Long-Term Evolution in Noctilucent Clouds’ Response to the Solar Cycle: A Model-Based Study
Abstract
:1. Introduction
2. Model Description
3. Results and Discussion
3.1. Solar Cycle Effects on Background Temperature
3.2. Solar Cycle Effects on Background Water Vapour
3.3. Trends in Vertical Profiles of NLC Properties
3.4. Greenhouse Gas Effects on NLC Solar Cycle Response
3.5. Solar Cycle Response of NLC at Different Latitudes
4. Conclusions
- (1)
- Background temperature and H2O show an apparent response to the solar cycle throughout the study period, which intensified after 1960 due to increased greenhouse gas emissions. The temperature response at a given geometric altitude increases due to atmospheric shrinking caused by increased CO2. The increase in the response of water vapour to the solar cycle is mainly due to the increase in CH4, which leads to the production of more H2O through oxidation.
- (2)
- We found solar cycle responses in the vertical distribution profiles of ice particle number, mean radius and NLC brightness. The solar cycle influence is present at all altitudes and peaks at the altitude of maximum NLC brightness. The magnitude of the ice particle radius and brightness response increases with time, mainly due to the increase of H2O, while the downward shift of the profiles is due to atmospheric shrinking.
- (3)
- The properties of NLC, such as maximum brightness, mean radius of ice particles, IWC and occurrence rate, respond to the solar cycle, and these responses increase with time mainly due to an increase in water vapour. The response in NLC altitudes occurs mainly due to solar cycle-induced temperature variation. The upward shift in NLC altitudes is due to the expansion of the atmosphere due to increased heating during solar maximum.
- (4)
- The enhancement in response of NLC brightness and ice water content (IWC) to the solar cycle is primarily due to an increase in CH4, which leads to an increase in H2O. On the other hand, the increase in response of NLC altitude is due to an increase in CO2, which leads to a larger response of the background temperature to the solar cycle.
- (5)
- The solar cycle response of NLC properties differs at different latitudes. NLC height, maximum brightness and ice water content are more responsive at high and arctic latitudes and show a similar trend. However, NLC occurrence is less responsive at high and arctic latitudes but much more responsive at mid-latitudes. The saturation ratio of NLC events is higher at high and arctic latitudes, while they are relatively low at mid-latitudes due to higher temperatures and lower water vapour concentrations. Consequently, temperature and water vapour variations during the solar cycle have a greater influence on the occurrence of NLC at mid-latitudes than at high and arctic latitudes.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garcia, R.R. Dynamics, Radiation, and Photochemistry in the Mesosphere: Implications for the Formation of Noctilucent Clouds. J. Geophys. Res. Atmos. 1989, 94, 14605–14615. [Google Scholar] [CrossRef]
- Berger, U.; von Zahn, U. Three-Dimensional Modeling of the Trajectories of Visible Noctilucent Cloud Particles: An Indication of Particle Nucleation Well below the Mesopause. J. Geophys. Res. Atmospheres 2007, 112, D16204. [Google Scholar] [CrossRef]
