A Study of Chemical Processes of Nitrate in Atmospheric Aerosol and Snow Based on Stable Isotopes
Abstract
:1. Introduction
2. Measurement Methods for Stable Oxygen Isotope
3. Chemical Processes of Atmospheric Nitrate
4. Spatial Distribution of Isotopes of Atmospheric Nitrate
4.1. Investigation of δ15N in Atmospheric NOx
4.2. Variability of δ18O and Δ17O of Atmospheric NO3−
5. Characteristics of Nitrogen–Oxygen Isotopes of Nitrates in Snow and Ice
6. Optical Properties of Nitrate in Snow and Ice
7. Conclusions
- (1)
- The formation of nocturnal atmospheric nitrates primarily occurs through the hydrolysis of N2O5. During the daytime, the nitrates are mainly generated through the oxidation of NO2 by OH radicals, resulting in the formation of HNO3. In summer, nitrates are mainly formed through the reaction of OH radicals with NO2, while in winter, the hydrolysis of N2O5 is the main process for the formation of atmospheric nitrate.
- (2)
- Research on stable isotopes and isotopic anomaly of atmospheric nitrate in glacier regions is scarce, especially in high-altitude glacier regions.
- (3)
- The Δ17O and δ18O values of nitrate in the atmosphere increase with latitude. The variation of δ18O(NO3−) is more obvious with notable fluctuations in low-latitude regions (30° N–60° N).
- (4)
- From the coastal areas to inland Antarctica, δ18O(NO3−) values in snow and ice gradually decrease and δ15N(NO3−) values increase. Photochemical reactions significantly facilitate the interaction of NOx and NO3− at the air–snow interface, and greatly affect the NO3− concentration.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Savarino, J.; Kaiser, J.; Morin, S.; Sigman, D.M.; Thiemens, M.H. Nitrogen and oxygen isotopic constraints on the origin of atmospheric nitrate in coastal Antarctica. Atmos. Chem. Phys. 2007, 7, 1925–1945. [Google Scholar] [CrossRef]
- Gao, Z.M.; Zhang, F.Z. Research progress and perspectives on nitrogen cycle and pollution in the environment. Environ. Sci. Ser. 1982, 4, 7–12. (In Chinese) [Google Scholar]
- Canfield, D.E.; Glazer, A.N.; Falkowski, P.G. The evolution and future of Earth’s nitrogen cycle. Science 2010, 330, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Morin, S.; Savarino, J.; Frey, M.M.; Yan, N.; Bekki, S.; Bottenheim, J.W.; Martins, J.M.F. Tracing the Origin and Fate of NOx in the Arctic Atmosphere Using Stable Isotopes in Nitrate. Science 2008, 322, 730–732. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.F.; Chen, Y.; Hao, Q.J.; Wang, H.B.; Yang, F.M.; Zhao, Q.; Bo, Y.; He, K.B.; Yao, Y.G. Seasonal variation and source analysis of the water-soluble inorganic ions in fine particulate matter in Suzhou. Environ. Sci. 2016, 37, 4482–4489. (In Chinese) [Google Scholar]
- Fan, M.Y.; Cao, F.; Zhang, Y.Y.; Bao, M.Y.; Liu, X.Y.; Zhang, W.Q.; Gao, S.; Zhang, Y.L. Characteristics and source of water soluble inorganic ions in fine particulate matter during winter in Xuzhou. Environ. Sci. 2017, 38, 4478–4485. (In Chinese) [Google Scholar]
- Huang, R.J.; Zhang, Y.; Bozzetti, C.; Ho, K.-F.; Cao, J.-J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Xie, Z.; Chi, X.; Yu, X.; Fan, S.; Kang, H.; Liu, C.; Zhan, H. Atmospheric Δ17O (NO3−) reveals nocturnal chemistry dominates nitrate production in Beijing haze. Atmos. Chem. Phys. 2018, 18, 14465–14476. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, W.Q.; Zhang, Y.L. Oxygen isotope anomaly (Δ17O) in atmospheric nitrate: A review. Chin. Sci. Bull. 2019, 64, 649–662. (In Chinese) [Google Scholar] [CrossRef]
- Lamsal, L.N.; Martin, R.V.; Padmanabhan, A.; Zhang, Q.; Sioris, C.E.; Chance, K.; Kurosu, T.P.; Newchurch, M.J. Application of satellite observations for timely updates to global anthropogenic NOx emission inventories. Geophys. Res. Lett. 2011, 38, 185–193. [Google Scholar] [CrossRef]
