol. 2020, 54, 5391–5399. [Google Scholar] [CrossRef]
- NCAR. The Tropospheric Visible and Ultraviolet (TUV) Radiation Model. Available online: https://www2.acom.ucar.edu/modeling/tropospheric-ultraviolet-and-visible-tuv-radiation-model (accessed on 12 August 2024).
- Elterman, L. UV, Visible, and IR Attenuation for Altitudes to 50 km, 1968, US Air Force Cambridge Research Laboratory Report, AFCRL 68-0153. Available online: https://apps.dtic.mil/sti/pdfs/AD0671933.pdf (accessed on 12 August 2024).
- Madronich, S. The atmosphere and UV-B radiation at ground level. In Environmental UV Photobiology; Springer: Boston, MA, USA, 1993; pp. 1–39. [Google Scholar]
- Herman, J.R.; Celarier, E.A. Earth surface reflectivity climatology at 340–380 nm from TOMS data. J. Geophys. Res. 1997, 102, 28003–28011. [Google Scholar] [CrossRef]
- Ek, M.B.; Mitchell, K.E.; Lin, Y.; Rogers, E.; Grunmann, P.; Koren, V.; Gayno, G.; Tarpley, J.D. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. 2003, 108, 8851. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, X. Evaluation of snow albedo in land models for weather and climate studies. J. Appl. Met. Clim. 2010, 49, 363–380. [Google Scholar] [CrossRef]
- Livneh, B.; Xia, Y.; Mitchell, K.E.; Ek, M.B. Noah LSM snow model diagnostics and enhancements. J. Hydromet. 2010, 11, 721–738. [Google Scholar] [CrossRef]
- Barlage, M.; Chen, F.; Tewari, M.; Ikeda, K.; Gochis, D.; Dudhia, J.; Rasmussen, R.; Livneh, B.; Ek, M.; Mitchell, K. Noah land surface model modifications to improve snowpack prediction in the Colorado Rocky Mountains. J. Geophys. Res. 2010, 115, D22101. [Google Scholar] [CrossRef]
- Palancar, G.G.; Shetter, R.E.; Hall, S.R.; Toselli, B.M.; Madronich, S. Ultraviolet actinic flux in clear and cloudy atmospheres: Model calculations and aircraft-based measurements. Atmos. Chem. Phys. 2011, 11, 5457–5469. [Google Scholar] [CrossRef]
- Radhakrishnan, K.; Hindmarsh, A.C. Description and use of LSODE, the Livermore Solver for Ordinary Differential Equations; NASA Reference Publication 1327; Lawrence Livermore National Laboratory: Livermore, CA, USA, 1993. [Google Scholar]
- Ibusuki, T.; Takeuchi, K. Sulfur dioxide oxidation by oxygen catalyzed by mixtures of manganese(II) and iron(III) in aqueous solutions at environmental reaction conditions. Atmos. Environ. 1987, 21, 1555–1560. [Google Scholar] [CrossRef]
- Martin, L.R.; Good, T.W. Catalyzed oxidation of sulfur dioxide in solution: The iron-manganese synergism. Atmos. Environ. Part A Gen. Top. 1991, 25, 2395–2399. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Development and application of a new air pollution modeling system—II. Aerosol module structure and design. Atmos. Environ. 1997, 31, 131–144. [Google Scholar] [CrossRef]
- Ortiz-Montalvo, D.L.; Lim, Y.B.; Perri, M.J.; Seitzinger, S.P.; Turpin, B.J. Volatility and yield of glycolaldehyde SOA formed through aqueous photochemistry and droplet evaporation. Aerosol Sci. Technol. 2012, 46, 1002–1014. [Google Scholar] [CrossRef]
- Lim, Y.B.; Tan, Y.; Turpin, B.J. Chemical insights, explicit chemistry, and yields of secondary organic aerosol from OH radical oxidation of methylglyoxal and glyoxal in the aqueous phase. Atmos. Chem. Phys. 2013, 13, 8651–8667. [Google Scholar] [CrossRef]
