Source-Specific Health Risk of PM2.5-Bound Metals in a Typical Industrial City, Central China, 2021–2022
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Sample Collection and Analysis
2.3. Clustering Analysis
2.4. Enrichment Factor Method (EF)
2.5. Human Health Risk Assessment
2.5.1. Exposure Dose
2.5.2. Heath Risk Assessment
3. Results and Discussions
3.1. Seasonal Variation Characteristics of PM2.5 and Metal Elements
3.2. Evaluation of Metal Element Pollution
3.3. Source Analysis of Metal Elements in PM2.5
3.3.1. Pearson Correlation Analysis
3.3.2. Cluster analysis
3.4. Health Risks of Metal Elements in PM2.5
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pui, D.Y.H.; Chen, S.C.; Zuo, Z. PM2.5 in China: Measurements, sources, visibility and health effects, and mitigation. Particuology 2014, 13, 1–26. [Google Scholar] [CrossRef]
- Lin, Y.; Zou, J.; Yang, W.; Li, C.Q. A review of recent advances in research on PM2.5 in China. Int. J. Environ. Res. Public Health 2018, 15, 438. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Luo, L.; Wang, S.; Wang, Y.; Sharma, S.; Shimadera, H.; Wang, X.; Bressi, M.; de Miranda, R.M.; Jiang, J.; et al. Status and characteristics of ambient PM2.5 pollution in global megacities. Environ. Int. 2016, 89, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, S.; Domingo, N.G.G.; Hunt, N.D.; Gittlin, M.; Colgan, K.K.; Marshall, J.D.; Robinson, A.L.; Azevedo, I.M.L.; Thakrar, S.K.; Clark, M.A.; et al. The food we eat, the air we breathe: A review of the fine particulate matter-induced air quality health impacts of the global food system. Environ. Res. Lett. 2021, 16, 103004. [Google Scholar] [CrossRef]
- Singh, B.P.; Kumar, P. Spatio-temporal variation in fine particulate matter and effect on air quality during the COVID-19 in New Delhi, India. Urban Clim. 2021, 40, 101013. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, R.; Yu, W. The effects of PM2.5 concentrations and relative humidity on atmospheric visibility in Beijing. J. Geophys. Res.-Atmos. 2019, 124, 2235–2259. [Google Scholar] [CrossRef]
- Liu, M.; Bi, J.; Ma, Z. Visibility-based PM2.5 concentrations in China: 1957–1964 and 1973–2014. Environ. Sci. Technol. 2017, 51, 13161–13169. [Google Scholar] [CrossRef]
- Chen, S.L.; Chang, S.W.; Chen, Y.J.; Chen, H.L. Possible warming effect of fine particulate matter in the atmosphere. Commun. Earth Environ. 2021, 2, 208. [Google Scholar] [CrossRef]
- Sun, J.; Liu, H.; Zhang, C.; Liu, X.; Sun, X.; Chen, X.; Yang, G.; Wang, N. Predisposed obesity and long-term metabolic diseases from maternal exposure to fine particulate matter (PM2.5)—A review of its effect and potential mechanisms. Life Sci. 2022, 310, 121054. [Google Scholar] [CrossRef]
- Mukherjee, A.; Agrawal, M. World air particulate matter: Sources, distribution and health effects. Environ. Chem. Lett. 2017, 15, 283–309. [Google Scholar] [CrossRef]
- Grantz, D.A.; Garner, J.H.B.; Johnson, D.W. Ecological effects of particulate matter. Environ. Int. 2003, 29, 213–239. [Google Scholar] [CrossRef] [PubMed]
- Dominici, F.; Peng, R.D.; Bell, M.L.; Pham, L.; McDermott, A.; Zeger, S.L.; Samet, J.M. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 2006, 295, 1127–1134. [Google Scholar] [CrossRef] [PubMed]
