Projected Changes of Wind Energy Input to Surface Waves in the North Indian Ocean Based on CMIP6
Abstract
:1. Introduction
2. Data and Methods
2.1. CMIP6 and ERA5 Data
S/N | Model | Institute | Resolution (lon × lat) | References |
---|---|---|---|---|
1 | ACCESS6-CM2 | Commonwealth Scientific and Industrial Research Organisation | 1.88 × 1.25 | [61,62] |
2 | BCC-CSM2-MR | Beijing Climate Center (BCC) and China Meteorological Administration (CMA) | 1.13 × 1.13 | [63,64] |
3 | CMCC-CM2-SR5 | Euro-Mediterranean Centre on Climate Change coupled climate mode | 1.25 × 0.94 | [65,66] |
4 | GFDL-ESM4 | Geophysical Fluid Dynamics Laboratory (GFDL) | 1.25 × 1.00 | [67,68] |
5 | INM-CM4-8 | Institute of Numerical Mathematics | 2.00 × 1.50 | [69,70] |
6 | INM-CM5-0 | Institute of Numerical Mathematics | 2.00 × 1.50 | [71,72] |
7 | IPSL-CM6A-LR | Institute Pierre-Simon Laplace (IPSL) | 2.50 × 1.26 | [73,74] |
8 | MIROC6 | Japanese Modeling Community | 1.41 × 1.41 | [75,76] |
9 | MPI-ESM1-2-LR | Max Planck Institute | 1.88 × 1.88 | [77,78] |
10 | MRI-ESM2-0 | Meteorological Research Institute (MRI) | 1.13 × 1.13 | [79,80] |
2.2. Methodology
2.2.1. Study Domain
2.2.2. Surface Wave Power
2.2.3. The Annual Mean or Seasonal Mean Wind Energy Input Rate
3. Results
3.1. Evaluation of Historical CMIP6 Runs
3.2. Projected Variation in Wind Energy Input to the Sea Surface Waves in the North Indian Ocean
3.3. Low-Frequency Variations and Trends in Energy Input of Wind Stress Direction Surface Waves under Different Scenarios
4. Discussion
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bollasina, M.A.; Ming, Y.; Ramaswamy, V. Anthropogenic aerosols and the weakening of the South Asian summer mon soon. Science 2011, 334, 502–505. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, D.; Rasch, P.J.; Wang, H.; Yoon, J.H. Climate response of the South Asian monsoon system to anthropogenic aerosols. J. Geophys. Res. Atmos. 2012, 117, D13. [Google Scholar] [CrossRef]
- Annamalai, H.; Hafner, J.; Sooraj, K.; Pillai, P. Global warming shifts the monsoon circulation, drying South Asia. J. Climate 2013, 26, 2701–2718. [Google Scholar] [CrossRef]
- Ayantika, D.; Krishnan, R.; Singh, M.; Swapna, P.; Sandeep, N.; Prajeesh, A.; Vellore, R. Understanding the combined effects of global warming and anthropogenic aerosol forcing on the South Asian monsoon. Clim. Dynam. 2021, 56, 1643–1662. [Google Scholar] [CrossRef]
- Roxy, M.K.; Ritika, K.; Terray, P.; Murtugudde, R.; Ashok, K.; Goswami, B. Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nat. Commun. 2015, 6, 7423. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Ghosh, S.; Oglesby, R.; Pathak, A.; Chandrasekharan, A.; Ramsankaran, R. Weakening of Indian summer monsoon rainfall due to changes in land use land cover. Sci. Rep. 2016, 6, 32177. [Google Scholar] [CrossRef] [PubMed]
- Roxy, M.K.; Chaithra, S.T. Impacts of Climate Change on the Indian Summer Monsoon; Ministry of environment, Forest and Climate Change, Government of India: New Delhi, India, 2018; pp. 21–37. ISBN 978-81-933131-6-9. [Google Scholar]
- Guo, Q.; Xu, X.; Zhang, K.; Li, Z.; Huang, W.; Mansaray, L.R.; Liu, W.; Wang, X.; Gao, J.; Huang, J. Assessing global ocean wind energy resources using multiple satellite data. Remote Sens. 2018, 10, 100. [Google Scholar] [CrossRef]
