Characterizing Isotopic Composition and Trajectories of Atmospheric River Events
Abstract
:1. Introduction
2. Materials and Methods
2.1. Precipitation Sample Collection and Isotopic Analysis
2.2. Surface Water and Groundwater Sample Collection
2.3. AR Identification
2.4. Precipitation Event Trajectories
2.5. Deuterium Excess and Stable Isotope Analysis
3. Results
3.1. Isotopic Composition of ARs
3.2. AR Storm Tracks
3.3. Isotope Application to Groundwater and Surface Water
4. Discussion
4.1. Isotopic Composition of LARs and Non-AR Events
4.2. LAR Isotopic Composition and Storm Track Trajectories
4.3. Contribution of AR-Derived Precipitation to Watershed Waters
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
AR | Atmospheric River |
BC | British Columbia |
d-excess | Deuterium-excess |
ECCC | Environment and Climate Change Canada |
ENSO | El Niño Southern Oscillation |
ERA | European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis |
GDAS | Global Data Assimilation System |
GMWL | Global Meteoric Water Line |
GNIP | Global Network of Isotopes in Precipitation |
GOES | Geostationary Operational Environmental Satellites |
HYSPLIT | Hybrid Single-Particle Lagrangian Integrated Trajectory |
IAEA | International Atomic Energy Agency |
IR | Infrared |
IVT | Integrated Vapour Transport |
LAR | Landfalling Atmospheric River |
masl | metres above sea level |
MERRA-2 | Modern-Era Retrospective Analysis for Research and Applications—Version 2 |
NASA | National Aeronautics and Space Administration |
NOAA | National Oceanic and Atmospheric Administration |
PDO | Pacific Decadal Oscillation |
PE | Pineapple Express |
RH | Relative Humidity |
SST | Sea Surface Temperature |
USGS | United States Geological Survey |
UTC | Coordinated Universal Time |
WISER | Water Isotope System for Data Analysis, Visualization, and Electronic Retrieval |
WMO | World Meteorological Organization |
δ18O | |
δ2H |
References
- Zhu, Y.; Newell, R.E. A Proposed Algorithm for Moisture Fluxes from Atmospheric Rivers. Mon. Weather Rev. 1998, 126, 725–735. [Google Scholar] [CrossRef]
- Neiman, P.J.; Ralph, F.M.; Wick, G.A.; Lundquist, J.D.; Dettinger, M.D. Meteorological Characteristics and Overland Precipitation Impacts of Atmospheric Rivers Affecting the West Coast of North America Based on Eight Years of SSM/I Satellite Observations. J. Hydrometeorol. 2008, 9, 22–47. [Google Scholar] [CrossRef]
- Dettinger, M.D.; Ralph, F.M.; Das, T.; Neiman, P.J.; Cayan, D.R. Atmospheric Rivers, Floods and the Water Resources of California. Water 2011, 3, 445–478. [Google Scholar] [CrossRef]
- Waliser, D.; Guan, B. Extreme Winds and Precipitation during Landfall of Atmospheric Rivers. Nat. Geosci. 2017, 10, 179–183. [Google Scholar] [CrossRef]
- Gershunov, A.; Shulgina, T.; Clemesha, R.E.S.; Guirguis, K.; Pierce, D.W.; Dettinger, M.D.; Lavers, D.A.; Cayan, D.R.; Polade, S.D.; Kalansky, J.; et al. Precipitation Regime Change in Western North America: The Role of Atmospheric Rivers. Sci. Rep. 2019, 9, 9944. [Google Scholar] [CrossRef] [PubMed]
- Gillett, N.P.; Cannon, A.J.; Malinina, E.; Schnorbus, M.; Anslow, F.; Sun, Q.; Kirchmeier-Young, M.; Zwiers, F.; Seiler, C.; Zhang, X.; et al. Human Influence on the 2021 British Columbia Floods. Weather Clim Extrem 2022, 36, 100441. [Google Scholar] [CrossRef]
- Bao, J.-W.; Michelson, S.A.; Neiman, P.J.; Ralph, F.M.; Wilczak, J.M. Interpretation of Enhanced Integrated Water Vapor Bands Associated with Extratropical Cyclones: Their Formation and Connection to Tropical Moisture. Mon. Weather Rev. 2006, 134, 1063–1080. [Google Scholar] [CrossRef]
- Dansgaard, W. Stable Isotopes in Precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Clark, I.; Fritz, P. Environmental Isotopes in Hydrogeology; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Hoboken, NJ, USA, 1997. [Google Scholar]