- Nagappan, A.; Park, S.B.; Lee, S.J.; Moon, Y. Mechanistic implications of biomass-derived particulate matter for immunity and immune disorders. Toxics 2021, 9, 18. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.F.; Xu, Y.H.; Shi, M.H.; Lian, Y.X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69–E74. [Google Scholar] [PubMed]
- Englert, N. Fine particles and human health—A review of epidemiological studies. Toxicol. Lett. 2004, 149, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Tarín-Carrasco, P.; Im, U.; Geels, C.; Palacios-Peña, L.; Jiménez-Guerrero, P. Contribution of fine particulate matter to present and future premature mortality over Europe: A non-linear response. Environ. Int. 2021, 153, 106517. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, G.; Guo, S.; Zamora, M.L.; Ying, Q.; Lin, Y.; Wang, W.; Hu, M.; Wang, Y. Formation of urban fine particulate matter. Chem. Rev. 2015, 115, 3803–3855. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Yan, J.; Wei, Y.; Zeng, J.; Wang, X.; Chen, X.; Zhang, C.; Li, W.; Chen, M.; Lü, G. PM2.5-bound heavy metals from the major cities in China: Spatiotemporal distribution, fuzzy exposure assessment and health risk management. J. Clean. Prod. 2021, 286, 124967. [Google Scholar] [CrossRef]
- Bui, D.L.; Hoang, A.L.; Ngo, Q.K.; Nghiem, X.T. Chemical characterization, source apportionment, and health risk assessment nexus of PM2.5-bound major heavy metals in Bien Hoa city, southern Vietnam. Atmos. Environ.-X 2023, 17, 100209. [Google Scholar] [CrossRef]
- Ma, Q.; Wu, Y.; Zhang, D.; Wang, X.; Xia, Y.; Liu, X.; Tian, P.; Han, Z.; Xia, X.; Wang, Y.; et al. Roles of regional transport and heterogeneous reactions in the PM2.5 increase during winter haze episodes in Beijing. Sci. Total Environ. 2017, 599–600, 246–253. [Google Scholar] [CrossRef]
- Shahid, M.; Natasha; Dumat, C.; Niazi, N.K.; Xiong, T.T.; Farooq, A.B.U.; Khalid, S. Ecotoxicology of Heavy metal(loid)-enriched particulate matter: Foliar accumulation by plants and health impacts. In Reviews of Environmental Contamination and Toxicology; de Voogt, P., Ed.; Springer International Publishing: Cham, Switzerland, 2021; Volume 253, pp. 65–113. [Google Scholar]
- Witkowska, D.; Słowik, J.; Chilicka, K. Heavy metals and human health: Possible exposure pathways and the competition for protein binding sites. Molecules 2021, 26, 6060. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Cao, H.; Zhang, Y.; Chen, H. Potential years of life lost due to PM2.5-bound toxic metal exposure: Spatial patterns across 60 cities in China. Sci. Total Environ. 2022, 812, 152593. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.; Liberda, E.N.; Qu, S.; Guo, X.; Li, X.; Zhang, J.; Meng, J.; Yan, B.; Li, N.; Zhong, M.; et al. The role of metal components in the cardiovascular effects of PM2.5. PLoS ONE 2013, 8, e83782. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ji, X.; Ku, T.; Li, G.; Sang, N. Heavy metals bound to fine particulate matter from northern China induce season-dependent health risks: A study based on myocardial toxicity. Environ. Pollut. 2016, 216, 380–390. [Google Scholar] [CrossRef]
