CloudY-Net: A Deep Convolutional Neural Network Architecture for Joint Segmentation and Classification of Ground-Based Cloud Images
Abstract
:1. Introduction
- The proposed CloudY-Net has both segmentation and classification branches, performing the dual task of cloud segmentation and cloud classification in one network.
- The CloudY-Net improves on the traditional Y-Net with an enhanced classification branch by introducing more features from the segmentation branch. The classification accuracy is better than that of state-of-the-art neural networks.
- We produce a new cloud segmentation dataset, MGCD-Seg, which contains 4000 ground-based cloud images and semantic segmentation annotation files.
2. Methodology
2.1. Y-Net Architecture
2.2. Deep Residual Networks
3. Proposed Cloud Image Joint Segmentation and Classification Approach
3.1. Overall Framework of the Approach
3.2. Multi-Head Self-Attention
3.3. Cloud Mixture-of-Experts
- Significance of Feature Maps: Our approach leverages C-MoE to evaluate the significance of each layer’s feature maps. Unlike traditional methods, C-MoE autonomously learns the relevance of different feature maps, allowing it to adapt dynamically to the data. This dynamic learning capability empowers the model to identify critical features that may not be apparent through manual feature engineering.
- Feature Weighting with MLP: To further enhance the feature representation, we employ a multi-layer perceptron (MLP). The MLP takes the extracted features as input and produces corresponding weight coefficients, which are crucial in combining features effectively. This added layer of adaptability improves the model’s capacity to capture intricate relationships within the data.
- Softmax for Coefficient Conversion: To ensure that our weight coefficients are valid and range from 0 to 1, we employ the Softmax function. Softmax converts the output weight coefficients of the MLP into a valid probability distribution, allowing them to be used as weighting factors for the features. This transformation guarantees that the weights are proportional and suitable for feature combination.
3.4. Cross-Entropy Loss Function
4. Experiment
4.1. Data
4.1.1. Dataset for Classification
4.1.2. Dataset for Segmentation
4.2. Experimental Details
4.2.1. Experimental Environment
4.2.2. Experimental Setup
5. Results and Discussion
5.1. Segmentation
5.2. Classification
5.2.1. Classification Method Experiment
5.2.2. Ablation Experiment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, W.; Wang, Y.; Chen, X. Cloud detection for high-resolution remote-sensing images of urban areas using colour and edge features based on dual-colour models. Int. J. Remote Sens. 2018, 39, 6657–6675. [Google Scholar] [CrossRef]
- Dagan, G.; Koren, I.; Kostinski, A.; Altaratz, O. Organization and oscillations in simulated shallow convective clouds. J. Adv. Model. Earth Syst. 2018, 10, 2287–2299. [Google Scholar] [CrossRef]
- Goren, T.; Rosenfeld, D.; Sourdeval, O.; Quaas, J. Satellite observations of precipitating marine stratocumulus show greater cloud fraction for decoupled clouds in comparison to coupled clouds. Geophys. Res. Lett. 2018, 45, 5126–5134. [Google Scholar] [CrossRef]
- Gorodetskaya, I.V.; Kneifel, S.; Maahn, M.; Van Tricht, K.; Thiery, W.; Schween, J.; Mangold, A.; Crewell, S.; Van Lipzig, N. Cloud and precipitation properties from ground-based remote-sensing instruments in East Antarctica. Cryosphere 2015, 9, 285–304. [Google Scholar] [CrossRef]
- Zheng, Y.; Rosenfeld, D.; Zhu, Y.; Li, Z. Satellite-based estimation of cloud top radiative cooling rate for marine stratocumulus. Geophys. Res. Lett. 2019, 46, 4485–4494. [Google Scholar] [CrossRef]
- Utrillas, M.P.; Marín, M.J.; Estellés, V.; Marcos, C.; Freile, M.D.; Gómez-Amo, J.L.; Martínez-Lozano, J.A. Comparison of Cloud Amounts Retrieved with Three Automatic Methods and Visual Observations. Atmosphere 2022, 13, 937. [Google Scholar] [CrossRef]