- Kato, N.; Akimoto, H. Anthropogenic emissions of SO2 and NOx in Asia: Emission inventories. Atmos. Environ. Part A Gen. Top. 1992, 26, 2997–3017. [Google Scholar] [CrossRef]
- Savard, M.M.; Cole, A.; Vet, R.; Smirnoff, A. The Δ17O and δ18O values of simultaneously collected atmospheric nitrates from anthropogenic sources—Implications for polluted air masses. Atmos. Chem. Phys. 2018, 18, 10373–10389. [Google Scholar] [CrossRef]
- Morin, S.; Savarino, J.; Bekki, S.; Gong, S.; Bottenheim, J.W. Signature of Arctic surface ozone depletion events in the isotope anomaly (Δ17O) of atmospheric nitrate. Atmos. Chem. Phys. 2007, 7, 1451–1469. [Google Scholar] [CrossRef]
- Michalski, G.; Scott, Z.; Kabiling, M.; Thiemens, M.H. First measurements and modeling of Δ17O in atmospheric nitrate. Geophys. Res. Lett. 2003, 30, GL017015. [Google Scholar] [CrossRef]
- Morin, S.; Savarino, J.; Frey, M.M.; Domine, F.; Jacobi, H.W.; Kaleschke, L.; Martns, J.M.F. Comprehensive isotopic composition of atmospheric nitrate in the Atlantic Ocean boundary layer from 65° S to 79° N. J. Geophys. Res. Atmos. 2009, 114, D05303. [Google Scholar] [CrossRef]
- Hoefs, J. Stable Isotope Geochemistry; Springer: Berlin/Heidelberg, Germany, 1973. [Google Scholar]
- Criss, R.E. Principles of Stable Isotope Distribution; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Matsuhisa, Y.; Goldsmith, J.R.; Clayton, R.N. Mechanisms of hydrothermal crystallization of quartz at 250-degrees-C and 15 Kbar. Geochim. Cosmochim. Acta 1978, 42, 173. [Google Scholar] [CrossRef]
- Kunasek, S.A.; AlexandeL, B.; Steig, E.J.; Hastings, M.G.; Gleason, D.J.; Jarvis, J.C. Measurements and modeling of Δ17O of nitrate in snowpits from Summit, Greenland. J. Geophys Res. 2008, 113, JD010103. [Google Scholar] [CrossRef]
- Miller, M.F. Isotopic fractionation and the quantification of 17O anomalies in the oxygen three-isotope system: An appraisal and geochemical significance. Geochim. Cosmochim. Acta 2002, 66, 1881–1889. [Google Scholar] [CrossRef]
- Meijer HA, J.; Li, W.J. The use of electrolysis for accurate Δ17O and δ18O isotope measurements in water. Isot. Environ. Health Stud. 1998, 34, 349–369. [Google Scholar] [CrossRef]
- Luz, B.; Barkan, E. The isotopic ratios 17O/16O and 18O/16O in molecular oxygen and their significance in biogeochemistry. Geochim. Cosmochim. Acta 2005, 69, 1099–1110. [Google Scholar] [CrossRef]
- Farquhar, J.; Savarino, J.; Jackson, T.L.; Thiemens, M.H. Evidence of atmospheric sulphur in the Martian regolith from sulphur isotopes in meteorites. Nature 2000, 404, 50–52. [Google Scholar] [CrossRef]
- Kaiser, J.; Hastings, M.G.; Houlton, B.Z.; Röckmann, T.; Sigman, D.M. Triple oxygen isotope analysis of nitrate using the denitrifier method and thermal decomposition of N2O. Anal. Chem. 2007, 79, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Frey, M.M.; Savarino, J.; Morin, S.; Erbland, J.; Martins JM, F. Photolysis imprint in the nitrate stable isotope signal in snow and atmosphere of East Antarctica and implications for reactive nitrogen cycling. Atmos. Chem. Phys. 2009, 9, 8681–8696. [Google Scholar] [CrossRef]
- Alexander, B. Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (Δ17O) of atmospheric nitrate. Atmos. Chem. Phys. 2009, 9, 5043–5056. [Google Scholar] [CrossRef]
- Patris, N.; Cliff, S.S.; Quinn, P.K.; Kasem, M.; Thiemens, M.H. Isotopic analysis of aerosol sulfate and nitrate during ITCT-2k2: Determination of different formation pathways as a function of particle size. J. Geophys. Res. Atmos. 2007, 112, D23301. [Google Scholar] [CrossRef]
- Savarino, J.; Morin, S.; Erbland, J.; Grannec, F.; Patey, M.D.; Vicars, W.; Alexander, B.; Achterberg, E.P. Isotopic composition of atmospheric nitrate in a tropical marine boundary layer. Proc. Natl. Acad. Sci. USA 2013, 110, 17668–17673. [Google Scholar] [CrossRef] [PubMed]
