Studying the Regional Transmission of Air Pollution Based on Spatiotemporal Multivariable Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data source and Description
2.2.1. Reanalysis Data—MERRA-2
2.2.2. Ground Monitoring Data
2.2.3. Wind Data
2.3. Research Methodology
2.3.1. AOD Pollution Threshold Screening
2.3.2. Construction of “Time-Longitude-Latitude” Three-Dimensional Pollution Curve
2.3.3. Optimal Path Fitting Based on Genetic Algorithm
2.3.4. Calculation of Pollution Transfer Diffusion Index
3. Results and Discussion
3.1. Reconstruction of Pollution Transmission Route
3.2. Validation and Analysis of Pollution Transmission Route
3.2.1. Comparison and Verification with Pollution Index
3.2.2. Comparison Analysis with Wind Field Data
3.2.3. Comparison Analysis with Other Trajectory Models
3.3. Application of This Method in Other Regions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, L.; Zhou, W.; Li, W.; Li, L. Impact of urbanization level on urban air quality: A case of fine particles (PM2.5) in Chinese cities. Environ. Pollut. 2014, 194, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Liu, Y. The influential factors of urban PM2.5 concentrations in China: A spatial econometric analysis. J. Clean. Prod. 2016, 112, 1443–1453. [Google Scholar] [CrossRef]
- Chan, C.K.; Yao, X. Air pollution in mega cities in China. Atmos. Environ. 2008, 42, 1–42. [Google Scholar] [CrossRef]
- Shi, M.; Wu, H.; Zhang, S.; Li, H.; Yang, T.; Liu, W.; Liu, H. Weekly cycle of magnetic characteristics of the daily PM2.5 and PM2.5–10 in Beijing, China. Atmos. Environ. 2014, 98, 357–367. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, N.; Zhang, W.; Wilson, J.P. Changes in long-term PM2.5 pollution in the urban and suburban areas of China’s three largest urban agglomerations from 2000 to 2020. Remote Sens. 2022, 14, 1716. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.; Zhang, M.; Yang, Y.; Shen, X.; Wang, Y.; Chen, D.; Guo, J. A study of the meteorological causes of a prolonged and severe haze episode in January 2013 over central-eastern China. Atmos. Environ. 2014, 98, 146–157. [Google Scholar] [CrossRef]
- Kozáková, J.; Pokorná, P.; Vodička, P.; Ondráčková, L.; Ondráček, J.; Křůmal, K.; Mikuška, P.; Hovorka, J.; Moravec, P.; Schwarz, J. The influence of local emissions and regional air pollution transport on a European air pollution hot spot. Environ. Sci. Pollut. R. 2019, 26, 1675–1692. [Google Scholar] [CrossRef] [PubMed]
- Sorte, S.; Arunachalam, S.; Naess, B.; Seppanen, C.; Rodrigues, V.; Valencia, A.; Borrego, C.; Monteiro, A. Assessment of source contribution to air quality in an urban area close to a harbor: Case-study in Porto, Portugal. Sci. Total Environ. 2019, 662, 347–360. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Qiao, Z.; Lu, Y. Inter-city air pollutant transport in the Beijing-Tianjin-Hebei urban agglomeration: Comparison between the winters of 2012 and 2016. J. Environ. Manag. 2019, 250, 109520. [Google Scholar] [CrossRef]
- Bai, Y.; Zhao, T.; Hu, W.; Zhou, Y.; Xiong, J.; Wang, Y.; Liu, L.; Shen, L.; Kong, S.; Meng, K.; et al. Meteorological mechanism of regional PM2.5 transport building a receptor region for heavy air pollution over central China. Sci. Total Environ. 2022, 808, 151951. [Google Scholar] [CrossRef]