- Fu, H.; Shen, Y.; Liu, J.; He, G.; Chen, J.; Liu, P.; Qian, J.; Li, J. Cloud detection for FY meteorology satellite based on ensemble thresholds and random forests approach. Remote Sens. 2018, 11, 44. [Google Scholar] [CrossRef]
- Liu, S.; Li, M.; Zhang, Z.; Xiao, B.; Cao, X. Multimodal ground-based cloud classification using joint fusion convolutional neural network. Remote Sens. 2018, 10, 822. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, P.; Zhang, F.; Song, Q. CloudNet: Ground-based cloud classification with deep convolutional neural network. Geophys. Res. Lett. 2018, 45, 8665–8672. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Shi, C.; Xiao, B. A selection criterion for the optimal resolution of ground-based remote sensing cloud images for cloud classification. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1358–1367. [Google Scholar] [CrossRef]
- Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883. [Google Scholar]
- Nouri, B.; Kuhn, P.; Wilbert, S.; Hanrieder, N.; Prahl, C.; Zarzalejo, L.; Kazantzidis, A.; Blanc, P.; Pitz-Paal, R. Cloud height and tracking accuracy of three all sky imager systems for individual clouds. Sol. Energy 2019, 177, 213–228. [Google Scholar] [CrossRef]
- Long, C.N.; Sabburg, J.M.; Calbó, J.; Pagès, D. Retrieving cloud characteristics from ground-based daytime color all-sky images. J. Atmos. Ocean. Technol. 2006, 23, 633–652. [Google Scholar] [CrossRef]
- Heinle, A.; Macke, A.; Srivastav, A. Automatic cloud classification of whole sky images. Atmos. Meas. Tech. 2010, 3, 557–567. [Google Scholar] [CrossRef]
- Kazantzidis, A.; Tzoumanikas, P.; Bais, A.F.; Fotopoulos, S.; Economou, G. Cloud detection and classification with the use of whole-sky ground-based images. Atmos. Res. 2012, 113, 80–88. [Google Scholar] [CrossRef]
- Zhuo, W.; Cao, Z.; Xiao, Y. Cloud classification of ground-based images using texture–structure features. J. Atmos. Ocean. Technol. 2014, 31, 79–92. [Google Scholar] [CrossRef]
- Dev, S.; Lee, Y.H.; Winkler, S. Multi-level semantic labeling of sky/cloud images. In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015; pp. 636–640. [Google Scholar]
- Zhu, W.; Chen, T.; Hou, B.; Bian, C.; Yu, A.; Chen, L.; Tang, M.; Zhu, Y. Classification of ground-based cloud images by improved combined convolutional network. Appl. Sci. 2022, 12, 1570. [Google Scholar] [CrossRef]
- Roy, D.S. Forecasting the air temperature at a weather station using deep neural networks. Procedia Comput. Sci. 2020, 178, 38–46. [Google Scholar] [CrossRef]
- Ye, L.; Cao, Z.; Xiao, Y.; Li, W. Ground-based cloud image categorization using deep convolutional visual features. In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015; pp. 4808–4812. [Google Scholar]
- Shi, C.; Wang, C.; Wang, Y.; Xiao, B. Deep convolutional activations based features for ground-based cloud classification. IEEE Geosci. Remote Sens. Lett. 2017, 14, 816–820. [Google Scholar] [CrossRef]
- Li, M.; Liu, S.; Zhang, Z. Dual guided loss for ground-based cloud classification in weather station networks. IEEE Access 2019, 7, 63081–63088. [Google Scholar] [CrossRef]
- Liu, S.; Duan, L.; Zhang, Z.; Cao, X. Hierarchical multimodal fusion for ground-based cloud classification in weather station networks. IEEE Access 2019, 7, 85688–85695. [Google Scholar] [CrossRef]
- Huertas-Tato, J.; Martín, A.; Camacho, D. Cloud type identification using data fusion and ensemble learning. In Proceedings of the Intelligent Data Engineering and Automated Learning–IDEAL 2020: 21st International Conference, Guimaraes, Portugal, 4–6 November 2020; Proceedings, Part II 21. Springer: Berlin/Heidelberg, Germany, 2020; pp. 137–147. [Google Scholar]
- Liu, S.; Li, M.; Zhang, Z.; Xiao, B.; Durrani, T.S. Multi-evidence and multi-modal fusion network for ground-based cloud recognition. Remote Sens. 2020, 12, 464. [Google Scholar] [CrossRef]