- Zheng, B.; Zhang, Q.; Zhang, Y.; He, K.B.; Wang, K.; Zheng, G.J.; Duan, F.K.; Ma, Y.L.; Kimoto, T. Heterogeneous chemistry: A mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China. Atmos. Chem. Phys. 2015, 15, 2031–2049. [Google Scholar] [CrossRef]
- Astitha, M.; Spyrou, C.; Kallos, G.; Denier Van der Gon, H.; Visschedijk, A.; Lelieveld, J. Chemical composition change of aerosols along long-range transport paths. In Air Pollution Modelling and Its Application XX; Steyn, D.G., Rao, S.T., Eds.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Zhang, X.; Cappa, C.D.; Jathar, S.H.; McVay, R.C.; Ensberg, J.J.; Kleeman, M.J.; Seinfeld, J.H. Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol. Proc. Natl. Acad. Sci. USA 2014, 111, 5802–5807. [Google Scholar] [CrossRef]
- Hodzic, A.; Kasibhatla, P.S.; Jo, D.S.; Cappa, C.D.; Jimenez, J.L.; Madronich, S.; Park, R.J. Rethinking the global secondary organic aerosol (SOA) budget: Stronger production, faster removal, shorter lifetime. Atmos. Chem. Phys. 2016, 16, 7917–7941. [Google Scholar] [CrossRef]
- Pye, H.O.; Chan, A.W.H.; Barkley, M.P.; Seinfeld, J.H. Global modeling of organic aerosol: The importance of reactive nitrogen (NOx and NO3). Atmos. Chem. Phys. 2010, 10, 11261–11276. [Google Scholar] [CrossRef]
- Pye, H.O.; D’Ambro, E.L.; Lee, B.H.; Schobesberger, S.; Takeuchi, M.; Zhao, Y.; Lopez-Hilfiker, F.; Liu, J.; Shilling, J.E.; Xing, J.; et al. Anthropogenic enhancements to production of highly oxygenated molecules from autoxidation. Proc. Natl. Acad. Sci. USA 2019, 116, 6641–6646. [Google Scholar] [CrossRef]
- Hodzic, A.; Aumont, B.; Knote, C.; Lee-Taylor, J.; Madronich, S.; Tyndall, G. Volatility dependence of Henry’s Law constants of condensable organics: Application to estimate depositional loss of secondary organic aerosols. Geophys. Res. Lett. 2014, 41, 4795–4804. [Google Scholar] [CrossRef]
- Knote, C.; Hodzic, A.; Jimenez, J.L. The effect of dry and wet deposition of condensable vapors on secondary organic aerosols concentrations over the continental US. Atmos. Chem. Phys. 2015, 15, 1–18. [Google Scholar] [CrossRef]
- Henry, K.M.; Donahue, N.M. Photochemical aging of a-pinene secondary organic aerosol: Effects of OH radical sources and photolysis. J. Phys. Chem. A 2012, 116, 5932–5940. [Google Scholar] [CrossRef]
- Malecha, K.T.; Cai, Z.; Nizkorodov, S.A. Photodegradation of secondary organic aerosol material quantified with a quartz crystal microbalance. Environ. Sci. Technol. Lett. 2018, 5, 366–371. [Google Scholar] [CrossRef]
- Donahue, N.M.; Robinson, A.L.; Stanier, C.O.; Pandis, S.N. Coupled partitioning, dilution, and chemical aging of semivolatile organics. Environ. Sci. Technol. 2006, 40, 2635–2643. [Google Scholar] [CrossRef]
- Robinson, A.L.; Donahue, N.M.; Shrivastava, M.K.; Weitkamp, E.A.; Sage, A.M.; Grieshop, A.P.; Lane, T.E.; Pierce, J.R.; Pandis, S.N. Rethinking organic aerosols: Semivolatile emissions and photochemical aging. Science 2007, 315, 1259–1262. [Google Scholar] [CrossRef]