- Vicars, W.C.; Morin, S.; Savarino, J.; Wagner, N.L.; Erbland, J.; Vince, E.; Martins, J.M.F.; Lerner, B.M.; Quinn, P.K.; Coffman, D.J.; et al. Spatial and diurnal variability in reactive nitrogen oxide chemistry as reflected in the isotopic composition of atmospheric nitrate: Results from the CalNex 2010 field study. J. Geophys Res. Atmos. 2013, 118, 10567–10588. [Google Scholar] [CrossRef]
- Bourgeois, I.; Savarino, J.; Caillon, N.; Angot, H.; Barbero, A.; Delbart, F.; Voisin, D.; Clement, J.C. Tracing the fate of atmospheric nitrate in a subalpine watershed using Δ17O. Environ. Sci. Technol. 2018, 52, 5561–5570. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Zhang, W.; Fan, M.Y.; Li, J.; Fang, H.; Cao, F.; Lin, Y.C.; Wilkins, B.P.; Liu, X.; Bao, M.; et al. A diurnal story of Δ17O(NO3−) in urban Nanjing and its implication for nitrate aerosol formation. npj Clim. Atmos. Sci. 2022, 5, 50. [Google Scholar] [CrossRef]
- Qin, R.; Shi, G.T.; Chen, Z.L. Review of the study on the stable isotopes of nitrogen and oxygen in atmospheric nitrate. Adv. Earth Sci. 2019, 34, 124–139. (In Chinese) [Google Scholar] [CrossRef]
- Nelson, D.M.; Tsunogai, U.; Ding, D.; Ohyama, T.; Komatsu, D.D.; Nakagawa, F.; Noguchi, I.; Yamaguchi, T. Triple oxygen isotopes indicate urbanization affects sources of nitrate in wet and dry atmospheric deposition. Atmos. Chem. Phys. 2018, 18, 6381–6392. [Google Scholar] [CrossRef]
- Chang, C.; Langston, J.; Riggs, M.; Campbell, D.H.; Silva, S.R.; Kendall, C. A method for nitrate collection for delta δ15N and δ18O analysis from waters with low nitrate concentrations. Can. J. Fish. Aquat. Sci. 1999, 56, 1856–1864. [Google Scholar] [CrossRef]
- Michalski, G.; Savarino, J.; Böhlke, J.K.; Thiemens, M. Determination of the total oxygen isotopic composition of nitrate and the calibration of a Δ17O nitrate reference material. Anal. Chem. 2002, 74, 4989–4993. [Google Scholar] [CrossRef] [PubMed]
- McIlvin, M.R.; Altabet, M.A. Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater. Anal. Chem. 2005, 77, 5589–5595. [Google Scholar] [CrossRef] [PubMed]
- Sigman, D.M.; Casciotti, K.L.; Andreani, M.; Barford, C.; Galanter, M.; Böhlke, J.K. A Bacterial Method for the Nitrogen Isotopic Analysis of Nitrate in Seawater and Freshwater. Anal. Chem. 2001, 73, 4145–4153. [Google Scholar] [CrossRef]
- Soto, D.X.; Koehler, G.; Hobson, K.A. Combining Denitrifying Bacteria and Laser Spectroscopy for Isotopic Analyses (δ15N, δ18O) of Dissolved Nitrate. Anal. Chem. 2015, 87, 7000–7005. [Google Scholar] [CrossRef] [PubMed]
- Casciotti, K.L.; Sigman, D.M.; Hastings, M.G.; Böhlke, J.K.; Hilkert, A. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal. Chem. 2002, 4, 4905–4912. [Google Scholar] [CrossRef]
- Alexander, B. Global inorganic nitrate production mechanisms: Comparison of a global model with nitrate isotope observations. Atmos. Chem. Phys. 2020, 20, 3859–3877. [Google Scholar] [CrossRef]
- Brown, S.S. Budgets for nocturnal VOC oxidation by nitrate radicals aloft during the 2006 Texas Air Quality Study. J. Geophys. Res. Atmos. 2011, 116, D24305. [Google Scholar] [CrossRef]
- Preunkert, S.; Jourdain, B.; Legrand, M.; Udisti, R.; Becagli, S.; Cerri, O. Seasonality of sulfur species (dimethyl sulfide, sulfate, and methanesulfonate) in Antarctica: Inland versus coastal regions. J. Geophys. Res. Atmos. 2008, 113, D15302. [Google Scholar] [CrossRef]
- Fan, M.-Y.; Zhang, Y.; Lin, Y.; Cao, F.; Zhao, Z.; Sun, Y.; Qiu, Y.; Fu, P.; Wang, Y. Changes of emission sources to nitrate aerosols in Beijing after the clean air actions: Evidence from dual isotope compositions. J. Geophys. Res. Atmos. 2020, 125, e2019JD031998. [Google Scholar] [CrossRef]
- Burkholder, J.B.; Sander, S.P.; Abbatt, J.P.D.; Barker, J.R.; Huie, R.E.; Kolb, C.E.; Kurylo, M.J.; Orkin, V.L.; Wilmouth, D.M.; Wine, P.H. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 18; California Institute of Technology: Pasadena, CA, USA, 2015).