- Lawrence, J.; Gedzelman, S.; White, J.; Smiley, D.; Lazov, P. Storm Trajectories in Eastern US D/H Isotopic Composition of Precipitation. Nature 1982, 296, 638–640. [Google Scholar] [CrossRef]
- Fritz, P.; Drimmie, R.J.; Frape, S.K.; O’Shea, O. The Isotopic Composition of Precipitation in Groundwater in Canada. In Proceedings of the International Symposium on the Use of Isotope Techniques in Water Resources Development, Vienna, Austria, 30 Mar–3 April 1987; pp. 539–550. [Google Scholar]
- Dettinger, M. Climate Change, Atmospheric Rivers, and Floods in California—A Multimodel Analysis of Storm Frequency and Magnitude Changes. J. Am. Water Resour. Assoc. 2011, 47, 514–523. [Google Scholar] [CrossRef]
- Ralph, F.M.; Neiman, P.J.; Wick, G.A. Satellite and CALJET Aircraft Observations of Atmospheric Rivers over the Eastern North Pacific Ocean during the Winter of 1997/98. Mon. Weather Rev. 2004, 132, 1721–1745. [Google Scholar] [CrossRef]
- Dettinger, M. Fifty-Two Years of “Pineapple Express” Storms Across the West Coast of North America; PIER Energy-Related Environmental Research; CEC-500-2005-004; U.S. Geological Survey, Scripps Institution of Oceanography for the California Energy Commission: La Jolla, CA, USA, 2004.
- Mo, R.; Lin, H.; Vitart, F. An Anomalous Warm-Season Trans-Pacific Atmospheric River Linked to the 2021 Western North America Heatwave. Commun. Earth Environ. 2022, 3, 127. [Google Scholar] [CrossRef]
- Rozanski, K. Deuterium and Oxygen-18 in European Groundwaters—Links to Atmospheric Circulation in the Past. Chem. Geol. Isot. Geosci. Sect. 1985, 52, 349–363. [Google Scholar] [CrossRef]
- Spry, C.M.; Kohfeld, K.E.; Allen, D.M.; Dunkley, D.; Lertzman, K. Characterizing Pineapple Express Storms in the Lower Mainland of British Columbia, Canada. Can. Water Resour. J. 2014, 39, 302–323. [Google Scholar] [CrossRef]
- Friedman, I.; Machta, L.; Soller, R. Water-Vapor Exchange between a Water Droplet and Its Environment. J. Geophys. Res. 1962, 67, 2761–2766. [Google Scholar] [CrossRef]
- Boutt, D.F.; Mabee, S.B.; Yu, Q. Multiyear Increase in the Stable Isotopic Composition of Stream Water from Groundwater Recharge Due to Extreme Precipitation. Geophys. Res. Lett. 2019, 46, 5323–5330. [Google Scholar] [CrossRef]
- IAEA/WMO. Global Network of Isotopes in Precipitation. GNIP Database. Available online: https://www.iaea.org/services/networks/gnip (accessed on 3 March 2022).
- Rutz, J.J.; James Steenburgh, W.; Martin Ralph, F. Climatological Characteristics of Atmospheric Rivers and Their Inland Penetration over the Western United States. Mon. Weather Rev. 2014, 142, 905–921. [Google Scholar] [CrossRef]
- Draxler, R.R.; Hess, G.D. An Overview of the HYSPLIT_4 Modelling System for Trajectories, Dispersion, and Deposition. Aust. Meteorol. Mag. 1998, 47, 295–308. [Google Scholar]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. Noaa’s Hysplit Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Knapp, K.R. Scientific Data Stewardship of International Satellite Cloud Climatology Project B1 Global Geostationary Observations. J. Appl. Remote Sens. 2008, 2, 023548. [Google Scholar] [CrossRef]
- Brimelow, J.C.; Reuter, G.W. Transport of Atmospheric Moisture during Three Extreme Rainfall Events over the Mackenzie River Basin. J. Hydrometeorol. 2005, 6, 423–440. [Google Scholar] [CrossRef]
- Gustafsson, M.; Rayner, D.; Chen, D. Extreme Rainfall Events in Southern Sweden: Where Does the Moisture Come From? Tellus Ser. A Dyn. Meteorol. Oceanogr. 2010, 62, 605–616. [Google Scholar] [CrossRef]
- Oster, J.L.; Montañez, I.P.; Kelley, N.P. Response of a Modern Cave System to Large Seasonal Precipitation Variability. Geochim. Cosmochim. Acta 2012, 91, 92–108. [Google Scholar] [CrossRef]
- Global Data Assimilation System (GDAS) 1-Degree Operation System, Which Is Integrated into NOAA’s Air Resource Laboratory Online System. Available online: https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00379 (accessed on 15 August 2023).