- Gadsden, M.; Schröder, W. Noctilucent Clouds; Physics and Chemistry in Space Planetology; Springer: Berlin/Heidelberg, Germany, 1989; ISBN 978-3-540-50685-0. [Google Scholar]
- Gadsden, M. A Secular Change in Noctilucent Cloud Occurrence. J. Atmos. Terr. Phys. 1990, 52, 247–251. [Google Scholar] [CrossRef]
- Thomas, G.E.; Olivero, J. Noctilucent Clouds as Possible Indicators of Global Change in the Mesosphere. Adv. Space Res. 2001, 28, 937–946. [Google Scholar] [CrossRef]
- Thomas, G.E. Is the polar mesosphere the miner’s canary of global change? Adv. Space Res. 1996, 18, 149–158. [Google Scholar] [CrossRef]
- Thomas, G.E. Are Noctilucent Clouds Harbingers of Global Change in the Middle Atmosphere? Adv. Space Res. 2003, 32, 1737–1746. [Google Scholar] [CrossRef]
- Hervig, M.E.; Berger, U.; Siskind, D.E. Decadal Variability in PMCs and Implications for Changing Temperature and Water Vapor in the Upper Mesosphere. J. Geophys. Res. 2016, 121, 2383–2392. [Google Scholar] [CrossRef]
- Lübken, F.J.; Berger, U.; Baumgarten, G. On the Anthropogenic Impact on Long-Term Evolution of Noctilucent Clouds. Geophys. Res. Lett. 2018, 45, 6681–6689. [Google Scholar] [CrossRef]
- DeLand, M.T.; Shettle, E.P.; Thomas, G.E.; Olivero, J.J. A Quarter-Century of Satellite Polar Mesospheric Cloud Observations. J. Atmos. Sol.-Terr. Phys. 2006, 68, 9–29. [Google Scholar] [CrossRef]
- Von Zahn, U.; Berger, U. Persistent Ice Cloud in the Midsummer Upper Mesosphere at High Latitudes: Three-Dimensional Modeling and Cloud Interactions with Ambient Water Vapor. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Lübken, F.J.; Berger, U.; Baumgarten, G. Temperature Trends in the Midlatitude Summer Mesosphere. J. Geophys. Res. Atmos. 2013, 118, 13347–13360. [Google Scholar] [CrossRef]
- Hervig, M.E.; Siskind, D.E.; Bailey, S.M.; Merkel, A.W.; DeLand, M.T.; Russell, J.M. The Missing Solar Cycle Response of the Polar Summer Mesosphere. Geophys. Res. Lett. 2019, 46, 10132–10139. [Google Scholar] [CrossRef]
- DeLand, M.T.; Shettle, E.P.; Thomas, G.E.; Olivero, J.J. Solar Backscattered Ultraviolet (SBUV) Observations of Polar Mesospheric Clouds (PMCs) over Two Solar Cycles. J. Geophys. Res. Atmos. 2003, 108, 8445. [Google Scholar] [CrossRef]
- Hervig, M.; Siskind, D. Decadal and Inter-Hemispheric Variability in Polar Mesospheric Clouds, Water Vapor, and Temperature. J. Atmos. Sol.-Terr. Phys. 2006, 68, 30–41. [Google Scholar] [CrossRef]
- Siskind, D.E.; Stevens, M.H.; Hervig, M.E.; Randall, C.E. Recent Observations of High Mass Density Polar Mesospheric Clouds: A Link to Space Traffic? Geophys. Res. Lett. 2013, 40, 2813–2817. [Google Scholar] [CrossRef]
- Vellalassery, A.; Baumgarten, G.; Grygalashvyly, M.; Lübken, F.-J. Greenhouse Gas Effects on the Solar Cycle Response of Water Vapour and Noctilucent Clouds. Ann. Geophys. 2023, 41, 289–300. [Google Scholar] [CrossRef]
- Nedoluha, G.E.; Kiefer, M.; Lossow, S.; Michael Gomez, R.; Kämpfer, N.; Lainer, M.; Forkman, P.; Martin Christensen, O.; Jin Oh, J.; Hartogh, P.; et al. The SPARC Water Vapor Assessment II: Intercomparison of Satellite and Ground-Based Microwave Measurements. Atmos. Chem. Phys. 2017, 17, 14543–14558. [Google Scholar] [CrossRef]