- Hamza, F.R.; Priotti, J.P. Maritime trade and piracy in the Gulf of Aden and the Indian Ocean (1994–2017). J. Transp. Secur. 2020, 13, 141–158. [Google Scholar] [CrossRef]
- Reguero, B.G.; Losada, I.J.; Méndez, F.J. A recent increase in global wave power as a consequence of oceanic warming. Nat. Commun. 2019, 10, 205. [Google Scholar] [CrossRef]
- Rascle, N.; Ardhuin, F.; Queffeulou, P.; Croizé-Fillon, D. A global wave parameter database for geophysical applications. Part 1: Wave-current–turbulence interaction parameters for the open ocean based on traditional parameterizations. Ocean Model. 2008, 25, 154–171. [Google Scholar] [CrossRef]
- Wang, W.; Huang, R.X. Wind energy input to the surface waves. J. Phys. Oceanogr. 2004, 34, 1276–1280. [Google Scholar] [CrossRef]
- Munk, W.; Wunsch, C. Abyssal recipes II: Energetics of tidal and wind mixing. Deep Sea Res. Part I Oceanogr. Res. Pap. 1998, 45, 1977–2010. [Google Scholar] [CrossRef]
- Wang, W.; Huang, R.X. Wind energy input to the Ekman layer. J. Phys. Oceanogr. 2004, 34, 1267–1275. [Google Scholar] [CrossRef]
- Wunsch, C. Is the ocean speeding up? Ocean surface energy trends. J. Phys. Oceanogr. 2020, 50, 3205–3217. [Google Scholar] [CrossRef]
- Zippel, S.F.; Farrar, J.T.; Zappa, C.J.; Plueddemann, A.J. Parsing the kinetic energy budget of the ocean surface mixed layer. Geophys. Res. Lett. 2022, 49, e2021GL095920. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, R.; Wunsch, C. The distribution of eddy kinetic and potential energies in the global ocean. Tellus A 2010, 62, 92–108. [Google Scholar] [CrossRef]
- Teng, Y.; Yang, Y.; Qiao, F.; Lu, J.; Yin, X. Energy budget of surface waves in the global ocean. Acta Oceanol. Sin. 2009, 28, 5–10. [Google Scholar] [CrossRef]
- Sooraj, K.; Terray, P.; Mujumdar, M. Global warming and the weakening of the Asian summer monsoon circulation: As sessments from the CMIP5 models. Clim. Dynam. 2015, 45, 233–252. [Google Scholar] [CrossRef]
- Moon, S.; Ha, K.J. Future changes in monsoon duration and precipitation using CMIP6. NPJ Clim. Atmos. Sci. 2020, 3, 45. [Google Scholar] [CrossRef]
- Ha, K.J.; Moon, S.; Timmermann, A.; Kim, D. Future changes of summer monsoon characteristics and evaporative demand over Asia in CMIP6 simulations. Geophys. Res. Lett. 2020, 47, e2020GL087492. [Google Scholar] [CrossRef]
- Reyers, M.; Moemken, J.; Pinto, J.G. Future changes of wind energy potentials over Europe in a large CMIP5 multi-model ensemble. Int. J. Climatol. 2016, 36, 783–796. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Inter comparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Carvalho, D.; Rocha, A.; Gómez-Gesteira, M.; Santos, C.S. Potential impacts of climate change on European wind energy resource under the CMIP5 future climate projections. Renew. Energy 2017, 101, 29–40. [Google Scholar] [CrossRef]
- Zheng, C.W.; Li, X.Y.; Luo, X.; Chen, X.; Qian, Y.H.; Zhang, Z.H.; Gao, Z.S.; Du, Z.B.; Gao, Y.B.; Chen, Y.G. Projection of future global offshore wind energy resources using CMIP data. Atmos.-Ocean 2019, 57, 134–148. [Google Scholar] [CrossRef]
- Qian, H.; Zhang, R. Future changes in wind energy resource over the Northwest Passage based on the CMIP6 climate projections. Int. J. Energy Res. 2021, 45, 920–937. [Google Scholar] [CrossRef]
