Spatiotemporal Changes in and Driving Factors of Potential Evapotranspiration in a Hyper-Arid Locale in the Hami Region, China
Abstract
:1. Introduction
2. Study Area and Research Methods
2.1. Study Area
2.2. Data Sources
2.3. Research Methods
2.3.1. Hargreaves Model
2.3.2. Kriging Interpolation Method
2.3.3. Analysis Methods
3. Results and Analysis
3.1. Temporal and Spatial Dynamic Changes in PET
3.1.1. Analysis of Annual Interannual Variation Characteristics in PET
3.1.2. Analysis of Spatial Variations in PET
3.2. Drivers of Spatiotemporal Changes in PET
3.2.1. Spatiotemporal Distribution Characteristics of Environmental Factors in the Hami Region
3.2.2. Partial Correlation Analysis of PET and Various Climatic Factors in the Hami Region
4. Discussion
5. Conclusions
- (1)
- In the hyper-arid Hami region in Northwest China, the annual PET showed a fluctuating increasing trend from 1991 to 2020. The interannual trends of PET for full years, SP, SU, AU, and WI were 0.933, 2.744, 0.906, 0.488, and −0.406 mm·a-1, respectively. This indicates that, except for WI, PET increased in each season as well as annually, with the largest growth rate in SP. Spatial variations in the interannual changes of PET were observed across different seasons in the region.
- (2)
- In the Hami region, the multiyear annual average PET ranged between 113 and 1111 mm from 1991 to 2020. The PET ranges for SP, SU, AU, and WI were 47–1436, 309–2116, 77–817, and 0–261 mm, respectively. The distribution of PET for different years and seasons across the entire region exhibited a consistent pattern, characterized by lower values in the central area and higher values in the surrounding regions. The southern area had the highest PET, while the northwestern region had relatively lower values.
- (3)
- The impact of trends and magnitudes of meteorological factors on annual and seasonal potential evapotranspiration varies. The dominant factor influencing annual PET is Max-T, while for AU PET, the main influencing factor is MAP. Other factors play a role in enhancing or reducing the changes in annual PET.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, B.; Henderson, M.; Zhang, Y.; Ming, X. Spatiotemporal change in China’s climatic growing season: 1955–2000. Clim. Chang. 2010, 99, 93–118. [Google Scholar] [CrossRef]
- Hajimirzajan, A.; Vahdat, M.; Sadegheih, A.; Shadkam, E.; Bilali, H.E. An integrated strategic framework for large-scale crop planning: Sustainable climate-smart crop planning and agri-food supply chain management. Sustain. Prod. Consum. 2020, 26, 709–732. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Azorin-Molina, C.; Sanchez-Lorenzo, A.; Revuelto, J. Sensitivity of reference evapo-transpiration to changes in meteorological parameters in Spain (1961–2011). Water Resour Res. 2014, 50, 8458–8480. [Google Scholar] [CrossRef]
- Bond, N.A.; Bumbaco, K.A. Summertime potential evapotranspiration in eastern Washington state. J. Appl. Meteorol. Climatol. 2015, 54, 1090–1101. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Z.Y.; Yan, Q. Spatiotemporal Changes of Potential Evaporation of the Northern Slope in Tianshan Mountains. Res. Soil Water Conserv. 2015, 22, 306–311. [Google Scholar]
- Wells, N.; Goddard, S.; Hayes, M.J. A Self-Calibrating Palmer Drought Severity Index. J. Clim. 2004, 17, 2335–2351. [Google Scholar] [CrossRef]
- Kimura, R. Global detection of aridification or increasing wetness in arid regions from 2001 to 2013. Nat. Hazards 2020, 103, 2261–2276. [Google Scholar] [CrossRef]
- McCabe, G.J.; Hay, L.E.; Bock, A.; Markstrom, S.L.; Atkinson, R.D. Inter-annual and spatial variability of Hamon potential evapotranspiration model coefficients. J. Hydrol. 2015, 521, 389–394. [Google Scholar] [CrossRef]
- Bai, P.; Liu, X.; Yang, T.; Li, F.; Liang, K.; Hu, S.; Liu, C. Assessment of the Influences of Different Potential Evapotranspiration Inputs on the Performance of Monthly Hydrological Models under Different Climatic Conditions. J. Hydrometeorol. 2016, 17, 2259–2274. [Google Scholar] [CrossRef]
