Spatial Configuration of Urban Greenspace Affects Summer Air Temperature: Diurnal Variations and Scale Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset and Methods
2.2.1. Temperature Data
2.2.2. Mapping Land Cover
2.2.3. Measuring Spatial Pattern of Urban Greenspace
2.2.4. Statistical Analyses
3. Results
3.1. Descriptive Statistics
3.2. Results of Correlation Analysis
3.3. Results of Multiple Linear Regression
3.4. Results of Variation Partitioning
4. Discussion
4.1. Percent of Greenspace Impacts Air Temperature
4.2. Greenspace Configuration Impacts Air Temperature
4.3. Diurnal Variations of the Greenspace Spatial Configuration Impact on AT
4.4. Limitations and Future Research Recommendations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lei, Y.; Davies, G.M.; Jin, H.; Tian, G.; Kim, G. Scale-dependent effects of urban greenspace on particulate matter air pollution. Urban For. Urban Green. 2021, 61, 127089. [Google Scholar] [CrossRef]
- Youngsteadt, E.; Ernst, A.F.; Dunn, R.R.; Frank, S.D. Responses of arthropod populations to warming depend on latitude: Evidence from urban heat islands. Glob. Chang. Biol. 2017, 23, 1436–1447. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhou, Y.; Yu, S.; Jia, G.; Li, H.; Li, W. Urban heat island impacts on building energy consumption: A review of approaches and findings. Energy 2019, 174, 407–419. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Tang, N.; Chen, S.; Deng, Y.; Gan, D. Summer outdoor thermal perception for the elderly in a comprehensive park of Changsha, China. Atmosphere 2022, 13, 1853. [Google Scholar] [CrossRef]
- Deng, Y.; Gan, D.; Tang, N.; Cai, Z.; Li, X.; Chen, S.; Li, X. Research on outdoor thermal comfort and activities in residential areas in subtropical China. Atmosphere 2022, 13, 1357. [Google Scholar] [CrossRef]
- Howe, D.A.; Hathaway, J.M.; Ellis, K.N.; Mason, L.R. Spatial and temporal variability of air temperature across urban neighborhoods with varying amounts of tree canopy. Urban For. Urban Green. 2017, 27, 109–116. [Google Scholar] [CrossRef]
- Zhen, M.; Hong, F.; Zhou, D. The relationship between spatial arrangement and environmental temperature of residential areas in Xi’an. Indoor Built Environ. 2019, 28, 1288–1300. [Google Scholar] [CrossRef]
- Jung, M.C.; Dyson, K.; Alberti, M. Urban landscape heterogeneity influences the relationship between tree canopy and land surface temperature. Urban For. Urban Green. 2021, 57, 126930. [Google Scholar] [CrossRef]
- Ziter, C.D.; Pedersen, E.J.; Kucharik, C.J.; Turner, M.G. Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer. Proc. Natl. Acad. Sci. USA 2019, 116, 7575–7580. [Google Scholar] [CrossRef]
- Masoudi, M.; Tan, P.Y. Multi-year comparison of the effects of spatial pattern of urban green spaces on urban land surface temperature. Landsc. Urban Plan. 2019, 184, 44–58. [Google Scholar] [CrossRef]
- Liao, W.; Guldmann, J.-M.; Hu, L.; Cao, Q.; Gan, D.; Li, X. Linking urban park cool island effects to the landscape patterns inside and outside the park: A simultaneous equation modeling approach. Landsc. Urban Plan. 2023, 232, 104681. [Google Scholar] [CrossRef]
- Patz, J.A.; Campbell-Lendrum, D.; Holloway, T.; Foley, J.A. Impact of regional climate change on human health. Nature 2005, 438, 310–317. [Google Scholar] [CrossRef]