- Akinsanola, A.A.; Ogunjobi, K.O.; Abolude, A.T.; Salack, S. Projected changes in wind speed and wind energy potential over West Africa in CMIP6 models. Environ. Res. Lett. 2021, 16, 044033. [Google Scholar] [CrossRef]
- Wu, J.; Shi, Y.; Xu, Y. Evaluation and projection of surface wind speed over China based on CMIP6 GCMs. J. Geophys. Res. Atmos. 2020, 125, e2020JD033611. [Google Scholar] [CrossRef]
- Zha, J.; Shen, C.; Li, Z.; Wu, J.; Zhao, D.; Fan, W.; Deng, K. Projected changes in global terrestrial near-surface wind speed in 1.5 °C−4.0 °C global warming levels. Environ. Res. Lett. 2021, 16, 114016. [Google Scholar] [CrossRef]
- Ma, X.; Li, Y.; Li, Z. The projection of canadian wind energy potential in future scenarios using a convection-permitting regional climate model. Energy Rep. 2022, 8, 7176–7187. [Google Scholar] [CrossRef]
- Zhou, T.J.; Zou, L.W.; Chen, X.L. Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP6). Clim. Chang. Res. 2019, 15, 445–456. [Google Scholar] [CrossRef]
- Kumar, P.; Sarthi, P.P. Intraseasonal variability of Indian Summer Monsoon Rainfall in CMIP6 models simulation. Theor. Appl. Climatol. 2021, 145, 687–702. [Google Scholar] [CrossRef]
- Zhang, S.; Li, X. Future projections of offshore wind energy resources in China using CMIP6 simulations and a deep learning-based downscaling method. Energy 2021, 217, 119321. [Google Scholar] [CrossRef]
- Carvalho, D.; Rocha, A.; Costoya, X.; DeCastro, M.; Gómez-Gesteira, M. Wind energy resource over Europe under CMIP6 future climate projections: What changes from CMIP5 to CMIP6. Renew. Sustain. Energy Rev. 2021, 151, 111594. [Google Scholar] [CrossRef]
- Hahmann, A.N.; García-Santiago, O.; Peña, A. Current and future wind energy resources in the North Sea according to CMIP6. Wind Energy Sci. 2022, 7, 2373–2391. [Google Scholar] [CrossRef]
- Deng, H.; Hua, W.; Fan, G. Evaluation and projection of near-surface wind speed over China based on CMIP6 models. Atmosphere 2021, 12, 1062. [Google Scholar] [CrossRef]
- Martinez, A.; Iglesias, G. Climate change impacts on wind energy resources in North America based on the CMIP6 projections. Sci. Total Environ. 2022, 806, 150580. [Google Scholar] [CrossRef] [PubMed]
- Karnauskas, K.B.; Lundquist, J.K.; Zhang, L. Southward shift of the global wind energy resource under high carbon dioxide emissions. Nat. Geosci. 2018, 11, 38–43. [Google Scholar] [CrossRef]
- Wang, B.; Jin, C.; Liu, J. Understanding future change of global monsoons projected by CMIP6 models. J. Clim. 2020, 33, 6471–6489. [Google Scholar] [CrossRef]
- Costoya, X.; DeCastro, M.; Santos, F.; Sousa, M.C.; Gómez-Gesteira, M. Projections of wind energy resources in the Caribbean for the 21st century. Energy 2019, 178, 356–367. [Google Scholar] [CrossRef]
- Pourali, M.; Kavianpour, M.R.; Kamranzad, B.; Alizadeh, M.J. Future variability of wave energy in the Gulf of Oman using a high resolution CMIP6 climate model. Energy 2023, 262, 125552. [Google Scholar] [CrossRef]
- Hu, S.; Sprintall, J.; Guan, C.; McPhaden, M.J.; Wang, F.; Hu, D.; Cai, W. Deep-reaching acceleration of global mean ocean circulation over the past two decades. Sci. Adv. 2020, 6, eaax7727. [Google Scholar] [CrossRef]
- Wu, K.; Liu, B. Stokes drift−induced and direct wind energy inputs into the Ekman layer within the Antarctic Circumpo lar Current. J. Geophys. Res.Oceans 2008, 113, C10. [Google Scholar] [CrossRef]