- Hervig, M.E.; Siskind, D.E.; Bailey, S.M.; Russell, J.M. The Influence of PMCs on Water Vapor and Drivers behind PMC Variability from SOFIE Observations. J. Atmos. Sol.-Terr. Phys. 2015, 132, 124–134. [Google Scholar] [CrossRef]
- Lübken, F.J.; Baumgarten, G.; Berger, U. Long Term Trends of Mesopheric Ice Layers: A Model Study. J. Atmos. Sol.-Terr. Phys. 2021, 214, 105378. [Google Scholar] [CrossRef]
- Berger, U.; Von Zahn, U. Icy Particles in the Summer Mesopause Region: Three-Dimensional Modeling of Their Environment and Two-Dimensional Modeling of Their Transport. J. Geophys. Res. Space Phys. 2002, 107, SIA-10. [Google Scholar] [CrossRef]
- Berger, U. Modeling of Middle Atmosphere Dynamics with LIMA. J. Atmos. Sol.-Terr. Phys. 2008, 70, 1170–1200. [Google Scholar] [CrossRef]
- Berger, U.; Lübken, F.J. Mesospheric Temperature Trends at Mid-Latitudes in Summer. Geophys. Res. Lett. 2011, 38, L22804. [Google Scholar] [CrossRef]
- Machol, J.; Snow, M.; Woodraska, D.; Woods, T.; Viereck, R.; Coddington, O. An Improved Lyman-Alpha Composite. Earth Space Sci. 2019, 6, 2263–2272. [Google Scholar] [CrossRef]
- Compo, G.P.; Whitaker, J.S.; Sardeshmukh, P.D.; Matsui, N.; Allan, R.J.; Yin, X.; Gleason, B.E.; Vose, R.S.; Rutledge, G.; Bessemoulin, P.; et al. The Twentieth Century Reanalysis Project. Q. J. R. Meteorol. Soc. 2011, 137, 1–28. [Google Scholar] [CrossRef]
- WMO. Statement on the Status of the Global Climate in 2011; World Meteorological Organization: Geneva, Switzerland, 2012; ISBN 978-92-63-11085-5. [Google Scholar]
- Etheridge, D.; Barnola, J.; Morgan, V.; Steele, L.; Langenfelds, R.; Francey, R. Historical CO2 Records from the Law Dome DE08, DE08-2, and DSS Ice Cores (1006 A.D.-1978 A.D); Oak Ridge National Laboratory, U.S. Department of Energy: Oak Ridge, TN, USA, 1998.
- Yiğit, E.; Medvedev, A.S. Extending the Parameterization of Gravity Waves into the Thermosphere and Modeling Their Effects. In Climate and Weather of the Sun-Earth System (CAWSES) Highlights from a Priority Program; Springer: Dordrecht, The Netherlands, 2013; pp. 467–480. [Google Scholar]
- Butchart, N. The Brewer-Dobson Circulation. Rev. Geophys. 2014, 52, 157–184. [Google Scholar] [CrossRef]
- Kiliani, J. 3-D Modeling of Noctilucent Cloud Evolution and Relationship to the Ambient Atmosphere. Ph.D. Thesis, IAP. University of Rostock, Kühlungsborn, Germany, 2014. [Google Scholar]
- Roble, R.G.; Dickinson, R.E. How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere? Geophys. Res. Lett. 1989, 46, 1441–1444. [Google Scholar] [CrossRef]
- Garcia, R.R.; Marsh, D.R.; Kinnison, D.E.; Boville, B.A.; Sassi, F. Simulation of Secular Trends in the Middle Atmosphere, 1950–2003. J. Geophys. Res. Atmos. 2007, 112, D09301. [Google Scholar] [CrossRef]
- Marsh, D.R.; Mills, M.J.; Kinnison, D.E.; Lamarque, J.F.; Calvo, N.; Polvani, L.M. Climate Change from 1850 to 2005 Simulated in CESM1(WACCM). J. Clim. 2013, 26, 7372–7391. [Google Scholar] [CrossRef]
- Keckhut, P.; Wild, J.D.; Gelman, M.; Miller, A.J.; Hauchecorne, A. Investigations on Long-term Temperature Changes in the Upper Stratosphere Using Lidar Data and NCEP Analyses. J. Geophys. Res. Atmos. 2001, 106, 7937–7944. [Google Scholar] [CrossRef]