- Tan, J.; Zheng, Y.; Tang, X.; Guo, C.; Li, L.; Song, G.; Zhen, X.; Yuan, D.; Kalkstein, A.J.; Li, F. The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeorol. 2010, 54, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Arbuthnott, K.G.; Hajat, S. The health effects of hotter summers and heat waves in the population of the United Kingdom: A review of the evidence. Environ. Health 2017, 16, 119. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Zhou, W.; Zheng, Z.; Ren, T.; Wang, W. Within-city spatial and temporal heterogeneity of air temperature and its relationship with land surface temperature. Landsc. Urban Plan. 2021, 206, 103979. [Google Scholar] [CrossRef]
- Zhao, D.; Lei, Q.; Shi, Y.; Wang, M.; Chen, S.; Shah, K.; Ji, W. Role of species and planting configuration on transpiration and microclimate for urban trees. Forests 2020, 11, 825. [Google Scholar] [CrossRef]
- Lai, D.; Liu, Y.; Liao, M.; Yu, B. Effects of different tree layouts on outdoor thermal comfort of green space in summer Shanghai. Urban Clim. 2023, 47, 101398. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, L.; Xiong, Y.; Jiang, J.; Xu, A. Influence of spatial characteristics of green spaces on microclimate in Suzhou industrial park of China. Sci. Rep. 2022, 12, 9121. [Google Scholar] [CrossRef]
- Jiao, M.; Zhou, W.; Zheng, Z.; Wang, J.; Qian, Y. Patch size of trees affects its cooling effectiveness: A perspective from shading and transpiration processes. Agric. For. Meteorol. 2017, 247, 293–299. [Google Scholar] [CrossRef]
- Alonzo, M.; Baker, M.E.; Gao, Y.; Shandas, V. Spatial configuration and time of day impact the magnitude of urban tree canopy cooling. Environ. Res. Lett. 2021, 16, 084028. [Google Scholar] [CrossRef]
- Qian, Y.; Zhou, W.; Hu, X.; Fu, F. The heterogeneity of air temperature in urban residential neighborhoods and its relationship with the surrounding greenspace. Remote Sens. 2018, 10, 965. [Google Scholar] [CrossRef]
- Hu, L.; Fan, C.; Cai, Z.; Liao, W.; Li, X. Greening residential quarters in China: What are the roles of urban form, socioeconomic factors, and biophysical context? Urban. For. Urban. Green. 2023, 86, 128020. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, J.; Cadenasso, M.L. Effects of the spatial configuration of trees on urban heat mitigation: A comparative study. Remote Sens. Environ. 2017, 195, 1–12. [Google Scholar] [CrossRef]
- Zhou, W.; Cao, F. Effects of changing spatial extent on the relationship between urban forest patterns and land surface temperature. Ecol. Indic. 2020, 109, 105778. [Google Scholar] [CrossRef]
- Guo, G.; Wu, Z.; Chen, Y. Complex mechanisms linking land surface temperature to greenspace spatial patterns: Evidence from four southeastern Chinese cities. Sci. Total Environ. 2019, 674, 77–87. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W.; Ouyang, Z. Relationship between land surface temperature and spatial pattern of greenspace: What are the effects of spatial resolution? Landsc. Urban Plan. 2013, 114, 1–8. [Google Scholar] [CrossRef]
- Chen, J.; Zhan, W.; Jin, S.; Han, W.; Du, P.; Xia, J.; Lai, J.; Li, J.; Liu, Z.; Li, L.; et al. Separate and combined impacts of building and tree on urban thermal environment from two- and three-dimensional perspectives. Build. Environ. 2021, 194, 107650. [Google Scholar] [CrossRef]