- Tan, F.; Tong, S.; Jing, B.; Hou, S.; Liu, Q.; Li, K.; Zhang, Y.; Ge, M. Heterogeneous reactions of NO2 with CaCO3–(NH4)2SO4 mixtures at different relative humidities. Atmos. Chem. Phys. 2016, 16, 8081–8093. [Google Scholar] [CrossRef]
- Crowley, J.N.; Ammann, M.; Cox, R.A.; Hynes, R.G.; Jenkin, M.E.; Mellouki, A.; Rossi, M.J.; Troe, J.; Wallington, T.J. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V—Heterogeneous reactions on solid substrates. Atmos. Chem. Phys. 2010, 10, 9059–9223. [Google Scholar] [CrossRef]
- Chan, Y.; Evans, M.J.; He, P.; Holmes, C.D.; Jaeglé, L.; Kasibhatla, P.; Liu, X.; Sherwen, T.; Thornton, J.A.; Wang, X.; et al. Heterogeneous nitrate production mechanisms in intense haze events in the North China Plain. J. Geophys. Res. Atmos. 2021, 126, e2021JD034688. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Chen, H.; Yang, X.; Chen, J.; Geng, F. Particulate nitrate formation in a highly polluted urban area: A case study by single-particle mass spectrometry in Shanghai. Environ. Sci. Technol. 2009, 43, 3061–3066. [Google Scholar] [CrossRef]
- Wang, H.; Lu, K.; Guo, S.; Wu, Z.; Shang, D.; Tan, Z.; Wang, Y.; Le Breton, M.; Lou, S.; Tang, M.; et al. Efficient N2O5 uptake and NO3 oxidation in the outflow of urban Beijing. Atmos. Chem. Phys. 2018, 18, 9705–9721. [Google Scholar] [CrossRef]
- Thornton, J.A.; Kercher, J.P.; Riedel, T.P.; Wagner, N.L.; Cozic, J.; Holloway, J.S.; Dubé, W.P.; Wolfe, G.M.; Quinn, P.K.; Middlebrook, A.M.; et al. A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry. Nature 2010, 464, 271–274. [Google Scholar] [CrossRef]
- Evans, M.J. Coupled evolution of BrOx-ClOx-HOx-NOx chemistry during bromine-catalyzed ozone depletion events in the Arctic boundary layer. J. Geophys. Res. 2003, 108, 8368. [Google Scholar] [CrossRef]
- Saiz-Lopez, A.; Plane, J.M.C.; Mahajan, A.S.; Anderson, P.S.; Bauguitte, S.J.-B.; Jones, A.E.; Roscoe, H.K.; Salmon, R.A.; Bloss, W.J.; Lee, J.D.; et al. On the vertical distribution of boundary layer halogens over coastal Antarctica: Implications for O3, HOx, NOx and the Hg lifetime. Atmos. Chem. Phys. 2008, 8, 887–900. [Google Scholar] [CrossRef]
- Zhou, W.; Zhao, J.; Ouyang, B.; Mehra, A.; Xu, W.; Wang, Y.; Bannan, T.J.; Worrall, S.D.; Priestley, M.; Bacak, A.; et al. Production of N2O5 and ClNO2 in summerm urban Beijing, China. Atmos. Chem. Phys. Discuss. 2018, 349, 11581–11597. [Google Scholar] [CrossRef]
- Tham, Y.J.; Wang, Z.; Li, Q.; Yun, H.; Wang, W.; Wang, X.; Xue, L.; Lu, K.; Ma, N.; Bohn, B.; et al. Significant concentrations of nitryl chloride sustained in the morning investigations of the causes and impacts on ozone production in a polluted region of northern China. Atmos. Chem. Phys. 2016, 16, 14959–14977. [Google Scholar] [CrossRef]
- Zheng, G.J.; Duan, F.K.; Su, H.; Ma, Y.L.; Cheng, Y.; Zheng, B.; Zhang, Q.; Huang, T.; Kimoto, T.; Chang, D.J.A.C.; et al. Exploring the severe winter haze in Beijing the impact of synoptic weather, regional transport and heterogeneous reactions. Atmos. Chem. Phys. 2015, 15, 2969–2983. [Google Scholar] [CrossRef]
- Rao, Z.; Chen, Z.; Liang, H.; Huang, L.; Huang, D. CarbonyI compounds over urban Beijing Concentrations on haze and non-haze days and effects on radical chemistry. Atmos. Environ. 2016, 124, 207–216. [Google Scholar] [CrossRef]