- Tessum, M.W.; Anenberg, S.C.; Chafe, Z.A.; Henze, D.K.; Kleiman, G.; Kheirbek, I.; Marshall, J.D.; Tessum, C.W. Sources of ambient PM2.5 exposure in 96 global cities. Atmos. Environ. 2022, 286, 119234. [Google Scholar] [CrossRef]
- Macpherson, A.J.; Simon, H.; Langdon, R.; Misenheimer, D. A mixed integer programming model for National Ambient Air Quality Standards (NAAQS) attainment strategy analysis. Environ. Modell. Softw. 2017, 91, 13–27. [Google Scholar] [CrossRef]
- Wu, D.; Fung, J.C.H.; Yao, T.; Lau, A.K.H. A study of control policy in the Pearl River Delta region by using the particulate matter source apportionment method. Atmos. Environ. 2013, 76, 147–161. [Google Scholar] [CrossRef]
- Ji, Y.; Qin, X.; Wang, B.; Xu, J.; Shen, J.; Chen, J.; Huang, K.; Deng, C.; Yan, R.; Xu, K.; et al. Counteractive effects of regional transport and emission control on the formation of fine particles: A case study during the Hangzhou G20 summit. Atmos. Chem. Phys. 2018, 18, 13581–13600. [Google Scholar] [CrossRef]
- Grennfelt, P.; Hov, O. Regional air pollution at a turning point. Ambio 2005, 34, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Holnicki, P.; Kałuszko, A.; Nahorski, Z.; Tainio, M. Intra-urban variability of the intake fraction from multiple emission sources. Atmos. Pollut. Res. 2018, 9, 1184–1193. [Google Scholar] [CrossRef] [PubMed]
- Bohnenstengel, S.I.; Belcher, S.E.; Aiken, A.; Allan, J.D.; Allen, G.; Bacak, A.; Bannan, T.J.; Barlow, J.F.; Beddows, D.; Bloss, W.J.; et al. Meteorology, air quality, and health in London the clearflo project. Bull. Am. Meteorol. Soc. 2015, 96, 779–804. [Google Scholar] [CrossRef]
- Liu, M.; Lei, Y.; Wang, X.; Xue, W.; Zhang, W.; Jiang, H.; Wang, J.; Bi, J. Source contributions to PM2.5-related mortality and costs: Evidence for emission allocation and compensation strategies in China. Environ. Sci. Technol. 2023, 57, 4720–4731. [Google Scholar] [CrossRef]
- Park, S.; Lee, J.; Im, J.; Song, C.; Choi, M.; Kim, J.; Lee, S.; Park, R.; Kim, S.; Yoon, J.; et al. Estimation of spatially continuous daytime particulate matter concentrations under all sky conditions through the synergistic use of satellite-based AOD and numerical models. Sci. Total Environ. 2020, 713, 136516. [Google Scholar] [CrossRef]
- Hoff, R.M.; Christopher, S.A. Remote sensing of particulate pollution from space: Have we reached the promised land? J. Air Waste Manag. 2009, 59, 645–675. [Google Scholar] [CrossRef]
- Martin, R.V. Satellite remote sensing of surface air quality. Atmos. Environ. 2008, 42, 7823–7843. [Google Scholar] [CrossRef]
- Lin, C.; Li, Y.; Yuan, Z.; Lau, A.K.H.; Li, C.; Fung, J.C.H. Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5. Remote Sens. Environ. 2015, 156, 117–128. [Google Scholar] [CrossRef]
- Zhang, L.; Wilson, J.P.; Macdonald, B.; Zhang, W.; Yu, T. The changing PM2.5 dynamics of global megacities based on long-term remotely sensed observations. Environ. Int. 2020, 142, 105862. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wilson, J.P.; Zhao, N.; Zhang, W.; Wu, Y. The dynamics of cardiovascular and respiratory deaths attributed to long-term PM2.5 exposures in global megacities. Sci. Total Environ. 2022, 842, 156951. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Liu, Y.; Coull, B.A.; Schwartz, J.; Koutrakis, P. A novel calibration approach of MODIS AOD data to predict PM2.5 Concentrations. Atmos. Chem. Phys. 2011, 11, 7991–8002. [Google Scholar] [CrossRef]