- Donahue, N.M.; Epstein, S.A.; Pandis, S.N.; Robinson, A.L. A two-dimensional volatility basis set: 1. organic-aerosol mixing thermodynamics. Atmos. Chem. Phys. 2011, 11, 3303–3318. [Google Scholar] [CrossRef]
- Donahue, N.M.; Kroll, J.H.; Pandis, S.N.; Robinson, A.L. A two-dimensional volatility basis set—Part 2: Diagnostics of organic-aerosol evolution. Atmos. Chem. Phys. 2012, 12, 615–634. [Google Scholar] [CrossRef]
- Bey, I.; Jacob, D.J.; Yantosca, R.M.; Logan, J.A.; Field, B.; Fiore, A.M.; Li, Q.; Liu, H.; Mickley, L.J.; Schultz, M. Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. J. Geophys. Res. 2001, 106, 23073–23096. [Google Scholar] [CrossRef]
- Karl, T.R.; Koss, W.J. Regional and National Monthly, Seasonal, and Annual Temperature Weighted by Area, 1895–1983; Historical Climatology Series 4-3; National Climatic Data Center: Asheville, NC, USA, 1984; 38p. [Google Scholar]
- Simon, H.; Baker, K.R.; Phillips, S. Compilation and interpretation of photochemical model performance statistics published between 2006 and 2012. Atmos. Environ. 2012, 61, 124–139. [Google Scholar] [CrossRef]
- Emery, C.; Liu, Z.; Russell, A.G.; Odman, M.T.; Yarwood, G.; Kumar, N. Recommendations on statistics and benchmarks to assess photochemical model performance. J. Air Waste Manag. Assoc. 2017, 67, 582–598. [Google Scholar] [CrossRef] [PubMed]
- EPA. Modeling Guidance for Demonstrating Air Quality Goals for Ozone, PM2.5, and Regional Haze; EPA 454/R-18-009; US Environmental Protection Agency, Office of Air Quality Planning and Standards: Research Triangle Park, NC, USA, 2018. Available online: https://www.epa.gov/sites/default/files/2020-10/documents/o3-pm-rh-modeling_guidance-2018.pdf (accessed on 12 August 2024).
- Kelly, J.T.; Koplitz, S.N.; Baker, K.R.; Holder, A.L.; Pye, H.O.T.; Murphy, B.N.; Bash, J.O.; Henderson, B.H.; Possiel, N.C.; Simon, H.; et al. Assessing PM2.5 model performance for the conterminous U.S. with comparison to model performance statistics from 2007–2015. Atmos. Environ. 2019, 214, 116872. [Google Scholar] [CrossRef]
- Appel, K.W.; Napelenok, S.; Hogrefe, C.; Pouliot, G.; Foley, K.M.; Roselle, S.J.; Pleim, J.E.; Bash, J.; Pye, H.O.T.; Heath, N.; et al. Overview and evaluation of the community Multiscale Air quality (CMAQ) modeling system version 5.2. In Air Pollution Modeling and its Application XXV; Mensink, C., Kallos, G., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 69–73. [Google Scholar]
- Zawacki, M.; Baker, K.R.; Phillips, S.; Davidson, K.; Wolfe, P. Mobile source contributions to ambient ozone and particulate matter in 2025. Atmos. Environ. 2018, 188, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Karl, T.; Guenther, A.; Spirig, C.; Hansel, A.; Fall, R. Seasonal variation of biogenic VOC emissions above a mixed hardwood forest in northern Michigan. Geophys. Res. Lett. 2023, 30, 2186. [Google Scholar] [CrossRef]
- Yarwood, G.; Shi, Y.; Beardsley, R. Develop CB7 Chemical Mechanism for CAMx Ozone Modeling; Prepared by Ramboll, Novato, CA for the Texas Commission on Environmental Quality: Austin, TX, USA, 2021. Available online: https://www.tceq.texas.gov/downloads/air-quality/research/reports/photochemical/5822121802020-20210630-ramboll-cb7.pdf (accessed on 30 August 2024).