- Wang, H.; Chen, J.; Lu, K. Development of a portable cavity—Enhanced absorption spectrometer for the measurement ambient NO3 and N2O5 experimental setup, lab characterizations, and field applications in a polluted urban environment. Atmos. Meas. Tech. 2017, 10, 1465. [Google Scholar] [CrossRef]
- Wang, H.; Lu, K.; Chen, X.; Zhu, Q.; Chen, Q.; Guo, S.; Jiang, M.; Li, X.; Shang, D.; Tan, Z.; et al. High N2O5 concentrations observed in urban Beijing Implications of a large nitrate formation pathway. Environ. Sci. Technol. Lett. 2017, 4, 416–420. [Google Scholar] [CrossRef]
- Li, Z.; Hu, R.; Xie, P.; Wang, H.; Lu, K.; Wang, D. Intercomparison of in situ CRDS and CEAS for measurements of atmospheric N2O5 in Beijing, China. Sci. Total Environ. 2018, 613, 131–139. [Google Scholar] [CrossRef]
- Su, X.; Tie, X.; Li, G.; Cao, J.; Huang, R.; Feng, T.; Long, X.; Xu, R. Effect of hydrolysis of N2O5 on nitrate and ammonium formation m Beijing China WRF—Chem model simulation. Sci. Total Environ. 2017, 579, 221–229. [Google Scholar] [CrossRef]
- Pathak, R.K.; Wu, W.S.; Wang, T. Summertime PM2.5 ionic species in four major cities of China nitrate formation in an 631 ammonia deficient atmosphere. Atmos. Chem. Phys. 2009, 9, 1711–1722. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Guo, J.; Wang, Z.; Zhang, M. Observation of nitrous acid (HONO) in Beijing, China Seasonal variation, nocturnal formation and daytime budget. Sci. Total Environ. 2017, 587, 350–359. [Google Scholar] [CrossRef]
- Tong, S.; Hou, S.; Zhang, Y.; Chu, B.; Liu, Y.; He, H.; Zhao, P.; Ge, M. Comparisons of measured nitrous acid (HONO) concentrations in a pollution period at urban and suburban Beijing, in autumn of 2014, in autumn of 2014. Sci. China Chem. 2015, 58, 1393–1402. [Google Scholar] [CrossRef]
- Browne, E.C.; Cohen, R.C. Effects of biogenic nitrate chemistry on the NOx lifetime in remote continental regions. Atmos. Chem. Phys. 2012, 12, 11917–11932. [Google Scholar] [CrossRef]
- Kasibhatla, P.; Sherwen, T.; Evans, M.J.; Carpenter, L.J.; Reed, C.; Alexander, B.; Chen, Q.; Sulprizio, M.P.; Lee, J.D.; Read, K.A.; et al. Global impact of nitrate photolysis in sea-salt aerosol on NOx, OH, and O3 in the marine boundary layer. Atmos. Chem. Phys. 2018, 18, 11185–11203. [Google Scholar] [CrossRef]
- Müller, J.F.; Peeters, J.; Stavrakou, T. Fast photolysis of carbonyl nitrates from isoprene. Atmos. Chem. Phys. 2014, 14, 2497–2508. [Google Scholar] [CrossRef]
- Xu, L.; Guo, H.; Boyd, C.M.; Klein, M.; Bougiatioti, A.; Cerully, K.M.; Hite, J.R.; Isaacman-VanWertz, G.; Kreisberg, N.M.; Knote, C.; et al. Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States. P. Natl. Acad. Sci. USA. 2015, 112, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Rindelaub, J.D.; McAvey, K.M.; Shepson, P.B. The photochemical production of organic nitrates from α-pinene and loss via acid-dependent particle phase hydrolysis. Atmos. Environ. 2015, 100, 193–201. [Google Scholar] [CrossRef]
- Jacobs, M.I.; Burke, W.J.; Elrod, M.J. Kinetics of the reactions of isoprene-derived hydroxynitrates: Gas phase epoxide formation and solution phase hydrolysis. Atmos. Chem. Phys. 2014, 14, 8933–8946. [Google Scholar] [CrossRef]
- Legrand, M.; Preunkert, S.; Frey, M.; Bartels-Rausch, T.; Kukui, A.; King, M.D.; Savarino, J.; Kerbrat, M.; Jourdain, B. Large mixing ratios of atmospheric nitrous acid (HONO) at Concordia (east Antarctic plateau) in summer: A strong source from surface snow? Atmos. Chem. Phys. 2014, 14, 9963–9976. [Google Scholar] [CrossRef]