- Huang, R.X.; Wang, W.; Liu, L.L. Decadal variability of wind-energy input to the world ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 2006, 53, 31–41. [Google Scholar] [CrossRef]
- Zhai, X.; Wunsch, C. On the variability of wind power input to the oceans with a focus on the subpolar North Atlantic. J. Clim. 2013, 26, 3892–3903. [Google Scholar] [CrossRef]
- Kilbourne, B.F.; Girton, J.B. Quantifying high-frequency wind energy flux into near-inertial motions in the southeast Pacific. J. Phys. Oceanogr. 2015, 45, 369–386. [Google Scholar] [CrossRef]
- Brown, J.N.; Fedorov, A.V. Mean energy balance in the tropical Pacific Ocean. J. Mar. Res. 2008, 66, 1–23. [Google Scholar] [CrossRef]
- Zhai, X.; Greatbatch, R.J. Wind work in a model of the northwest Atlantic Ocean. Geophys. Res. Lett. 2007, 34, 4. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, C.R.; Yang, Q.; Guan, Y.P. North part of the North Pacific is a major gateway of wind energy into the ocean. Haiyang Xuebao 2021, 43, 40–47. [Google Scholar]
- Hammar, L.; Ehnberg, J.; Mavume, A.; Cuamba, B.C.; Molander, S. Renewable ocean energy in the Western Indian Ocean. Renew. Sust. Energ. Rev. 2012, 16, 4938–4950. [Google Scholar] [CrossRef]
- Yang, S.; Duan, S.; Fan, L.; Zheng, C.; Li, X.; Li, H.; Xu, J.; Wang, Q.; Feng, M. 10-year wind and wave energy assessment in the North Indian Ocean. Energies 2019, 12, 3835. [Google Scholar] [CrossRef]
- Wu, L.; Yang, X.Y.; Hu, J. Assessment of Arctic sea ice simulations in CMIP5 models using a synthetical skill scoring method. Acta Oceanol. Sin. 2019, 38, 48–58. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; Van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.F.; Lowe, J. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- Riahi, K.; Van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Gutowski, W.J., Jr.; Giorgi, F.; Timbal, B.; Frigon, A.; Jacob, D.; Kang, H.S.; Krishnan, R.; Lee, B.; Lennard, C.; Nikulin, G. WCRP coordi- nated regional downscaling experiment (CORDEX): A diagnostic MIP for CMIP6. Geosci. Model Dev. 2016, 9, 4087–4095. [Google Scholar] [CrossRef]
- Bloom, A.; Kotroni, V.; Lagouvardos, K. Climate change impact of wind energy availability in the Eastern Mediterranean using the regional climate model PRECIS. Nat. Hazard. Earth. Sys. 2008, 8, 1249–1257. [Google Scholar] [CrossRef]
- Brands, S.; Herrera, S.; Fernández, J.; Gutiérrez, J.M. How well do CMIP5 Earth System Models simulate present climate conditions in Europe and Africa? A performance comparison for the downscaling community. Clim. Dynam. 2013, 41, 803–817. [Google Scholar] [CrossRef]
- Dosio, A.; Panitz, H.J.; Schubert-Frisius, M.; Lüthi, D. Dynamical downscaling of CMIP5 global circulation models over CORDEX-Africa with COSMO-CLM: Evaluation over the present climate and analysis of the added value. Clim. Dyn. 2015, 44, 2637–2661. [Google Scholar] [CrossRef]
- Olauson, J. ERA5: The new champion of wind power modelling? Renew. Energ. 2018, 126, 322–331. [Google Scholar] [CrossRef]
- Dix, M.; Bi, D.; Dobrohotoff, P.; Fiedler, R.; Harman, I.; Law, R.; Yang, R. CSIRO-ARCCSS ACCESS-CM2 Model Output Prepared for CMIP6 CMIP Historical; Earth System Grid Federation: Greenbelt, MD, USA, 2019. [Google Scholar] [CrossRef]