- Hervig, M.E.; Gerding, M.; Stevens, M.H.; Stockwell, R.; Bailey, S.M.; Russell, J.M.; Stober, G. Mid-Latitude Mesospheric Clouds and Their Environment from SOFIE Observations. J. Atmos. Sol.-Terr. Phys. 2016, 149, 1–14. [Google Scholar] [CrossRef]
- Remsberg, E. Observation and Attribution of Temperature Trends Near the Stratopause From HALOE. J. Geophys. Res. Atmos. 2019, 124, 6600–6611. [Google Scholar] [CrossRef] [PubMed]
- Körner, U.; Sonnemann, G.R. Global Three-dimensional Modeling of the Water Vapor Concentration of the Mesosphere-mesopause Region and Implications with Respect to the Noctilucent Cloud Region. J. Geophys. Res. Atmos. 2001, 106, 9639–9651. [Google Scholar] [CrossRef]
- Hansen, G.; Von Zahn, U. Simultaneous Observations of Noctilucent Clouds and Mesopause Temperatures by Lidar. J. Geophys. Res. Atmos. 1994, 99, 18989–18999. [Google Scholar] [CrossRef]
- Nussbaumer, V.; Fricke, K.H.; Langer, M.; Singer, W.; Von Zahn, U. First Simultaneous and Common Volume Observations of Noctilucent Clouds and Polar Mesosphere Summer Echoes by Lidar and Radar. J. Geophys. Res. Atmos. 1996, 101, 19161–19167. [Google Scholar] [CrossRef]
- Von Cossart, G.; Hoffmann, P.; Von Zahn, U.; Keckhut, P.; Hauchecorne, A. Mid-latitude Noctilucent Cloud Observations by Lidar. Geophys. Res. Lett. 1996, 23, 2919–2922. [Google Scholar] [CrossRef]
- Von Zahn, U.; Von Cossart, G.; Fiedler, J.; Rees, D. Tidal Variations of Noctilucent Clouds Measured at 69° N Latitude by Groundbased Lidar. Geophys. Res. Lett. 1998, 25, 1289–1292. [Google Scholar] [CrossRef]
- Karlsson, B.; Rapp, M. Latitudinal Dependence of Noctilucent Cloud Growth. Geophys. Res. Lett. 2006, 33, 2006GL025805. [Google Scholar] [CrossRef]
- Hultgren, K.; Körnich, H.; Gumbel, J.; Gerding, M.; Hoffmann, P.; Lossow, S.; Megner, L. What Caused the Exceptional Mid-Latitudinal Noctilucent Cloud Event in July 2009? J. Atmos. Sol.-Terr. Phys. 2011, 73, 2125–2131. [Google Scholar] [CrossRef]
- Kaifler, N.; Kaifler, B.; Wilms, H.; Rapp, M.; Stober, G.; Jacobi, C. Mesospheric Temperature during the Extreme Midlatitude Noctilucent Cloud Event on 18/19 July 2016. J. Geophys. Res. Atmos. 2018, 123, 13775–13789. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vellalassery, A.; Baumgarten, G.; Grygalashvyly, M.; Lübken, F.-J. Long-Term Evolution in Noctilucent Clouds’ Response to the Solar Cycle: A Model-Based Study. Atmosphere 2024, 15, 88. https://doi.org/10.3390/atmos15010088
Vellalassery A, Baumgarten G, Grygalashvyly M, Lübken F-J. Long-Term Evolution in Noctilucent Clouds’ Response to the Solar Cycle: A Model-Based Study. Atmosphere. 2024; 15(1):88. https://doi.org/10.3390/atmos15010088
Chicago/Turabian StyleVellalassery, Ashique, Gerd Baumgarten, Mykhaylo Grygalashvyly, and Franz-Josef Lübken. 2024. "Long-Term Evolution in Noctilucent Clouds’ Response to the Solar Cycle: A Model-Based Study" Atmosphere 15, no. 1: 88. https://doi.org/10.3390/atmos15010088
APA StyleVellalassery, A., Baumgarten, G., Grygalashvyly, M., & Lübken, F. -J. (2024). Long-Term Evolution in Noctilucent Clouds’ Response to the Solar Cycle: A Model-Based Study. Atmosphere, 15(1), 88. https://doi.org/10.3390/atmos15010088