Examining the Effects of Tree Canopy Coverage on Human Thermal Comfort and Heat Dynamics in Courtyards: A Case Study in Hot-Humid Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Climate Conditions
2.2. Study Area and Field Measurement
2.3. Model Validation
2.4. Case Studies
2.5. Thermal Comfort Assessment Indices
2.6. Estimation of the Sensible Heat Dynamic
3. Results
3.1. Statistical Summary of the Thermal Environment and Model Accuracy Assessment
3.2. Variation in Ta
3.3. Variation in Tmrt
3.4. Thermal Comfort Assessment
3.5. Sensible Heat Reduction
4. Discussion
5. Conclusions
- Incorporate trees strategically: consider the strategic placement of trees in courtyards, particularly in courtyards with high H/W ratios, as they significantly contribute to cooling and improving microclimatic conditions.
- Optimize tree canopy coverage: carefully select an appropriate percentage of tree canopy coverage to achieve the desired cooling effect, taking into account the specific conditions of each courtyard.
- Select suitable tree species: in addition to considering the leaf area index (LAI) values, carefully choose tree species based on their height, as it significantly influences the sensible heat reduction at different height layers.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Farhadi, H.; Faizi, M.; Sanaieian, H. Mitigating the urban heat island in a residential area in Tehran: Investigating the role of vegetation, materials, and orientation of buildings. Sustain. Cities Soc. 2019, 46, 101448. [Google Scholar] [CrossRef]
- Kleerekoper, L.; van Esch, M.; Salcedo, T.B. How to make a city climate-proof, addressing the urban heat island effect. Resour. Conserv. Recycl. 2012, 64, 30–38. [Google Scholar] [CrossRef]
- Gabriel, K.M.A.; Endlicher, W.R. Urban and rural mortality rates during heat waves in Berlin and Brandenburg, Germany. Environ. Pollut. 2011, 159, 2044–2050. [Google Scholar] [CrossRef] [PubMed]
- McPhearson, T.; Mustafa, A.; Ortiz, L. Heat and COVID-19 could be twin killers. Nature 2020, 582, 32. [Google Scholar] [CrossRef]
- Wang, Y.P.; Zacharias, J. Landscape modification for ambient environmental improvement in central business districts—A case from Beijing. Urban For. Urban Green. 2015, 14, 8–18. [Google Scholar] [CrossRef]
- Luo, M.H.; Wang, Z.; Brager, G.; Cao, B.; Zhu, Y.X. Indoor climate experience, migration, and thermal comfort expectation in buildings. Build. Environ. 2018, 141, 262–272. [Google Scholar] [CrossRef]
- Sarbu, I.; Sebarchievici, C. Aspects of indoor environmental quality assessment in buildings. Energy Build. 2013, 60, 410–419. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, B.; Lu, J.F. Influence of residential indoor environment on self-rated health in China: A cross-sectional study. Sci. Technol. Built Environ. 2022, 28, 916–927. [Google Scholar] [CrossRef]
- Ding, Q.; Cai, W.J.; Wang, C.; Sanwal, M. The relationships between household consumption activities and energy consumption in china—An input-output analysis from the lifestyle perspective. Appl. Energy 2017, 207, 520–532. [Google Scholar] [CrossRef]
- Niu, S.W.; Li, Z.; Qiu, X.; Dai, R.Q.; Wang, X.; Qiang, W.L.; Hong, Z.G. Measurement of effective energy consumption in China’s rural household sector and policy implication. Energy Policy 2019, 128, 553–564. [Google Scholar] [CrossRef]