- Chen, J.; Jin, S.; Du, P. Roles of horizontal and vertical tree canopy structure in mitigating daytime and nighttime urban heat island effects. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 102060. [Google Scholar] [CrossRef]
- Yan, H.; Fan, S.; Guo, C.; Hu, J.; Dong, L. Quantifying the impact of land cover composition on intra-urban air temperature variations at a mid-latitude city. PLoS ONE 2014, 9, e102124. [Google Scholar] [CrossRef]
- Zhang, J.; Cui, P.; Song, H. Impact of urban morphology on outdoor air temperature and microclimate optimization strategy base on pareto optimality in northeast China. Build. Environ. 2020, 180, 107035. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W.; Ouyang, Z.; Xu, W.; Zheng, H. Spatial pattern of greenspace affects land surface temperature: Evidence from the heavily urbanized beijing metropolitan area, China. Landsc. Ecol. 2012, 27, 887–898. [Google Scholar] [CrossRef]
- Keno, T.B.; Nengcheng, C.; Xiang, Z.; Dev, N. Spatial configuration and extent explains the urban heat mitigation potential due to green spaces: Analysis over Addis Ababa, Ethiopia. Remote Sens. 2020, 12, 2876. [Google Scholar]
- Yang, G.; Yu, Z.; Jørgensen, G.; Vejre, H. How can urban blue-green space be planned for climate adaption in high-latitude cities? A seasonal perspective. Sustain. Cities Soc. 2020, 53, 101932. [Google Scholar] [CrossRef]
- Jaganmohan, M.; Knapp, S.; Buchmann, C.M.; Schwarz, N. The bigger, the better? The influence of urban green space design on cooling effects for residential areas. J. Environ. Qual. 2016, 45, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Shashua-Bar, L.; Hoffman, M.E. Vegetation as a climatic component in the design of an urban street: An empirical model for predicting the cooling effect of urban green areas with trees. Energy Build 2000, 31, 221–235. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Ha, J.; Choi, Y.; Lee, S.; Oh, K. Diurnal and seasonal variations in the effect of urban environmental factors on air temperature: A consecutive regression analysis approach. Int. J. Environ. Res. Public Health 2020, 17, 421. [Google Scholar] [CrossRef]
- Zhou, W.; Huang, G.; Cadenasso, M.L. Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landsc. Urban Plan. 2011, 102, 54–63. [Google Scholar] [CrossRef]
- Zhou, W.; Qian, Y.; Li, X.; Li, W.; Han, L. Relationships between land cover and the surface urban heat island: Seasonal variability and effects of spatial and thematic resolution of land cover data on predicting land surface temperatures. Landsc. Ecol. 2014, 29, 153–167. [Google Scholar] [CrossRef]
- Peng, Y.; Gan, D.; Cai, Z.; Xiao, M.; Shu, D.; Wu, C.; Yu, X.; Li, X. Landscape features impact the spatial heterogeneity of visitation density within a comprehensive park: What are the seasonal and diurnal variations? Forests 2023, 14, 1627. [Google Scholar] [CrossRef]
- Lin, T.-P.; Matzarakis, A. Tourism climate and thermal comfort in sun moon lake, Taiwan. Int. J. Biometeorol. 2008, 52, 281–290. [Google Scholar] [CrossRef]
- Lin, T.-P.; Matzarakis, A.; Hwang, R.-L. Shading effect on long-term outdoor thermal comfort. Build. Environ. 2010, 45, 213–221. [Google Scholar] [CrossRef]
- Lin, T.-P.; Matzarakis, A. Tourism climate information based on human thermal perception in Taiwan and eastern China. Tour. Manag. 2011, 32, 492–500. [Google Scholar] [CrossRef]