- He, X.; Zhao, Q.; Chai, X.; Song, Y.; Li, X.; Lu, X.; Li, S.; Chen, X.; Yuan, Y.; Cai, Z.; et al. Contribution and effects of PM2.5-bound lead to the cardiovascular risk of workers in a non-ferrous metal smelting area considering chemical speciation and bioavailability. Environ. Sci. Technol. 2023, 57, 1743–1754. [Google Scholar] [CrossRef]
- Guo, F.; Tang, M.; Wang, X.; Yu, Z.; Wei, F.; Zhang, X.; Jin, M.; Wang, J.; Xu, D.; Chen, Z.; et al. Characteristics, sources, and health risks of trace metals in PM2.5. Atmos. Environ. 2022, 289, 119314. [Google Scholar] [CrossRef]
- Qu, Y.; Liu, X.-Q.; Liu, H.-K.; Wang, Q.-Y.; Zhu, C.-S.; Zhou, Y.; Zhang, R.J.; Cao, J.J. PM2.5 elements in the rural area of Jing-Jin-Ji Region in China: Source identification and health risk assessment. Aerosol. Sci. Eng. 2021, 5, 429–439. [Google Scholar] [CrossRef]
- Sakunkoo, P.; Thonglua, T.; Sangkham, S.; Jirapornkul, C.; Limmongkon, Y.; Daduang, S.; Tessiri, T.; Rayubkul, J.; Thongtip, S.; Maneenin, N.; et al. Human health risk assessment of PM2.5-bound heavy metal of anthropogenic sources in the Khon Kaen Province of Northeast Thailand. Heliyon 2022, 8, e09572. [Google Scholar] [CrossRef]
- Wang, W.; Chen, C.; Liu, D.; Wang, M.; Han, Q.; Zhang, X.; Feng, X.; Sun, A.; Mao, P.; Xiong, Q.; et al. Health risk assessment of PM2.5 heavy metals in county units of northern China based on Monte Carlo simulation and APCS-MLR. Sci. Total Environ. 2022, 843, 156777. [Google Scholar] [CrossRef]
- Yan, R.H.; Peng, X.; Lin, W.; He, L.Y.; Wei, F.H.; Tang, M.X.; Huang, X.F. Trends and challenges regarding the source-specific health risk of PM2.5-bound metals in a Chinese megacity from 2014 to 2020. Environ. Sci. Technol. 2022, 56, 6996–7005. [Google Scholar] [CrossRef]
- Liu, Y.; Li, S.; Sun, C.; Qi, M.; Yu, X.; Zhao, W.; Li, X. Pollution Level and Health Risk Assessment of PM2.5-bound metals in Baoding City before and after the heating period. Int. J. Environ. Res. Public Health 2018, 15, 2286. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Jia, C.; Yu, H.; Xu, H.; Ji, D.; Wang, C.; Xiao, H.; He, J. Characteristics, sources, and health risks of PM2.5-bound trace elements in representative areas of Northern Zhejiang Province, China. Chemosphere 2021, 272, 129632. [Google Scholar] [PubMed]
- Zhang, J.; Zhou, X.; Wang, Z.; Yang, L.; Wang, J.; Wang, W. Trace elements in PM2.5 in Shandong Province: Source identification and health risk assessment. Sci. Total Environ. 2018, 621, 558–577. [Google Scholar]
- Brown, R.J.C.; Milton, M.J.T. Analytical techniques for trace element analysis: An overview. TrAC-Trends Anal. Chem. 2005, 24, 266–274. [Google Scholar] [CrossRef]
- Li, X.; Song, H.; Zhai, S.; Lu, S.; Kong, Y.; Xia, H.; Zhao, H. Particulate matter pollution in Chinese cities: Areal-temporal variations and their relationships with meteorological conditions (2015–2017). Environ. Pollut. 2019, 246, 11–18. [Google Scholar] [PubMed]
- Wang, T.; Song, H.; Wang, F.; Zhai, S.; Han, Z.; Wang, D.; Li, X.; Zhao, H.; Ma, R.; Zhang, G. Hysteretic effects of meteorological conditions and their interactions on particulate matter in Chinese cities. J. Clean. Prod. 2020, 274, 122926. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Cao, F. Fine particulate matter (PM2.5) in China at a city level. Sci. Rep. 2015, 5, 14884. [Google Scholar] [CrossRef]