- Aram, F.; Solgi, E.; Garcia, E.H.; Mosavi, A. Urban heat resilience at the time of global warming: Evaluating the impact of the urban parks on outdoor thermal comfort. Environ. Sci. Eur. 2020, 32, 117. [Google Scholar] [CrossRef]
- Shooshtarian, S.; Lam, C.K.C.; Kenawy, I. Outdoor thermal comfort assessment: A review on thermal comfort research in Australia. Build. Environ. 2020, 177, 106917. [Google Scholar] [CrossRef]
- Acero, J.A.; Koh, E.J.Y.; Ruefenacht, L.A.; Norford, L.K. Modelling the influence of high-rise urban geometry on outdoor thermal comfort in Singapore. Urban Clim. 2021, 36, 100775. [Google Scholar] [CrossRef]
- Deng, J.Y.; Wong, N.H. Impact of urban canyon geometries on outdoor thermal comfort in central business districts. Sustain. Cities Soc. 2020, 53, 101966. [Google Scholar] [CrossRef]
- Hwang, R.L.; Lin, T.P.; Matzarakis, A. Seasonal effects of urban street shading on long-term outdoor thermal comfort. Build. Environ. 2011, 46, 863–870. [Google Scholar] [CrossRef]
- Lin, T.P.; Matzarakis, A.; Hwang, R.L. Shading effect on long-term outdoor thermal comfort. Build. Environ. 2010, 45, 213–221. [Google Scholar] [CrossRef]
- Lin, B.R.; Li, X.F.; Zhu, Y.X.; Qin, Y.G. Numerical simulation studies of the different vegetation patterns’ effects on outdoor pedestrian thermal comfort. J. Wind Eng. Ind. Aerodyn. 2008, 96, 1707–1718. [Google Scholar] [CrossRef]
- Meili, N.; Acero, J.A.; Peleg, N.; Manoli, G.; Burlando, P.; Fatichi, S. Vegetation cover and plant-trait effects on outdoor thermal comfort in a tropical city. Build. Environ. 2021, 195, 107733. [Google Scholar] [CrossRef]
- Taleghani, M.; Berardi, U. The effect of pavement characteristics on pedestrians’ thermal comfort in Toronto. Urban Clim. 2018, 24, 449–459. [Google Scholar] [CrossRef]
- Yuan, J.H.; Masuko, S.; Shimazaki, Y.; Yamanaka, T.; Kobayashi, T. Evaluation of outdoor thermal comfort under different building external-wall-surface with different reflective directional properties using CFD analysis and model experiment. Build. Environ. 2022, 207, 108478. [Google Scholar] [CrossRef]
- Carpio, M.; Gonzalez, A.; Gonzalez, M.; Verichev, K. Influence of pavements on the urban heat island phenomenon: A scientific evolution analysis. Energy Build. 2020, 226, 110379. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Feng, J.J.; Lu, J.F.; Chen, Y.; Li, W.L.; Lian, P.J.; Zhao, X. A review of the influence of courtyard geometry and orientation on microclimate. Build. Environ. 2023, 236, 110269. [Google Scholar] [CrossRef]
- Fang, Z.S.; He, H.Y.; Guo, Z.S.; Zheng, Z.M.; Feng, X.W. Daily variation of ground radiation in unshaded and shaded environments and the effect on mean radiant temperature. Case Stud. Therm. Eng. 2023, 43, 102791. [Google Scholar] [CrossRef]
- Deng, J.Y.; He, Y.Y.; Dai, M.L. Evaluation of the outdoor thermal environment for three typical urban forms in Nanjing, China. Build. Environ. 2023, 238, 110358. [Google Scholar] [CrossRef]
- Diz-Mellado, E.; Nikolopoulou, M.; Lopez-Cabeza, V.P.; Rivera-Gomez, C.; Galan-Marin, C. Cross-evaluation of thermal comfort in semi-outdoor spaces according to geometry in Southern Spain. Urban Clim. 2023, 49, 101491. [Google Scholar] [CrossRef]