- Iannone, R. SplitR 2016. Use of HYSPLIT within RStudio. R Version 4.3.1; GitHub: San Francisco, CA, USA. [CrossRef]
- Craig, H.; Gordon, L. Deuterium and Oxygen-18 Variation in the Ocean and the Marine Atmosphere. In Proceedings of a Conference on Stable Isotopes in Oceanographic Studies and Paleotemperatures; Tongiorgi, E., Ed.; Consiglio Nazionale delle Ricerche: Pisa, Italy, 1965; pp. 9–130. [Google Scholar]
- Merlivat, L.; Jouzel, J. Global Climatic Interpretation of the Deuterium-Oxygen 16 Relationship for Precipitation. J. Geophys. Res. 1979, 84, 5029–5033. [Google Scholar] [CrossRef]
- Gat, J.R. Oxygen and Hydrogen Isotopes in the Hydrologic Cycle. Annu. Rev. Earth Planet. Sci. 1996, 24, 225–262. [Google Scholar] [CrossRef]
- Putman, A.L.; Fiorella, R.P.; Bowen, G.J.; Cai, Z. A Global Perspective on Local Meteoric Water Lines: Meta-Analytic Insight Into Fundamental Controls and Practical Constraints. Water Resour. Res. 2019, 55, 6896–6910. [Google Scholar] [CrossRef]
- Rozanski, K.; Araguás-Araguás, L.; Gonfiantini, R. Isotopic Patterns in Modern Global Precipitation. Clim. Chang. Cont. Isot. Rec. 1993, 78, 1–36. [Google Scholar]
- Bowen, G.J.; Revenaugh, J. Interpolating the Isotopic Composition of Modern Meteoric Precipitation. Water Resour. Res. 2003, 39, SWC91–SWC913. [Google Scholar] [CrossRef]
- Environment Canada Past Weather and Climate: Historical Data. Available online: https://climate.weather.gc.ca/climate_data/hourly_data_e.html (accessed on 19 April 2022).
- Bershaw, J.; Hansen, D.D.; Schauer, A.J. Deuterium excess and 17O-excess variability in meteoric water across the Pacific Northwest, USA. Tellus B Chem. Phys. Meteorol. 2020, 72, 1773722. [Google Scholar] [CrossRef]
- Environment Canada Daily Discharge and Water Level Data Availability for NORTH ALOUETTE RIVER AT 232ND STREET, MAPLE RIDGE (08MH006). Available online: https://wateroffice.ec.gc.ca/report/data_availability_e.html?type=historical&station=08MH006¶meter_type=Flow+and+Level (accessed on 20 November 2023).
- Coplen, T.B.; Neiman, P.J.; White, A.B.; Landwehr, J.M.; Ralph, F.M.; Dettinger, M.D. Extreme Changes in Stable Hydrogen Isotopes and Precipitation Characteristics in a Landfalling Pacific Storm. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Coplen, T.B.; Neiman, P.J.; White, A.B.; Martin Ralph, F. Categorisation of Northern California Rainfall for Periods with and without a Radar Brightband Using Stable Isotopes and a Novel Automated Precipitation Collector. Tellus B Chem. Phys. Meteorol. 2015, 6, 28574. [Google Scholar] [CrossRef]
- Leguy, C.; Rindsberger, M.; Zangwil, A.; Issar, A.; Gat, J.R. The Relation between the 18O and Deuterium Contents of Rain Water in the Negev Desert and Air-Mass Trajectories. Chem. Geol. 1983, 41, 205–218. [Google Scholar] [CrossRef]
- Mix, H.T.; Reilly, S.P.; Martin, A.; Cornwell, G. Evaluating the Roles of Rainout and Post-Condensation Processes in a Landfalling Atmospheric River with Stable Isotopes in Precipitation and Water Vapor. Atmosphere 2019, 10, 86. [Google Scholar] [CrossRef]
- Dansgaard, W. The Abundance of O 18 in Atmospheric Water and Water Vapour. Tellus 1953, 5, 461–469. [Google Scholar] [CrossRef]
- Payne, A.E.; Magnusdottir, G. Dynamics of Landfalling Atmospheric Rivers over the North Pacific in 30 Years of MERRA Reanalysis. J. Clim. 2014, 27, 7133–7150. [Google Scholar] [CrossRef]
- Sharma, A.R.; Déry, S.J. Linking Atmospheric Rivers to Annual and Extreme River Runoff in British Columbia and Southeastern Alaska. Am. Meteorol. Soc. 2020, 21, 2457–2472. [Google Scholar] [CrossRef]