- Zheng, J.; Zhan, C.; Yao, R.; Zhang, J.; Liu, H.; Liu, T.; Xiao, W.; Liu, X.; Cao, J. Levels, sources, markers and health risks of heavy metals in PM2.5 over a typical mining and metallurgical city of central China. Aerosol Sci. Eng. 2018, 2, 1–10. [Google Scholar]
- Du, P.; Xie, Y.; Wang, S.; Zhao, H.; Zhang, Z.; Wu, B.; Li, F. Potential sources of and ecological risks from heavy metals in agricultural soils, Daye City, China. Environ. Sci. Pollut. Res. 2015, 22, 3498–3507. [Google Scholar] [CrossRef]
- Tang, S.; Yang, K.; Liu, F.; Peng, M.; Li, K.; Yang, Z.; Liu, X.; Guo, F.; Ma, H. Overview of heavy metal pollution and health risk assessment of urban soils in Yangtze River Economic Belt, China. Environ. Geochem. Health 2022, 44, 4455–4497. [Google Scholar]
- Wang, Z.; Nie, K. Measuring spatial distribution characteristics of heavy metal contaminations in a network-constrained environment: A case study in river network of Daye, China. Sustainability 2017, 9, 986. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.H.; Chen, J.; Wang, M.; Tao, R.; Liu, D. Assessment of heavy metal contamination status in sediments and identification of pollution source in Daye Lake, Central China. Environ. Earth Sci. 2014, 72, 1279–1288. [Google Scholar] [CrossRef]
- Zhong, P.; Zhang, J.Q.; Xu, D.M.; Tian, Q.; Hu, T.P.; Gong, X.Y.; Zhan, C.L.; Liu, S.; Xing, X.L.; Qi, S.H. Contamination characteristics of heavy metals in particle size fractions from street dust from an industrial city, Central China. Air Qual. Atmos. Health 2020, 13, 871–883. [Google Scholar] [CrossRef]
- Wang, C.; Wang, K.; Zhou, W.; Li, Y.; Zou, G.; Wang, Z. Occurrence, risk, and source of heavy metals in lake water columns and sediment cores in Jianghan Plain, Central China. Int. J. Environ. Res. Public Health 2023, 20, 3676. [Google Scholar] [CrossRef]
- Zhang, X.; Eto, Y.; Aikawa, M. Risk assessment and management of PM2.5-bound heavy metals in the urban area of Kitakyushu, Japan. Sci. Total Environ. 2021, 795, 148748. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection of the People’s Republic of China (MEP). Background Contents on Elements of Soils in China; China Environmental Science Press: Beijing, China, 1990. (In Chinese) [Google Scholar]
- USEPA. Risk-Assessment Guidance for Superfund. Volume 1. Human Health Evaluation Manual. Part A. Interim Report (Final); USEPA: Washington, DC, USA, 1989.
- Ministry of Environmental Protection of the People’s Republic of China (MEP). Exposure Factors Handbook of Chinese Population; China Environmental Science Press: Beijing, China, 2013. (In Chinese) [Google Scholar]
- Chen, H.; Lu, X.; Li, L.Y. Spatial distribution and risk assessment of metals in dust based on samples from nursery and primary schools of Xi’an, China. Atmos. Environ. 2014, 88, 172–182. [Google Scholar] [CrossRef]
- GB3095-2012; Ambient Air Quality Standards. Ministry of Environmental Protection of the People’s Republic of China (MEP): Beijing, China, 2012. (In Chinese)
- Huang, X.; Tang, G.; Zhang, J.; Liu, B.; Liu, C.; Zhang, J.; Cong, L.; Cheng, M.; Yan, G.; Gao, W.; et al. Characteristics of PM2.5 pollution in Beijing after the improvement of air quality. J. Environ. Sci. 2021, 100, 1–10. [Google Scholar] [CrossRef]