- Diz-Mellado, E.; Ruiz-Pardo, A.; Rivera-Gomez, C.; de la Flor, F.J.S.; Galan-Marin, C. Unravelling the impact of courtyard geometry on cooling energy consumption in buildings. Build. Environ. 2023, 237, 110349. [Google Scholar] [CrossRef]
- Nasrollahi, N.; Hatami, M.; Khastar, S.R.; Taleghani, M. Numerical evaluation of thermal comfort in traditional courtyards to develop new microclimate design in a hot and dry climate. Sustain. Cities Soc. 2017, 35, 449–467. [Google Scholar] [CrossRef]
- Rodriguez-Algeciras, J.; Tablada, A.; Chaos-Yeras, M.; De la Paz, G.; Matzarakis, A. Influence of aspect ratio and orientation on large courtyard thermal conditions in the historical centre of Camaguey-Cuba. Renew. Energy 2018, 125, 840–856. [Google Scholar] [CrossRef]
- Jin, Y.; Yoon, H. Evaluating planting strategies for outdoor thermal comfort in high-rise residential complexes: A computational fluid dynamics simulation study. Environ. Sci. Pollut. Res. Int. 2023, 30, 88641–88663. [Google Scholar] [CrossRef]
- Zhao, Q.S.; Sailor, D.J.; Wentz, E.A. Impact of tree locations and arrangements on outdoor microclimates and human thermal comfort in an urban residential environment. Urban For. Urban Green. 2018, 32, 81–91. [Google Scholar] [CrossRef]
- Zhang, A.X.; Bokel, R.; van den Dobbelsteen, A.; Sun, Y.C.; Huang, Q.; Zhang, Q. An integrated school and schoolyard design method for summer thermal comfort and energy efficiency in Northern China. Build. Environ. 2017, 124, 369–387. [Google Scholar] [CrossRef]
- Yu, Z.W.; Chen, T.T.; Yang, G.Y.; Sun, R.H.; Xie, W.; Vejre, H. Quantifying seasonal and diurnal contributions of urban landscapes to heat energy dynamics. Appl. Energy 2020, 264, 114724. [Google Scholar] [CrossRef]
- Li, X.X.; Liu, X. Effect of tree evapotranspiration and hydrological processes on urban microclimate in a tropical city: A WRF/SLUCM study. Urban Clim. 2021, 40, 101009. [Google Scholar] [CrossRef]
- Heusinger, J.; Sailor, D.J.; Weber, S. Modeling the reduction of urban excess heat by green roofs with respect to different irrigation scenarios. Build. Environ. 2018, 131, 174–183. [Google Scholar] [CrossRef]
- Ali-Toudert, F. Exploration of the thermal behaviour and energy balance of urban canyons in relation to their geometrical and constructive properties. Build. Environ. 2021, 188, 107466. [Google Scholar] [CrossRef]
- Marciotto, E.R.; Oliveira, A.P.; Hanna, S.R. Modeling study of the aspect ratio influence on urban canopy energy fluxes with a modified wall-canyon energy budget scheme. Build. Environ. 2010, 45, 2497–2505. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, L.; Volloaro, R.D.; Vollaro, A.D. Urban microclimate and outdoor thermal comfort. A proper procedure to fit ENVI-met simulation outputs to experimental data. Sustain. Cities Soc. 2016, 26, 318–343. [Google Scholar] [CrossRef]
- Tsoka, S.; Tsikaloudaki, A.; Theodosiou, T. Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications—A review. Sustain. Cities Soc. 2018, 43, 55–76. [Google Scholar] [CrossRef]
- Yin, S.; Lang, W.; Xiao, Y.Q. The synergistic effect of street canyons and neighbourhood layout design on pedestrian-level thermal comfort in hot-humid area of China. Sustain. Cities Soc. 2019, 49, 101571. [Google Scholar] [CrossRef]