- Sun, Y.; Xue, Y.; Jiang, X.; Jin, C.; Wu, S.; Zhou, X. Estimation of the PM2.5 and PM10 mass concentration over land from FY-4A aerosol optical depth data. Remote Sens. 2021, 13, 4276. [Google Scholar] [CrossRef]
- Chudnovsky, A.A.; Koutrakis, P.; Kloog, I.; Melly, S.; Nordio, F.; Lyapustin, A.; Wang, Y.; Schwartz, J. Fine particulate matter predictions using high resolution aerosol optical depth (AOD) retrievals. Atmos. Environ. 2014, 89, 189–198. [Google Scholar] [CrossRef]
- Wang, J.; Christopher, S.A. Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Liu, Y.; Park, R.J.; Jacob, D.J.; Li, Q.; Kilaru, V.; Sarnat, J.A. Mapping annual mean ground-level PM2.5 concentrations using multiangle imaging spectroradiometer aerosol optical thickness over the contiguous united states. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Odén, S. Acidification of Air and Precipitation and Its Consequences on the Natural Environment; Swedish State Natural Science Research Council: Stockholm, Sweden, 1968. [Google Scholar]
- Tian, J.; Fang, C.; Qiu, J.; Wang, J. Analysis of pollution characteristics and influencing factors of main pollutants in the atmosphere of Shenyang city. Atmosphere 2020, 11, 766. [Google Scholar] [CrossRef]
- Jorba, O.; Perez, C.; Rocadenbosch, F.; Baldasano, J.M. Cluster analysis of 4-day back trajectories arriving in the Barcelona area, Spain, from 1997 to 2002. J. Appl. Meteorol. 2004, 43, 887–901. [Google Scholar] [CrossRef]
- Escudero, M.; Stein, A.; Draxler, R.R.; Querol, X.; Alastuey, A.; Castillo, S.; Avila, A. Determination of the contribution of northern Africa dust source areas to pm10 concentrations over the central Iberian peninsula using the hybrid single-particle Lagrangian integrated trajectory model (HYSPLIT) model. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Ara Begum, B.; Kim, E.; Jeong, C.; Lee, D.; Hopke, P.K. Evaluation of the potential source contribution function using the 2002 Quebec forest fire episode. Atmos. Environ. 2005, 39, 3719–3724. [Google Scholar] [CrossRef]
- Stohl, A.; Forster, C.; Frank, A.; Seibert, P.; Wotawa, G. Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys. 2005, 5, 2461–2474. [Google Scholar] [CrossRef]
- Xu, R.; Zhang, H.; Yang, X.; Cheng, S.; Zhang, T.; Jiang, Q. Concentration characteristics of PM2.5 and the causes of heavy air pollution events in Beijing during autumn and winter. Huan Jing Ke Xue 2019, 40, 3405–3414. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Shen, J.; Wang, P.; Zhu, S.; Wang, Y.; Wang, P.; Wang, G.; Chen, J.; Zhang, H. Modeled changes in source contributions of particulate matter during the covid-19 pandemic in the Yangtze River Delta, China. Atmos. Chem. Phys. 2021, 21, 7343–7355. [Google Scholar] [CrossRef]
- Livingstone, P.L.; Magliano, K.; Guerer, K.; Allen, P.D.; Zhang, K.M.; Ying, Q.; Jackson, B.S.; Kaduwela, A.; Kleeman, M.; Woodhouse, L.F.; et al. Simulating pm concentration during a winter episode in a subtropical valley: Sensitivity simulations and evaluation methods. Atmos. Environ. 2009, 43, 5971–5977. [Google Scholar] [CrossRef]
- Xue, W.; Wang, J.; Yang, J.; Lei, Y.; Wang, Y.; Chen, X. Domestic and Foreign Research Progress of Air Quality Model. Environ. Sustain. Dev. 2013, 38, 14–20. (In Chinese) [Google Scholar]