- Ma, T.X.; Liang, Y.; Lau, M.K.; Liu, B.; Wu, M.M.; He, H.S. Quantifying the relative importance of potential evapotranspiration and timescale selection in assessing extreme drought frequency in conterminous China. Atmos. Res. 2021, 263, 105797. [Google Scholar] [CrossRef]
- Ferreira, L.B.; da Cunha, F.F.; de Oliveira, R.A.; Filho, E.I.F. Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM—A new approach. J. Hydrol. 2019, 572, 556–570. [Google Scholar] [CrossRef]
- Valipour, M.; Gholami Sefidkouhi, M.A.; Raeini−Sarjaz, M. Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events. Agric. Water Manag. 2017, 180, 50–60. [Google Scholar] [CrossRef]
- McMahon, T.A.; Peel, M.C.; Lowe, L.; Srikanthan, R.; McVicar, T.R. Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: A pragmatic synthesis. Hydrol. Earth Syst. Sci. 2013, 17, 1331–1363. [Google Scholar] [CrossRef]
- Sonali, P.; Nagesh Kumar, D. Spatio-temporal variability of temperature and potential evapotranspiration over India. J. Water Clim. Chang. 2016, 7, 810–822. [Google Scholar] [CrossRef]
- Penman, H.L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Lond. A 1948, 193, 120–146. [Google Scholar]
- Gan, G.; Liu, Y.; Sun, G. Understanding interactions among climate, water, and vegetation with the Budyko framework. Earth-Sci Rev. 2021, 212, 103451. [Google Scholar] [CrossRef]
- Gedney, N.; Cox, P.M.; Betts, R.A.; Boucher, O.; Huntingford, C.; Stott, P.A. Detection of a direct carbon dioxide effect in continental river runoff records. Nature 2006, 439, 835–838. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Qi, T.Y.; Li, J.F.; Singh, V.P.; Wang, Z.Z. Spatiotemporal variations of pan evaporation in China during 1960–2005: Changing patterns and causes. Int. J. Climatol. 2015, 35, 903–912. [Google Scholar] [CrossRef]
- Yin, Y.H.; Wu, S.H.; Dai, E.F. Determining factors in potential evapotranspiration changes over China in the period 1971–2008. Chin. Sci. Bull. 2010, 55, 3329–3337. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C.; Tang, Y.; Yang, Y. Trends in Pan Evaporation and Reference and Actual Evapotranspiration across the Tibetan Plateau. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Gao, G.; Chen, D.; Xu, C.Y.; Simelton, E. Trend of estimated actual evapotranspiration over China during 1960–2002. J. Geophys. Res. 2007, 112, D11120. [Google Scholar] [CrossRef]
- Peterson, T.C.; Golubev, V.S.; Groisman, P.Y. Evaporation losing its strength. Nature 1995, 377, 687–688. [Google Scholar] [CrossRef]
- Jhajharia, D.; Dinpashoh, Y.; Kahya, E.; Singh, V.P.; Fakheri-Fard, A. Trends in reference evapotranspiration in the humid region of northeast India. Hydrol. Process. 2012, 26, 421–435. [Google Scholar] [CrossRef]
- Burn, D.H.; Hesch, N.M. Trends in evaporation for the Canadian Prairies. J. Hydrol. 2007, 336, 61–73. [Google Scholar] [CrossRef]
- Roderick, M.L.; Rotstayn, L.D.; Farquhar, G.D.; Hobbins, M.T. On the attribution of changing pan evaporation. Geophys. Res. Lett. 2007, 34, L17403. [Google Scholar] [CrossRef]
- Fisher, J.B.; Melton, F.; Middleton, E.; Hain, C.; Anderson, M.; Allen, R.; McCabe, M.F.; Hook, S.; Baldocchi, D.; Townsend, P.A. The Future of Evapotranspiration: Global Requirements for Ecosystem Functioning, Carbon and Climate Feedbacks, Agricultural Management, and Water Resources. Water Resour. Res. 2017, 53, 2618–2626. [Google Scholar] [CrossRef]
- Fu, Y.P.; Xin, S.; Wang, Y.; Cao, Z.L. Adaptability Analysis of Three Spatial Interpolation Methods in Temperature—A Case Study of Jiangxi Province. J. Green Sci. Technol. 2023, 25, 51–56. [Google Scholar]
- Rehana, S.; Monish, N.T. Impact of potential and actual evapotranspiration on drought phenomena over water and energy-limited regions. Theor. Appl. Climatol. 2021, 144, 215–238. [Google Scholar] [CrossRef]
- Gao, G.; Chen, D.; Ren, G.; Chen, Y.; Liao, Y. Spatial and temporal variations and controlling factors of potential evapotranspiration in China: 1956–2000. J. Geogr. Sci. 2006, 16, 3–12. [Google Scholar] [CrossRef]