Landscape Metric | Equation | Description (Unit) |
---|---|---|
Percent of greenspace (PLAND) | The proportion of greenspace area (%). | |
Patch density (PD) | Number of greenspace patches divided by the total landscape area (n/km2) | |
Edge density (ED) | The total perimeter of vegetation canopy patches per km2 within an analysis unit (m/ha). | |
Landscape shape index (LSI) | The total length of greenspace (or perimeter) divided by the minimum length of greenspace edge (or perimeter) possible for a maximally aggregated class. | |
Mean patch size (AREA_MN) | The average area of vegetation canopy patches within an analysis unit (ha). | |
Mean patch shape index (SHAPE_MN) | The average shape index of vegetation canopy patches within an analysis unit. |
Scales | PLAND | PD | ED | LSI | AREA_MN | SHAPE_MN | R2 |
---|---|---|---|---|---|---|---|
30 | −0.005 * | 0.0003 * | 0.32 | ||||
50 | −0.012 *** | 0.0009 *** | 1.252 ** | 0.54 | |||
100 | −0.009 ** | 0.0005 * | 0.40 | ||||
150 | −0.008 * | 0.068 * | 0.42 | ||||
200 | −0.010 * | 0.041 | 0.34 | ||||
250 | −0.015 *** | 0.30 | |||||
300 | −0.016 *** | 0.31 | |||||
350 | −0.016 *** | 0.32 | |||||
400 | −0.016 *** | 0.32 | |||||
500 | −0.017 *** | 0.32 | |||||
600 | −0.018 *** | 0.34 | |||||
700 | −0.019 *** | 0.35 | |||||
900 | −0.018 *** | 0.30 | |||||
1500 | −0.05 * | 0.004 | −0.044 | 0.21 | |||
2000 | −0.018 * | 0.14 |
Scales | PLAND | PD | ED | LSI | AREA_MN | SHAPE_MN | R2 |
---|---|---|---|---|---|---|---|
30 | −0.018 * | 0.14 | |||||
50 | −0.012 ** | 0.515 | 0.26 | ||||
100 | −0.0009 * | −0.001 | 0.363 ** | −0.642 * | 0.36 | ||
150 | −0.001 | −0.002 | 0.342 ** | −0.57 | 0.40 | ||
200 | 0.092 * | −1.013 | 1.598 ** | 0.49 | |||
250 | −0.009 | −0.002 ** | 0.162 *** | −1.169 | 0.50 | ||
300 | −0.010 | −0.002 ** | 0.139 *** | −1.138 | 0.50 | ||
350 | −0.047 | −0.002 | 0.003 | −0.007 | 1.097 | −0.771 | 0.48 |
400 | −0.036 | −0.002 * | 0.003 *** | 0.55 | |||
500 | −0.035 | −0.002 * | 0.003 *** | 0.52 | |||
600 | −0.035 | −0.001 * | 0.003 *** | 0.49 | |||
700 | −0.051 *** | 0.002 *** | 3.872 | 0.48 | |||
900 | −0.054 | 0.003 ** | 4.27 | 0.48 | |||
1500 | −0.064 *** | 0.003 *** | 4.605 | 0.52 | |||
2000 | −0.066 | 0.003 *** | 4.610 | 0.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Q.; Qiu, Q.; Wang, Z.; Cai, Z.; Hu, L.; Liu, H.; Feng, Y.; Li, X. Spatial Configuration of Urban Greenspace Affects Summer Air Temperature: Diurnal Variations and Scale Effects. Atmosphere 2023, 14, 1433. https://doi.org/10.3390/atmos14091433
Tian Q, Qiu Q, Wang Z, Cai Z, Hu L, Liu H, Feng Y, Li X. Spatial Configuration of Urban Greenspace Affects Summer Air Temperature: Diurnal Variations and Scale Effects. Atmosphere. 2023; 14(9):1433. https://doi.org/10.3390/atmos14091433
Chicago/Turabian StyleTian, Qin, Qingdong Qiu, Zhiyu Wang, Zhengwu Cai, Li Hu, Huanyao Liu, Ye Feng, and Xiaoma Li. 2023. "Spatial Configuration of Urban Greenspace Affects Summer Air Temperature: Diurnal Variations and Scale Effects" Atmosphere 14, no. 9: 1433. https://doi.org/10.3390/atmos14091433
APA StyleTian, Q., Qiu, Q., Wang, Z., Cai, Z., Hu, L., Liu, H., Feng, Y., & Li, X. (2023). Spatial Configuration of Urban Greenspace Affects Summer Air Temperature: Diurnal Variations and Scale Effects. Atmosphere, 14(9), 1433. https://doi.org/10.3390/atmos14091433