- Eun Kim, S. Nonlinear estimation for PM2.5 transmission effects in Jefferson Co., Texas. Environmetrics 2004, 15, 369–380. [Google Scholar] [CrossRef]
- Wang, Y.; Du, H.; Xu, Y.; Lu, D.; Wang, X.; Guo, Z. Temporal and spatial variation relationship and influence factors on surface urban heat island and ozone pollution in the Yangtze River Delta, China. Sci. Total Environ. 2018, 631–632, 921–933. [Google Scholar] [CrossRef]
- Global Modeling and Assimilation Office (GMAO). MERRA-2 tavg1_2d_aer_Nx: 2d,1-Hourly, Time-Averaged, Single-Level, Assimilation, Aerosol Diagnostics V5.12.4; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2015. [Google Scholar] [CrossRef]
- China National Environmental Monitoring Centre. National Environmental Air Quality Monitoring Network. 8 November 2017. Available online: http://www.cnemc.cn/zzjj/jcwl/dqjcwl/201711/t20171108_645109.shtml (accessed on 10 November 2022).
- Radu, R.C.; Rozum, I.; Schepers, D.; Simmons, A.; Soci, C.; Dee, D.; Thépaut, J.-N. ERA5 Hourly Data on Single Levels from 1959 to Present; Copernicus Climate Change Service (C3S) Climate Data Store (CDS): Reading, UK, 2018. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Marinakis, Y.; Marinaki, M. A hybrid genetic-particle swarm optimization algorithm for the vehicle routing problem. Expert Syst. Appl. 2010, 37, 1446–1455. [Google Scholar] [CrossRef]
- Stein, A.; Draxler, R.; Rolph, G.; Stunder, B.; Cohen, M.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. Available online: https://journals.ametsoc.org/view/journals/bams/96/12/bams-d-14-00110.1.xml (accessed on 3 September 2023). [CrossRef]
- Rolph, G.; Stein, A.; Stunder, B. Real-time environmental applications and display system: Ready. Environ. Modell. Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
Dataset | Parameter(s) | Resolution | Download Link |
---|---|---|---|
MERRA-2 AOD | Total Aerosol Extinction AOT [550 nm] | 0.5° × 0.625° | https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/ accessed on 14 October 2022. |
The hourly pollutant concentration data | AQI PM2.5 PM10 | / | http://106.37.208.233:20035/ accessed on 10 November 2022. |
ECMWF Wind | 10 m u-component of wind 10 m v-component of wind | 0.25° × 0.25° | https://cds.climate.copernicus.eu/ accessed on 24 December 2022. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X.; Xue, Y.; He, B.; Jiang, X.; Wu, S.; Wang, X. Studying the Regional Transmission of Air Pollution Based on Spatiotemporal Multivariable Data. Atmosphere 2023, 14, 1438. https://doi.org/10.3390/atmos14091438
Lu X, Xue Y, He B, Jiang X, Wu S, Wang X. Studying the Regional Transmission of Air Pollution Based on Spatiotemporal Multivariable Data. Atmosphere. 2023; 14(9):1438. https://doi.org/10.3390/atmos14091438
Chicago/Turabian StyleLu, Xi, Yong Xue, Botao He, Xingxing Jiang, Shuhui Wu, and Xiangkai Wang. 2023. "Studying the Regional Transmission of Air Pollution Based on Spatiotemporal Multivariable Data" Atmosphere 14, no. 9: 1438. https://doi.org/10.3390/atmos14091438
APA StyleLu, X., Xue, Y., He, B., Jiang, X., Wu, S., & Wang, X. (2023). Studying the Regional Transmission of Air Pollution Based on Spatiotemporal Multivariable Data. Atmosphere, 14(9), 1438. https://doi.org/10.3390/atmos14091438