- Dix, M.; Bi, D.; Dobrohotoff, P.; Fiedler, R.; Harman, I.; Law, R.; Mackallah, C.; Marsland, S.; O’Farrell, S.; Rashid, H. CSIRO-ARCCSS ACCESS-CM2 Model Output Prepared for CMIP6 ScenarioMIP ssp585; Earth System Grid Federation: Greenbelt, MD, USA, 2019. [Google Scholar] [CrossRef]
- Wu, T.; Chu, M.; Dong, M.; Fang, Y.; Jie, W.; Li, J.; Li, W.; Liu, Q.; Shi, X.; Xin, X. BCC BCC-CSM2MR Model Output Prepared for CMIP6 CMIP Historical; Earth System Grid Federation: Greenbelt, MD, USA, 2018. [Google Scholar] [CrossRef]
- Xin, X.; Wu, T.; Shi, X.; Zhang, F.; Li, J.; Chu, M.; Liu, Q.; Yan, J.; Ma, Q.; Wei, M. BCC BCC-CSM2MR Model Output Prepared for CMIP6 ScenarioMIP ssp585; Earth System Grid Federation: Greenbelt, MD, USA, 2019. [Google Scholar] [CrossRef]
- Lovato, T.; Peano, D. CMCC CMCC-CM2-SR5 Model Output Prepared for CMIP6 CMIP Historical; Earth System Grid Federation: Greenbelt, MD, USA, 2020. [Google Scholar] [CrossRef]
- Lovato, T.; Peano, D. CMCC CMCC-CM2-SR5 Model Output Prepared for CMIP6 ScenarioMIP ssp585; Earth System Grid Federation: Greenbelt, MD, USA, 2020. [Google Scholar] [CrossRef]
- Krasting, J.P.; John, J.G.; Blanton, C.; McHugh, C.; Nikonov, S.; Radhakrishnan, A.; Rand, K.; Zadeh, N.T.; Balaji, V.; Durachta, J. NOAA-GFDL GFDL-ESM4 Model Output Prepared for CMIP6 CMIP Historical; Earth System Grid Federation: Greenbelt, MD, USA, 2018. [Google Scholar] [CrossRef]
- John, J.G.; Blanton, C.; McHugh, C.; Radhakrishnan, A.; Rand, K.; Vahlenkamp, H.; Zeng, Y. NOAA-GFDL GFDL-ESM4 Model Output Prepared for CMIP6 ScenarioMIP ssp585; Earth System Grid Federation: Greenbelt, MD, USA, 2018. [Google Scholar] [CrossRef]
- Volodin, E.; Mortikov, E.; Gritsun, A.; Lykossov, V.; Galin, V.; Diansky, N.; Emelina, S. INM INM-CM4-8 Model Output Prepared for CMIP6 CMIP Historical; Earth System Grid Federation: Greenbelt, MD, USA, 2019. [Google Scholar] [CrossRef]
- Volodin, E.; Mortikov, E.; Gritsun, A.; Lykossov, V.; Galin, V.; Diansky, N.; Gusev, A.; Kostrykin, S.; Iakovlev, N.; Shestakova, A. INM INM-CM4-8 Model Output Prepared for CMIP6 ScenarioMIP ssp585; Earth System Grid Federation: Greenbelt, MD, USA, 2019. [Google Scholar] [CrossRef]
- Volodin, E.; Mortikov, E.; Gritsun, A.; Lykossov, V.; Galin, V.; Diansky, N.; Gusev, A.; Kostrykin, S.; Iakovlev, N.; Shestakova, A. INM INM-CM5-0 Model Output Prepared for CMIP6 CMIP Historical; Earth System Grid Federation: Greenbelt, MD, USA, 2019. [Google Scholar] [CrossRef]
- Volodin, E.; Mortikov, E.; Gritsun, A.; Lykossov, V.; Galin, V.; Diansky, N.; Emelina, S. INM INM-CM5-0 Model Output Prepared for CMIP6 ScenarioMIP ssp585; Earth System Grid Federation: Greenbelt, MD, USA, 2019. [Google Scholar] [CrossRef]
- Boucher, O.; Denvil, S.; Levavasseur, G.; Cozic, A.; Caubel, A.; Foujols, M.A.; Meurdesoif, Y.; Cadule, P.; Devilliers, M.; Ghattas, J. IPSL IPSL-CM6A-LR Model Output Prepared for CMIP6 CMIP Historical; Earth System Grid Federation: Greenbelt, MD, USA, 2018. [Google Scholar] [CrossRef]
- Boucher, O.; Denvil, S.; Levavasseur, G.; Cozic, A.; Caubeel, A.; Foujols, M.; Meurdesoif, Y.; Cadule, P.; Devilliers, M.; Dupont, E. IPSL IPSL-CM6A-LR Model Output Prepared for CMIP6 ScenarioMIP ssp585; Earth System Grid Federation: Greenbelt, MD, USA, 2019. [Google Scholar] [CrossRef]
- Tatebe, H.; Watanabe, M. MIROC MIROC6 Model Output Prepared for CMIP6 CMIP Historical; Earth System Grid Federation: Greenbelt, MD, USA, 2018. [Google Scholar] [CrossRef]