- Kong, L.; Tan, Q.; Feng, M.; Qu, Y.; An, J.; Liu, X.; Cheng, N.; Deng, Y.; Zhai, R.; Wang, Z. Investigating the characteristics and source analyses of PM2.5 seasonal variations in Chengdu, Southwest China. Chemosphere 2020, 243, 125267. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, S.; Chen, Y.; Li, J.; Xu, B.; Shi, T.; Yang, Q. Association between PM2.5-bound metals and pediatric respiratory health in Guangzhou: An ecological study investigating source, health risk, and effect. Front. Public Health 2023, 11, 1137933. [Google Scholar] [CrossRef]
- Cao, J.J.; Shen, Z.X.; Chow, J.C.; Watson, J.G.; Lee, S.C.; Tie, X.X.; Ho, K.F.; Wang, G.H.; Han, Y.M. Winter and summer PM2.5 chemical compositions in fourteen Chinese cities. J. Air Waste Manag. Assoc. 2012, 62, 1214–1226. [Google Scholar] [CrossRef]
- He, K.; Yang, F.; Ma, Y.; Zhang, Q.; Yao, X.; Chan, C.K.; Cadle, S.; Chan, T.; Mulawa, P. The characteristics of PM2.5 in Beijing, China. Atmos. Environ. 2001, 35, 4959–4970. [Google Scholar] [CrossRef]
- Lim, S.; Lee, M.; Lee, G.; Kim, S.; Yoon, S.; Kang, K. Ionic and carbonaceous compositions of PM10, PM2.5 and PM1.0 at Gosan ABC Superstation and their ratios as source signature. Atmos. Chem. Phys. 2012, 12, 2007–2024. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhou, J.; Schauer, J.J.; Yu, W.; Hu, Y. Seasonal and spatial differences in source contributions to PM2.5 in Wuhan, China. Sci. Total Environ. 2017, 577, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yue, Y.; Bai, Y.; Zhang, L. Effects of Rainfall on PM2.5 and PM10 in the Middle Reaches of the Yangtze River. Adv. Meteorol. 2020, 2020, 2398146. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, Z.W.; Cheng, H.R.; Lv, X.P.; Gong, W.; Wang, X.M.; Zhang, G. Seasonal variations and chemical characteristics of PM2.5 in Wuhan, central China. Sci. Total Environ. 2015, 518–519, 97–105. [Google Scholar] [CrossRef]
- World Health Organization. Air Quality Guidelines for Europe, 2nd ed.; World Health Organization: Copenhagen, Denmark, 2000. [Google Scholar]
- Świetlik, R.; Trojanowska, M.; Strzelecka, M.; Bocho-Janiszewska, A. Fractionation and mobility of Cu, Fe, Mn, Pb and Zn in the road dust retained on noise barriers along expressway—A potential tool for determining the effects of driving conditions on speciation of emitted particulate metals. Environ. Pollut. 2015, 196, 404–413. [Google Scholar] [CrossRef]
- Thorpe, A.; Harrison, R.M. Sources and properties of non-exhaust particulate matter from road traffic: A review. Sci. Total Environ. 2008, 400, 270–282. [Google Scholar] [CrossRef]
- Nazir, R.; Shaheen, N.; Shah, M.H. Indoor/outdoor relationship of trace metals in the atmospheric particulate matter of an industrial area. Atmos. Res. 2011, 101, 765–772. [Google Scholar] [CrossRef]
- Jabłońska, M.; Rachwał, M.; Wawer, M.; Kądziołka-Gaweł, M.; Teper, E.; Krzykawski, T.; Smołka-Danielowska, D. Mineralogical and chemical specificity of dusts originating from iron and non-ferrous metallurgy in the light of their magnetic susceptibility. Minerals 2021, 11, 216. [Google Scholar] [CrossRef]
- Matawle, J.L.; Pervez, S.; Dewangan, S.; Shrivastava, A.; Tiwari, S.; Pant, P.; Deb, M.K.; Pervez, Y. Characterization of PM2.5 source profiles for traffic and dust sources in Raipur, India. Aerosol Air Qual. Res. 2015, 15, 2537–2548. [Google Scholar] [CrossRef]
Definition | Child | Adult | Unit | |