- Yarwood, G.; Tuite, K. Representing Ozone Formation from Volatile Chemical Products (VCP) in Carbon Bond (CB) Chemical Mechanisms. Atmosphere 2024, 15, 178. [Google Scholar] [CrossRef]
- McDonald, B.C.; de Gouw, J.A.; Gilman, J.B.; Jathar, S.H.; Akherati, A.; Cappa, C.D.; Jimenez, J.L.; Lee-Taylor, J.; Hayes, P.L.; McKeen, S.A.; et al. Volatile chemical products emerging as largest petrochemical source of urban organic emissions. Science 2018, 359, 750–764. [Google Scholar] [CrossRef]
- Goliff, W.S.; Stockwell, W.R.; Lawson, C.V. The regional atmospheric chemistry mechanism, version 2. Atmos. Environ. 2013, 68, 174–185. [Google Scholar] [CrossRef]
- Carter, W.P.L. Documentation of the SAPRC-22 Mechanism. Available online: https://intra.engr.ucr.edu/~carter/SAPRC/22/S22doc.pdf (accessed on 12 August 2024).
- Huang, L.; Wu, Z.; Liu, H.; Yarwood, G.; Huang, D.; Wilson, G.; Chen, H.; Ji, D.; Tao, J.; Han, Z.; et al. An improved framework for efficiently modeling organic aerosol (OA) considering primary OA evaporation and secondary OA formation from VOCs, IVOCs, and SVOCs. Environ. Sci. Atmos. 2024, 4, 1064–1078. [Google Scholar] [CrossRef]
Process | Numerical Treatment | Solver Methods |
---|---|---|
Horizontal advection | Finite difference flux divergence | Piecewise Parabolic Method (PPM) [19,20] Non-linear renormalized integrated flux [21] |
Vertical advection | Finite difference flux divergence | PPM [19,20] Implicit backward Euler (time) centered (space) [22] |
Horizontal diffusion | Finite difference K-theory | Explicit simultaneous 2D solver |
Vertical diffusion | Finite difference K-theory Non-local asymmetric mixing | Implicit backward Euler (time) centered (space) [22] Asymmetric Convective Model, v2 (ACM2) [23] |
Dry deposition | Resistance models for gasses [24,25] Resistance models for aerosols [26,27] Bi-directional ammonia flux [28] | Deposition velocity as surface boundary condition for vertical diffusion |
Sub-grid cloud convection | Entraining/detraining plume model [29] | |
Wet deposition | Scavenging model for gasses and aerosols [1] | |
Gas chemistry | Carbon Bond v6 (CB6) [30,31,32,33,34,35] Statewide Air Pollution Research Center 2007 (SAPRC07) [36,37] | Euler Backward Iterative (EBI) [38] Livermore Solver for Ordinary Differential Equations (LSODE) [39] |
Inorganic aerosol chemistry | ISORROPIA [40,41] Equilibrium Simplified Aerosol Model (EQSAM) [42] | |
Aqueous aerosol chemistry | Regional Acid Deposition Model (RADM-AQ) [43] | |
Organic aerosol chemistry | SOAP [44] 1.5-D Volatility Basis Set (VBS) [45] |
Mechanism | Description |
---|---|
CB6r2h | Carbon Bond v6, Revision 2 [30,31,34] extended to include a full suite of oceanic halogen chemistry [32]. 304 reactions among 115 species. |
CB6r4 | Carbon Bond v6, Revision 4 adds temperature- and pressure-dependent NO2-organic nitrate branching [35], a condensed oceanic iodine mechanism in lieu of full halogen chemistry, and oceanic dimethyl sulfide reactions. 233 reactions among 86 species. |