- Shiogama, H.; Abe, M.; Tatebe, H. MIROC MIROC6 Model Output Prepared for CMIP6 ScenarioMIP ssp585; Earth System Grid Federation: Greenbelt, MD, USA, 2019. [Google Scholar] [CrossRef]
- Wieners, K.; Giorgetta, M.; Jungclaus, J.; Reick, C.; Esch, M.; Bittner, M.; Gayler, V.; Haak, H.; de Vrese, P.; Raddatz, T. MPI-M MPI-ESM1.2-LR Model Output Prepared for CMIP6 CMIP Historical; Earth System Grid Federation: Greenbelt, MD, USA, 2019. [Google Scholar] [CrossRef]
- Wieners, K.; Giorgetta, M.; Jungclaus, J.; Reick, C.; Esch, M.; Bittner, M.; Gayler, V.; Haak, H.; de Vrese, P.; Raddatz, T. MPI-M MPI-ESM1. 2-LR Model Output Prepared for CMIP6 ScenarioMIP ssp585; Earth System Grid Federation: Greenbelt, MD, USA, 2019. [Google Scholar] [CrossRef]
- Yukimoto, S.; Koshiro, T.; Kawai, H.; Oshima, N.; Yoshida, K.; Urakawa, S.; Tsujino, H.; Deushi, M.; Tanaka, T.; Hosaka, M. MRI MRI-ESM2. 0 Model Output Prepared for CMIP6 CMIP Historical; Earth System Grid Federation: Greenbelt, MD, USA, 2019. [Google Scholar] [CrossRef]
- Yukimoto, S.; Koshiro, T.; Kawai, H.; Oshima, N.; Yoshida, K.; Urakawa, S.; Tsujino, H.; Deushi, M.; Tanaka, T.; Hosaka, M. MRI MRI-ESM2. 0 Model Output Prepared for CMIP6 ScenarioMIP ssp585; Earth System Grid Federation: Greenbelt, MD, USA, 2019. [Google Scholar] [CrossRef]
- Akinsanola, A.A.; Zhou, W. Projections of West African summer monsoon rainfall extremes from two CORDEX models. Clim. Dynam. 2019, 52, 2017–2028. [Google Scholar] [CrossRef]
- Räisänen, J.; Palmer, T. A probability and decision-model analysis of a multimodel ensemble of climate change simulations. J. Clim. 2001, 14, 3212–3226. [Google Scholar] [CrossRef]
- Pierce, D.W.; Barnett, T.P.; Santer, B.D.; Gleckler, P.J. Selecting global climate models for regional climate change studies. Proc. Natl. Acad. Sci. USA 2009, 106, 8441–8446. [Google Scholar] [CrossRef] [PubMed]
- Schott, F.A.; Xie, S.P.; McCreary, J.P., Jr. Indian Ocean circulation and climate variability. Rev. Geophys. 2009, 47, 1. [Google Scholar] [CrossRef]
- Sawadogo, W.; Reboita, M.S.; Faye, A.; Porfírio da Rocha, R.; Giorgi, F. Current and future potential of solar and wind energy over Africa using the RegCM4 CORDEX-CORE ensemble. Clim. Dyn. 2020, 10, 1–26. [Google Scholar] [CrossRef]
- Ulazia, A.; Sáenz, J.; Ibarra-Berastegi, G.; González-Rojí, S.J.; Carreno-Madinabeitia, S. Global estimations of wind energy potential considering seasonal air density changes. Energy 2019, 187, 115938. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zhao, Y.; Wang, M.; Tan, W.; Yin, J. Projected Changes of Wind Energy Input to Surface Waves in the North Indian Ocean Based on CMIP6. Atmosphere 2024, 15, 139. https://doi.org/10.3390/atmos15010139
Li J, Zhao Y, Wang M, Tan W, Yin J. Projected Changes of Wind Energy Input to Surface Waves in the North Indian Ocean Based on CMIP6. Atmosphere. 2024; 15(1):139. https://doi.org/10.3390/atmos15010139
Chicago/Turabian StyleLi, Juan, Yuexuan Zhao, Menglu Wang, Wei Tan, and Jiyuan Yin. 2024. "Projected Changes of Wind Energy Input to Surface Waves in the North Indian Ocean Based on CMIP6" Atmosphere 15, no. 1: 139. https://doi.org/10.3390/atmos15010139
APA StyleLi, J., Zhao, Y., Wang, M., Tan, W., & Yin, J. (2024). Projected Changes of Wind Energy Input to Surface Waves in the North Indian Ocean Based on CMIP6. Atmosphere, 15(1), 139. https://doi.org/10.3390/atmos15010139