- Thomas, A. Spatial and temporal characteristics of potential evapotranspiration trends over China. Int. J. Climatol. 2000, 20, 381–396. [Google Scholar] [CrossRef]
- Yao, Y.; Zhao, S.; Zhang, Y.; Jia, K.; Liu, M. Spatial and Decadal Variations in Potential Evapotranspiration of China Based on Reanalysis Datasets during 1982–2010. Atmosphere 2014, 5, 737–754. [Google Scholar] [CrossRef]
- Sun, S.; Wang, G.; Huang, J.; Mu, M.; Yan, G.; Liu, C.; Hua, W. Spatial pattern of reference evapotranspiration change and its temporal evolution over Southwest China. Theor. Appl. Climatol. 2016, 130, 979–992. [Google Scholar] [CrossRef]
- Metzger, J.C.; Landschreiber, L.; Gröngröft, A.; Eschenbach, A. Soil evaporation under different types of land use in southern African savanna ecosystems. J. Plant Nutr. Soil Sci. 2014, 177, 468–475. [Google Scholar] [CrossRef]
- Shi, H.; Li, T.; Wang, G. Temporal and spatial variations of potential evaporation and the driving mechanism over Tibet during 1961–2001. Hydrol. Sci. J. 2017, 62, 1469–1482. [Google Scholar] [CrossRef]
- Li, Z.X.; Feng, Q.; Wei, L.; Wang, T.T.; Gao, Y.; Wang, Y.M.; Cheng, A.F.; Li, J.G.; Liu, L. Spatial and temporal trend of potential evapotranspiration and related driving forces in Southwestern China, during 1961–2009. Quat. Int. 2014, 336, 127–144. [Google Scholar]
- Luo, K.; Tao, F.; Deng, X.; Moiwo, J.P. Changes in potential evapotranspiration and surface runoff in 1981–2010 and the driving factors in Upper Heihe River Basin in Northwest China. Hydrol. Process. 2016, 31, 90–103. [Google Scholar] [CrossRef]
- Brauman, K.A.; Freyberg, D.L.; Daily, G.C. Potential evapotranspiration from forest and pasture in the tropics: A case study in Kona, Hawai’i. J. Hydrol. 2012, 440–441, 52–61. [Google Scholar] [CrossRef]
- Katerji, N.; Rana, G. Crop reference evapotranspiration: A discussion of the concept, analysis of the process and validation. Water Resour Manag. 2011, 25, 1581–1600. [Google Scholar] [CrossRef]
Parameter | Abbreviation | Unit | Original Resolution | Data Source |
---|---|---|---|---|
Mean annual precipitation | MAP | mm | 1000 m | https://doi.org/10.5281/zenodo.3185722, accessed on 4 November 2023 |
Mean annual temperature | MAT | °C | 1000 m | https://cstr.cn/18406.11.Meteoro.tpdc.270961, accessed on 4 November 2023 |
Maximum temperature | Max-T | °C | 1000 m | https://doi.org/10.5281/zenodo.3114194, accessed on 4 November 2023 |
Minimum temperature | Min-T | °C | 1000 m | https://doi.org/10.5281/zenodo.3114194, accessed on 4 November 2023 |
Wind speed | WS | m/s | 1000 m | Meteorological station data |
Vapor pressure difference | VPD | hpa | 1000 m | Meteorological station data |
Relative humidity | RH | % | 1000 m | Meteorological station data |
Sunlight hours | SH | h | 1000 m | Meteorological station data |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Sun, L.; Li, C.; He, J.; Guo, Z.; Duan, L.; Zhang, J.; Łupikasza, E.; Malik, I.; Wistuba, M.; et al. Spatiotemporal Changes in and Driving Factors of Potential Evapotranspiration in a Hyper-Arid Locale in the Hami Region, China. Atmosphere 2024, 15, 136. https://doi.org/10.3390/atmos15010136
Lu Y, Sun L, Li C, He J, Guo Z, Duan L, Zhang J, Łupikasza E, Malik I, Wistuba M, et al. Spatiotemporal Changes in and Driving Factors of Potential Evapotranspiration in a Hyper-Arid Locale in the Hami Region, China. Atmosphere. 2024; 15(1):136. https://doi.org/10.3390/atmos15010136
Chicago/Turabian StyleLu, Yuanbo, Lingxiao Sun, Chunlan Li, Jing He, Zengkun Guo, Li Duan, Jing Zhang, Ewa Łupikasza, Ireneusz Malik, Małgorzata Wistuba, and et al. 2024. "Spatiotemporal Changes in and Driving Factors of Potential Evapotranspiration in a Hyper-Arid Locale in the Hami Region, China" Atmosphere 15, no. 1: 136. https://doi.org/10.3390/atmos15010136
APA StyleLu, Y., Sun, L., Li, C., He, J., Guo, Z., Duan, L., Zhang, J., Łupikasza, E., Malik, I., Wistuba, M., & Yu, Y. (2024). Spatiotemporal Changes in and Driving Factors of Potential Evapotranspiration in a Hyper-Arid Locale in the Hami Region, China. Atmosphere, 15(1), 136. https://doi.org/10.3390/atmos15010136