- Dentener, F.; Williams, J.; Metzger, S. Aqueous phase reaction of HNO4: The impact on tropospheric chemistry. J. Geophys. Res. Atmos. 2002, 41, 109–133. [Google Scholar]
- Régimbal, J.M.; Mozurkewich, M. Peroxynitric acid decay mechanisms and kinetics at low PH. J. Phys. Chem. A 1997, 101, 8822–8829. [Google Scholar] [CrossRef]
- Løgager, T.; Sehested, K. Formation and decay of peroxynitrous acid: A pulse radiolysis study. J. Phys. Chem. 1993, 97, 6664–6669. [Google Scholar] [CrossRef]
- Amel, D.F. Trends in the structure of federally insured depository institutions. Fed. Reserv. Bull. 1996, 82, 1984–1994. [Google Scholar]
- Mayer, B.; Boyer, E.W.; Goodale, C.; Jaworski, N.A.; van Breemen, N.; Howarth, R.W.; Seitzinger, S.; Billen, G.; Lajtha, K.; Nadelhoffer, K.; et al. Sources of nitrate in rivers draining sixteen watersheds in the northeastern U.S.: Isotopic constraints. Biogeochemistry 2002, 57, 171–197. [Google Scholar]
- Miller, D.J.; Wojtal, P.K.; Clark, S.C.; Hastings, M.G. Vehicle NOx emission plume isotopic signatures: Spatial variability across the eastern United States. J. Geophys. Res. Atmos. 2017, 8, 4698–4717. [Google Scholar] [CrossRef]
- Kendall, C.; Elliott, E.M.; Wankel, S.D. Tracing Anthropogenic Inputs of Nitrogen to Ecosystems. In Stable Isotopes in Ecology and Environmental Science, 2nd ed.; Blackwell: Oxford, UK, 2007. [Google Scholar]
- Wassenaar, L.I. Evaluation of the origin and fate of nitrate in the abbotsford aquifer using the isotopes of 15N and 18O in NO3−. Appl. Geochem. 1995, 10, 391–405. [Google Scholar] [CrossRef]
- Felix, J.D.; Elliott, E.M.; Shaw, S.L. Nitrogen isotopic composition of coal-fired power plant NOx: Influence of emission controls and implications for global emission inventories. Environ. Sci. Technol. 2012, 46, 3528–3535. [Google Scholar] [CrossRef] [PubMed]
- Freyer, H.D. Seasonal variation of 15N/14N ratios in atmospheric nitrate species. Tellus Ser. B—Chem. Phys. Meteorol. 1991, 43, 30–44. [Google Scholar] [CrossRef]
- Shi, G.; Buffen, A.; Ma, H.; Hu, Z.; Sun, B.; Li, C.; Yu, J.; Ma, T.; An, C.; Jiang, S.; et al. Distinguishing summertime atmospheric production of nitrate across the East Antarctic Ice Sheet. Geochim. Cosmochim. Acta. 2018, 231, 1–14. [Google Scholar] [CrossRef]
- Lyons, J.R. Transfer of mass-independent fractionation in ozone to other oxygen-containing radicals in the atmosphere. Geophys. Res. Lett. 2001, 28, 3231–3234. [Google Scholar] [CrossRef]
- Vicars, W.C.; Savarino, J. Quantitative constraints on the 17O-excess (Δ17O) signature of surface ozone: Ambient measurements from 50° N to 50° S using the nitrite-coated filter technique. Geochim. Cosmochim. Acta 2014, 135, 270–287. [Google Scholar] [CrossRef]
- Li, D.J.; Wang, X.M. Nitrogen isotopic signature of soil-released nitric oxide (NO) after fertilizer application. Atmos. Environ. 2008, 42, 4747–4754. [Google Scholar] [CrossRef]
- Felix, J.D.; Elliott, E.M. Isotopic composition of passively collected nitrogen dioxide emissions: Vehicle, soil and livestock source signatures. Atmos. Environ. 2014, 92, 359–366. [Google Scholar] [CrossRef]
- Heaton, T.H.E. 15N/14N ratios of NOx from vehicle engines and coal-fired power stations. Tellus B 1990, 42, 304–307. [Google Scholar] [CrossRef]