---|---|---|---|---|
C | Metal concentration in PM2.5 | / | / | mg/m3 |
InhR | Inhalation rate | 7.5 | 14.5 | m3·d−1 |
EF | Exposure frequency | 350 | 350 | d·a−1 |
ED | Exposure duration | 6 | 24 | a |
BW | Body weight | 15.9 | 56.8 | kg |
AT | Average carcinogenic risk exposure time | 70 × 365 | 70 × 365 | d |
Average non-carcinogenic risk exposure Time | ED × 365 | ED × 365 | d |
Element | RfC (mg/m3) | SF (mg·(kg·d)−1) |
---|---|---|
Ni | 2.06 × 10−2 | 0.84 |
Cr | 2.86 × 10−5 | 42 |
As | 3.01 × 10−4 | 15.10 |
Cd | 1.00 × 10−5 | 6.30 |
Mn | 1.43 × 10−5 | / |
Cu | 4.02 × 10−2 | / |
Zn | 3.00 × 10−1 | / |
V | 7.00 × 10−3 | / |
Pb | 3.52 × 10−3 | / |
Co | 5.70 × 10−6 | 9.80 |
Element | Summer | Autumn | Winter | Spring | Annual Average | ANOVA | |
---|---|---|---|---|---|---|---|
Mean ± S.D. | F | p | |||||
K | 0.39 ± 0.19 | 0.65 ± 0.32 | 1.23 ± 1.26 | 0.68 ± 0.45 | 0.84 | 11.16 | 0.00 |
Ca | 0.22 ± 0.13 | 0.31 ± 0.21 | 0.32 ± 0.25 | 0.30 ± 0.23 | 0.30 | 1.33 | 0.27 |
Mg | 1.00 ± 0.33 | 0.79 ± 0.10 | 0.34 ± 0.43 | 0.78 ± 0.11 | 0.64 | 51.09 | 0.00 |
Zn | 0.15 ± 0.16 | 0.20 ± 0.14 | 0.15 ± 0.11 | 0.17 ± 0.12 | 0.17 | 1.71 | 0.16 |
Fe | 0.36 ± 0.26 | 0.51 ± 0.26 | 0.47 ± 0.31 | 0.49 ± 0.28 | 0.47 | 1.98 | 0.12 |
Al | 0.46 ± 0.16 | 0.44 ± 0.12 | 0.34 ± 0.27 | 0.48 ± 0.21 | 0.41 | 6.09 | 0.00 |
Co * | 1.67 ± 0.67 | 1.25 ± 0.33 | 1.79 ± 0.63 | 1.25 ± 0.38 | 1.50 | 14.31 | 0.00 |
Ti * | 14.13 ± 7.74 | 18.63 ± 11.30 | 17.95 ± 12.78 | 21.16 ± 18.31 | 18.37 | 1.74 | 0.16 |
Cr * | 14.87 ± 21.87 | 13.96 ± 13.49 | 10.77 ± 7.80 | 13.41 ± 7.82 | 12.76 | 1.33 | 0.26 |
As * | 16.54 ± 19.29 | 15.66 ± 15.15 | 14.38 ± 12.66 | 16.65 ± 12.71 | 15.49 | 0.36 | 0.78 |
Cd * | 2.89 ± 1.66 | 3.18 ± 2.36 | 11.18 ± 13.55 | 2.70 ± 1.78 | 3.64 | 15.97 | 0.00 |
Mn * | 50.82 ± 21.08 | 54.36 ± 20.11 | 42.90 ± 23.94 | 48.59 ± 14.57 | 48.42 | 4.13 | 0.01 |
Cu * | 39.57 ± 47.79 | 41.59 ± 47.95 | 52.16 ± 52.24 | 37.53 ± 32.56 | 44.44 | 1.38 | 0.25 |
Ni * | 3.47 ± 1.64 | 3.32 ± 1.18 | 3.51 ± 1.29 | 3.31 ± 1.33 | 3.41 | 0.57 | 0.64 |
V * | 2.38 ± 1.01 | 2.09 ± 1.04 | 1.26 ± 1.85 | 1.89 ± 0.53 | 1.77 | 6.57 | 0.00 |
Pb * | 63.51 ± 99.04 | 43.61 ± 27.87 | 51.43 ± 39.44 | 53.41 ± 43.26 | 51.00 | 1.20 | 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Zhan, C.; Liu, H.; Liu, S.; Quan, J.; Liu, X.; Zhang, J.; Qu, C. Source-Specific Health Risk of PM2.5-Bound Metals in a Typical Industrial City, Central China, 2021–2022. Atmosphere 2023, 14, 1406. https://doi.org/10.3390/atmos14091406
Liu Z, Zhan C, Liu H, Liu S, Quan J, Liu X, Zhang J, Qu C. Source-Specific Health Risk of PM2.5-Bound Metals in a Typical Industrial City, Central China, 2021–2022. Atmosphere. 2023; 14(9):1406. https://doi.org/10.3390/atmos14091406
Chicago/Turabian StyleLiu, Ziguo, Changlin Zhan, Hongxia Liu, Shan Liu, Jihong Quan, Xianli Liu, Jiaquan Zhang, and Chengkai Qu. 2023. "Source-Specific Health Risk of PM2.5-Bound Metals in a Typical Industrial City, Central China, 2021–2022" Atmosphere 14, no. 9: 1406. https://doi.org/10.3390/atmos14091406
APA StyleLiu, Z., Zhan, C., Liu, H., Liu, S., Quan, J., Liu, X., Zhang, J., & Qu, C. (2023). Source-Specific Health Risk of PM2.5-Bound Metals in a Typical Industrial City, Central China, 2021–2022. Atmosphere, 14(9), 1406. https://doi.org/10.3390/atmos14091406