CB6r5 | Carbon Bond v6, Revision 5 [33] adds updated chemical reaction data for inorganic and simple organic species. 234 reactions among 86 species. |
SAPRC07TC | The Statewide Air Pollution Research Center 2007 mechanism supporting toxics [36,37]. 565 reactions among 117 species |
Species | VOC Precursors | Aerosol Mass Yield 1 | Saturation Concentration ( C*) [µg/m3] at 300 K | Volatility ΔHvap [kJ/mol] | Molecular Weight [g/mol] |
---|---|---|---|---|---|
SOA1/CG1 | Benzene | 0.487/0.248 | 14 | 116 | 150 |
Toluene | 0.663/0.304 | ||||
Xylene | 0.291/0.084 | ||||
IVOA | 0/0.012 | ||||
SOA2/CG2 | Benzene | 0.167/0.391 | 0.31 | 147 | 150 |
Toluene | 0.345/0.293 | ||||
Xylene | 0.306/0.049 | ||||
IVOA | 0.275/0.225 | ||||
SOPA | Benzene | 0/0 | 0 | - | 220 |
Toluene | 0.262/0.044 | ||||
Xylene | 0.294/0.025 | ||||
IVOA | 0.277/0.129 | ||||
SOA3/CG3 | Isoprene | 0.156/0.076 | 26 | 118 | 180 |
Monoterpene | 0.150/0.075 | ||||
Sesquiterpene | 0.136/0.092 | ||||
SOA4/CG4 | Isoprene | 0.029/0.023 | 0.45 | 123 | 180 |
Monoterpene | 0.090/0.045 | ||||
Sesquiterpene | 0.400/0.328 | ||||
SOPB | Isoprene | 0.011/0 | 0 | - | 220 |
Monoterpene | 0.070/0.070 | ||||
Sesquiterpene | 0.270/0.175 |
Option | Setting |
---|---|
Horizontal advection | PPM |
Vertical advection | PPM |
Gas chemistry mechanism | CB6r5 |
Gas chemistry solver | EBI |
PM chemistry | CF with explicit elements |
Probing Tools | Off |
Dry deposition | Zhang |
Bidirectional ammonia | On and Off |
ACM2 vertical diffusion | On |
Sub-grid cloud convection | Off |
In-line oceanic iodine emissions | On |
Pollutant | NMB | NME | r |
---|---|---|---|
MDA8 Ozone | <±15% | <25% | >0.50 |
24 h total PM2.5, SO4, NH4 | <±30% | <50% | >0.40 |
24 h NO3 | <±65% | <115% | -- |
24 h OC | <±50% | <65% | -- |
24 h EC | <±40% | <75% | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emery, C.; Baker, K.; Wilson, G.; Yarwood, G. Comprehensive Air Quality Model with Extensions: Formulation and Evaluation for Ozone and Particulate Matter over the US. Atmosphere 2024, 15, 1158. https://doi.org/10.3390/atmos15101158
Emery C, Baker K, Wilson G, Yarwood G. Comprehensive Air Quality Model with Extensions: Formulation and Evaluation for Ozone and Particulate Matter over the US. Atmosphere. 2024; 15(10):1158. https://doi.org/10.3390/atmos15101158
Chicago/Turabian StyleEmery, Christopher, Kirk Baker, Gary Wilson, and Greg Yarwood. 2024. "Comprehensive Air Quality Model with Extensions: Formulation and Evaluation for Ozone and Particulate Matter over the US" Atmosphere 15, no. 10: 1158. https://doi.org/10.3390/atmos15101158
APA StyleEmery, C., Baker, K., Wilson, G., & Yarwood, G. (2024). Comprehensive Air Quality Model with Extensions: Formulation and Evaluation for Ozone and Particulate Matter over the US. Atmosphere, 15(10), 1158. https://doi.org/10.3390/atmos15101158