- Gyasi, E.K.; Swarnalatha, P. Cloud-MobiNet: An Abridged Mobile-Net Convolutional Neural Network Model for Ground-Based Cloud Classification. Atmosphere 2023, 14, 280. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, W.; Chen, Z.; Ling, S.; Le Callet, P. Binocular rivalry oriented predictive autoencoding network for blind stereoscopic image quality measurement. IEEE Trans. Instrum. Meas. 2020, 70, 1–13. [Google Scholar] [CrossRef]
- Liu, S.; Liu, S.; Zhang, S.; Li, B.; Hu, W.; Zhang, Y.D. SSAU-Net: A spectral–spatial attention-based U-Net for hyperspectral image fusion. IEEE Trans. Geosci. Remote. Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Mehta, S.; Mercan, E.; Bartlett, J.; Weaver, D.; Elmore, J.G.; Shapiro, L. Y-Net: Joint segmentation and classification for diagnosis of breast biopsy images. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st International Conference, Granada, Spain, 16–20 September 2018; Proceedings, Part II 11. Springer: Berlin/Heidelberg, Germany, 2018; pp. 893–901. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
- Lepikhin, D.; Lee, H.; Xu, Y.; Chen, D.; Firat, O.; Huang, Y.; Krikun, M.; Shazeer, N.; Chen, Z. Gshard: Scaling giant models with conditional computation and automatic sharding. arXiv 2020, arXiv:2006.16668. [Google Scholar]
Cloud Type | Train | Test | Sum | Percentage |
---|---|---|---|---|
Cumulus | 690 | 748 | 1438 | 17.97% |
Altocumulus, cirrocumulus | 400 | 331 | 731 | 9.14% |
Cirrus, cirrostratus | 650 | 673 | 1323 | 16.54% |
Clear sky | 650 | 688 | 1338 | 16.72% |
Stratocumulus, stratus, altostratus | 500 | 463 | 963 | 12.04% |
Cumulonimbus, nimbostratus | 600 | 587 | 1187 | 14.84% |
Mixed | 510 | 510 | 1020 | 12.75% |
Total images | 4000 | 4000 | 8000 | 100% |
Cloud Type | Number | Cloud Cover | Number | Percentage |
---|---|---|---|---|
Cu | 600 | 0% to 20% | 1093 | 27.32% |
Ac & Cc | 600 | 20% to 40% | 476 | 11.9% |
Ci & Cs | 500 | 40% to 60% | 488 | 12.2% |
Clear sky | 500 | 60% to 80% | 387 | 9.68% |
Sc, St & As | 600 | 80% to 100% | 1596 | 39.9% |
Cb & Ns | 600 | |||
Mixed | 600 | Total images | 4000 | 100% |
Method | Backbone | mIoU (%) | mPA (%) | Accuracy (%) |
---|---|---|---|---|
CloudY-Net | VGG16 | 95.49 | 97.71 | 98.16 |
RegNet | 95.94 | 98.02 | 98.34 | |
ResNet50 | 96.55 | 98.26 | 98.33 |
Methods | Accuracy (%) |
---|---|
KNN [14] | 68.9 |
CloudNet [9] | 81.14 |
HMF [23] | 87.9 |
MobileNet V2 | 86.92 |
VGG16 | 87.2 |
GoogleNet | 87.53 |
ResNet50 | 88.05 |
Inception V3 | 88.32 |
Y-Net | 84.7 |
CloudY-Net | 88.58 |
Method | Self-Attention Mechanism | Accuracy (%) |
---|---|---|
CloudY-Net | No Self-Attention | 87.9 |
Dot Product Self-Attention | 88.0 | |
Multi-Head Self-Attention | 88.58 |
Method | Weight Calculation Method | Weights (a, b, c, d) | Accuracy (%) |
---|---|---|---|
CloudY-Net | Fixed weights | (0.4, 0.3, 0.2, 0.1) | 78.4 |
(0.1, 0.2, 0.3, 0.4) | 80.25 | ||
(0.2, 0.2, 0.4, 0.2) | 85.64 | ||
C-MoE | Adaptive weight | 88.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, F.; Hou, B.; Zhu, W.; Zhu, Y.; Zhang, Q. CloudY-Net: A Deep Convolutional Neural Network Architecture for Joint Segmentation and Classification of Ground-Based Cloud Images. Atmosphere 2023, 14, 1405. https://doi.org/10.3390/atmos14091405
Hu F, Hou B, Zhu W, Zhu Y, Zhang Q. CloudY-Net: A Deep Convolutional Neural Network Architecture for Joint Segmentation and Classification of Ground-Based Cloud Images. Atmosphere. 2023; 14(9):1405. https://doi.org/10.3390/atmos14091405
Chicago/Turabian StyleHu, Feiyang, Beiping Hou, Wen Zhu, Yuzhen Zhu, and Qinlong Zhang. 2023. "CloudY-Net: A Deep Convolutional Neural Network Architecture for Joint Segmentation and Classification of Ground-Based Cloud Images" Atmosphere 14, no. 9: 1405. https://doi.org/10.3390/atmos14091405
APA StyleHu, F., Hou, B., Zhu, W., Zhu, Y., & Zhang, Q. (2023). CloudY-Net: A Deep Convolutional Neural Network Architecture for Joint Segmentation and Classification of Ground-Based Cloud Images. Atmosphere, 14(9), 1405. https://doi.org/10.3390/atmos14091405