- Weng, Y.; Johannessen, A.; Sodemann, H. High-Resolution Stable Isotope Signature of a Land-Falling Atmospheric River in Southern Norway. Weather. Clim. Dyn. 2021, 2, 713–737. [Google Scholar] [CrossRef]
- Yoshimura, K.; Kanamitsu, M.; Dettinger, M. Regional Downscaling for Stable Water Isotopes: A Case Study of an Atmospheric River Event. J. Geophys. Res. Atmos. 2010, 115, D18114. [Google Scholar] [CrossRef]
- Tada, M.; Yoshimura, K.; Toride, K. Improving Weather Forecasting by Assimilation of Water Vapor Isotopes. Sci. Rep. 2021, 11, 18067. [Google Scholar] [CrossRef]
- Sodemann, H.; Masson-Delmotte, V.; Schwierz, C.; Vinther, B.M.; Wernli, H. Interannual Variability of Greenland Winter Precipitation Sources: 2. Effects of North Atlantic Oscillation Variability on Stable Isotopes in Precipitation. J. Geophys. Res. Atmos. 2008, 113, D03107. [Google Scholar] [CrossRef]
- Gat, J.R.; Carmi, I. Evolution of the Isotopic Composition of Atmospheric Waters in the Mediterranean Sea Area. J. Geophys. Res. 1970, 75, 3039–3048. [Google Scholar] [CrossRef]
- Pfahl, S.; Sodemann, H. What Controls Deuterium Excess in Global Precipitation? Clim. Past. 2014, 10, 771–781. [Google Scholar] [CrossRef]
- Stewart, M.K. Stable Isotope Fractionation Due to Evaporation and Isotopic Exchange of Falling Waterdrops: Applications to Atmospheric Processes and Evaporation of Lakes. J. Geophys. Res. 1975, 80, 1133–1146. [Google Scholar] [CrossRef]
- Gershunov, A.; Shulgina, T.; Ralph, F.M.; Lavers, D.A.; Rutz, J.J. Assessing the Climate-Scale Variability of Atmospheric Rivers Affecting Western North America. Geophys. Res. Lett. 2017, 44, 7900–7908. [Google Scholar] [CrossRef]
- Gimeno, L.; Nieto, R.; Vázquez, M.; Lavers, D.A.; Trigo, R.M.; Martius, O.; Porcu, F. Atmospheric Rivers: A Mini-Review. Front. Earth Sci. 2014, 2, 2. [Google Scholar] [CrossRef]
- Shields, C.A.; Kiehl, J.T. Simulating the Pineapple Express in the Half Degree Community Climate System Model, CCSM4. Geophys. Res. Lett. 2016, 43, 7767–7773. [Google Scholar] [CrossRef]
- Stendel, M.; Francis, J.; White, R.; Williams, P.D.; Woollings, T. The Jet Stream and Climate Change. In Climate Change; Elsevier: Amsterdam, The Netherlands, 2021; pp. 327–357. [Google Scholar]
- Shields, C.A.; Richter, J.H.; Pendergrass, A.; Tilmes, S. Atmospheric Rivers Impacting Western North America in a World with Climate Intervention. NPJ Clim. Atmos. Sci. 2022, 5, 41. [Google Scholar] [CrossRef]
AR | Non-AR | p Value | IAEA/WMO (Saturna Island) | |
---|---|---|---|---|
δ18O (‰) | −11.71 | −9.47 | 0.02 * | −10.14 |
δ2H (‰) | −85.80 | −69.58 | 0.03 * | −74.64 |
d-excess (‰) | 7.9 | 6.2 | 0.3 | 6.5 |
n | 19 | 32 | 141 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greenblat, A.T.; Allen, D.M.; Hahm, W.J. Characterizing Isotopic Composition and Trajectories of Atmospheric River Events. Atmosphere 2024, 15, 74. https://doi.org/10.3390/atmos15010074
Greenblat AT, Allen DM, Hahm WJ. Characterizing Isotopic Composition and Trajectories of Atmospheric River Events. Atmosphere. 2024; 15(1):74. https://doi.org/10.3390/atmos15010074
Chicago/Turabian StyleGreenblat, Ariel T., Diana M. Allen, and W. Jesse Hahm. 2024. "Characterizing Isotopic Composition and Trajectories of Atmospheric River Events" Atmosphere 15, no. 1: 74. https://doi.org/10.3390/atmos15010074
APA StyleGreenblat, A. T., Allen, D. M., & Hahm, W. J. (2024). Characterizing Isotopic Composition and Trajectories of Atmospheric River Events. Atmosphere, 15(1), 74. https://doi.org/10.3390/atmos15010074