- Hoering, T. The isotope composition of the ammonia and nitrateion in rain. Geochim. Et Cosmochim. Acta 1958, 12, 97–102. [Google Scholar] [CrossRef]
- Fibiger, D.L.; Hastings, M.G. First Measurements of the nitrogen isotopic composition of NOx from biomass burning. Environ. Sci. Technol. 2016, 50, 11569–11574. [Google Scholar] [CrossRef] [PubMed]
- Hastings, M.G. Evaluating source, chemistry and climate change based upon the isotopic composition of nitrate in ice cores. IOP Conf. Ser. Earth Environ. Sci. 2010, 9, 012002. [Google Scholar] [CrossRef]
- Bowman, C.T. Kinetics of pollutant formation and destruction in combustion. Prog. Energy Combust. Sci. 1975, 1, 33–45. [Google Scholar] [CrossRef]
- Hayhurst, A.N.; Vince, I.M. Nitric oxide formation from N2 in flames: The importance of “prompt” NO. Prog. Energy Combust. Sci. 1980, 6, 35–51. [Google Scholar] [CrossRef]
- Toof, J.L. A Model for the Prediction of Thermal, Prompt, and Fuel NOx Emissions From Combustion Turbines. J. Eng. Gas Turbines Power 1986, 108, 340–347. [Google Scholar] [CrossRef]
- Heaton, T.H.E. 15N/14N ratios of nitrate and ammonium in rain at Pretoria, South Africa. Atmos. Environ. 1987, 21, 843–852. [Google Scholar] [CrossRef]
- Walters, W.W.; Tharp, B.D.; Fang, H.; Kozak, B.J.; Michalski, G. Nitrogen isotope composition of thermally produced NOX from various fossil-fuel combustion sources. Environ. Sci. Technol. 2015, 49, 11363–11371. [Google Scholar] [CrossRef]
- Widory, D. Nitrogen isotopes: Tracers of origin and processes affecting PM10 in the atmosphere of Paris. Atmos. Environ. 2007, 41, 2382–2390. [Google Scholar] [CrossRef]
- Guha, T.; Lin, C.T.; Bhattacharya, S.K.; Mahajan, A.S.; Ou-Yang, C.F.; Lan, Y.P.; Hsu, S.C.; Liang, M.C. Isotopic ratios of nitrate in aerosol samples from Mt. Lulin, a high-altitude station in central Taiwan. Atmos. Environ. 2017, 154, 53–69. [Google Scholar] [CrossRef]
- Morin, S.; Sander, R.; Savarino, J. Simulation of the diurnal variations of the oxygen isotope anomaly (Δ17O) of reactive at-mospheric species. Atmos. Chem. Phys. 2011, 11, 3653. [Google Scholar] [CrossRef]
- Berhanu, T.A.; Meusinger, C.; Erbland, J.; Jost, R.; Bhattacharya, S.K.; Johnson, M.S.; Savarino, J. Laboratory study of nitrate photolysis in Antarctic snow. II. Isotopic effects and wavelength dependence. J. Chem. Phys. 2014, 140, 244306. [Google Scholar] [CrossRef] [PubMed]
- Erbland, J.; Vicars, W.C.; Savarino, J.; Morin, S.; Frey, M.M.; Frosini, D.; Vince, E.; Martins, J.M.F. Air-snow transfer of nitrate on the East Antarctic Plateau—Part 1: Isotopic evidence for a photolytically driven dynamic equilibrium in summer. Atmos. Chem. Phys. 2013, 13, 6403–6419. [Google Scholar] [CrossRef]
- Arthern, R.J.; Winebrenner, D.P.; Vaughan, D.G. Antarctic snow accumulation mapped using polarization of 4.3 cm wavelength microwave emission. Atmospheres 2006, 111. [Google Scholar] [CrossRef]
- Frey, M.M.; Stewart, R.W.; McConnell, J.R.; Bales, R.C. Atmospheric hydroperoxides in West Antarctica: Links to stratospheric ozone and atmospheric oxidation capacity. J. Geophys. Res. 2005, 110, D23301. [Google Scholar] [CrossRef]
- Blunier, T.; Floch, G.L.; Jacobi, H.W.; Quansah, E. Isotopic view on nitrate loss in Antarctic surface snow. Geophys. Res. Lett. 2005, 32, L13501. [Google Scholar] [CrossRef]
- Shi, G.T.; Qin, R.; Ma, H.M.; Hu, Z.Y.; An, C.L.; Jiang, S.; Li, Y.S. A Review of the stable isotopic composition of nitrate in Antarctic snow and ice east. Chin. J. Polar Res. 2019, 31, 117–127. (In Chinese) [Google Scholar]
- McCabe, J.R.; Boxe, C.S.; Colussi, A.J.; Hoffman, M.R.; Thiemens, M.H. Oxygen isotopic fractionation in the photochemistry of nitrate in water and ice. J. Geophys. Res. 2005, 110, D15310. [Google Scholar] [CrossRef]
- Buffen, A.; Hastings, M.G. The isotopic composition of nitrate in west Antarctica at present and since the last glacial stage. In Proceedings of the American Geophysical Union, Fall Meeting 2014, San Francisco C31C-0310 (2014), San Francisco, TX, USA, 15–19 December 2014. [Google Scholar]
- Zatko, M.; Geng, L.; Alexander, B.; Sofen, E.; Klein, K. The impact of snow nitrate photolysis on boundary layer chemistry and the recycling and redistribution of reactive nitrogen across Antarctica and Greenland in a global chemical transport model. Atmos. Chem. Phys. 2016, 16, 2819–2842. [Google Scholar] [CrossRef]
- Ginot, P.; Kull, C.; Schwikowski, M.; Schotterer, U.; Gäggeler, H.W. Effects of post depositional processes on snowcomposition of asubtropical glacier (Cerro Tapado, Chilean Andes). J. Geophys. Res. Atmos. 2001, 106, 32375–32386. [Google Scholar]
- Mcfall, A.S.; Edwards, K.C.; Anastasio, C. Nitrate photochemistry at the air-ice interface and in other ice reservoirs. Environ. Sci. Technol. 2018, 52, 5710–5717. [Google Scholar] [CrossRef] [PubMed]
- Dibb, J.E.; Arsenault, M.; Peterson, M.C.; Honrath, R.E. Fast nitrogen oxide photochemistry in Summit, Greenland snow. Atmos. Environ. 2002, 36, 2501–2511. [Google Scholar] [CrossRef]
- Miller, C.E.; Yung, Y.L. Photo-induced isotopic fractionation. J. Geophys. Res. 2000, 105, 29039–29051. [Google Scholar] [CrossRef]
- Anastasio, C.; Galbavy, E.S.; Hutterli, M.A.; Burkhart, J.F.; Friel, D.K. Photoformation of hydroxyl radical on snow grains at Summit, Greenland. Atmos. Environ. 2007, 41, 5110–5121. [Google Scholar] [CrossRef]
- Noro, K.; Hattori, S.; Uemura, R.; Fukui, K.; Hirabayashi, M.; Kawamura, K.; Motoyama, H.; Takenaka, N.; Yoshida, N. Spatial variation of isotopic compositions of snowpack nitrate related to post-depositional processes in eastern Dronning Maud Land, East Antarctica. Geochem. J. 2018, 52, e7–e14. [Google Scholar] [CrossRef]
Name | Notation | Formula | Parametric |
---|---|---|---|
Stable isotope | δ18O | R = 18O/16O | |
Stable isotope | δ17O | R = 17O/16O | |
Stable isotope | δ15N | R = 15N/14N | |
Oxygen anomaly of nitrate ion | Δ17O | Δ17O = δ17O − 0.52 × δ18O | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Niu, H.; Xiang, Y. A Study of Chemical Processes of Nitrate in Atmospheric Aerosol and Snow Based on Stable Isotopes. Atmosphere 2024, 15, 59. https://doi.org/10.3390/atmos15010059
Chen M, Niu H, Xiang Y. A Study of Chemical Processes of Nitrate in Atmospheric Aerosol and Snow Based on Stable Isotopes. Atmosphere. 2024; 15(1):59. https://doi.org/10.3390/atmos15010059
Chicago/Turabian StyleChen, Mengxue, Hewen Niu, and Yankun Xiang. 2024. "A Study of Chemical Processes of Nitrate in Atmospheric Aerosol and Snow Based on Stable Isotopes" Atmosphere 15, no. 1: 59. https://doi.org/10.3390/atmos15010059
APA StyleChen, M., Niu, H., & Xiang, Y. (2024). A Study of Chemical Processes of Nitrate in Atmospheric Aerosol and Snow Based on Stable Isotopes. Atmosphere, 15(1), 59. https://doi.org/10.3390/atmos15010059