- Yin, S.; Wang, F.; Xiao, Y.Q.; Xue, S.H. Comparing cooling efficiency of shading strategies for pedestrian thermal comfort in street canyons of traditional shophouse neighbourhoods in Guangzhou, China. Urban Clim. 2022, 43, 101165. [Google Scholar] [CrossRef]
- Lopez-Cabeza, V.P.; Galan-Marin, C.; Rivera-Gomez, C.; Roa-Fernandez, J. Courtyard microclimate ENVI-met outputs deviation from the experimental data. Build. Environ. 2018, 144, 129–141. [Google Scholar] [CrossRef]
- Yilmaz, S.; Mutlu, E.; Yilmaz, H. Alternative scenarios for ecological urbanizations using ENVI-met model. Environ. Sci. Pollut. Res. 2018, 25, 26307–26321. [Google Scholar] [CrossRef] [PubMed]
- Li, K.M.; Zhang, Y.F.; Zhao, L.H. Outdoor thermal comfort and activities in the urban residential community in a humid subtropical area of China. Energy Build. 2016, 133, 498–511. [Google Scholar] [CrossRef]
- Alfano, F.R.D.; Dell’Isola, M.; Ficco, G.; Palella, B.I.; Riccio, G. Small globes and pocket heat stress meters for WBGT and PHS evaluations. A critical analysis under controlled conditions. Build. Environ. 2022, 226, 109781. [Google Scholar] [CrossRef]
- Alfano, F.R.D.; Ficco, G.; Frattolillo, A.; Palella, B.I.; Riccio, G. Mean Radiant Temperature Measurements through Small Black Globes under Forced Convection Conditions. Atmosphere 2021, 12, 621. [Google Scholar] [CrossRef]
- Yang, J.H.; Zhao, Y.; Guo, T.Y.; Luo, X.Y.; Ji, K.F.; Zhou, M.; Wan, F.D. The impact of tree species and planting location on outdoor thermal comfort of a semi-outdoor space. Int. J. Biometeorol. 2023, 67, 1689–1701. [Google Scholar] [CrossRef]
- Liu, Z.X.; Cheng, W.W.; Jim, C.Y.; Morakinyo, T.E.; Shi, Y.; Ng, E. Heat mitigation benefits of urban green and blue infrastructures: A systematic review of modeling techniques, validation and scenario simulation in ENVI-met V4. Build. Environ. 2021, 200, 107939. [Google Scholar] [CrossRef]
- Aboelata, A.; Sodoudi, S. Evaluating the effect of trees on UHI mitigation and reduction of energy usage in different built up areas in Cairo. Build. Environ. 2020, 168, 106490. [Google Scholar] [CrossRef]
- Susca, T.; Zanghirella, F.; Del Fatto, V. Building integrated vegetation effect on micro-climate conditions for urban heat island adaptation. Lesson learned from Turin and Rome case studies. Energy Build. 2023, 295, 113233. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Lin, Z.; Fang, Z.S.; Zheng, Z.M. An improved algorithm of thermal index models based on ENVI-met. Urban Clim. 2022, 44, 101190. [Google Scholar] [CrossRef]
- Calasan, M.; Aleem, S.; Zobaa, A.F. On the root mean square error (RMSE) calculation for parameter estimation of photovoltaic models: A novel exact analytical solution based on Lambert W function. Energy Convers. Manag. 2020, 210, 112716. [Google Scholar] [CrossRef]
- Liu, Z.X.; Brown, R.D.; Zheng, S.L.; Jiang, Y.; Zhao, L.H. An in-depth analysis of the effect of trees on human energy fluxes. Urban For. Urban Green. 2020, 50, 126646. [Google Scholar] [CrossRef]
- Huang, B.Z.; Hong, B.; Tian, Y.; Yuan, T.T.; Su, M.F. Outdoor thermal benchmarks and thermal safety for children: A study in China’s cold region. Sci. Total Environ. 2021, 787, 147603. [Google Scholar] [CrossRef]
- Tang, T.W.; Zhou, X.Q.; Zhang, Y.C.; Feng, X.W.; Liu, W.W.; Fang, Z.S.; Zheng, Z.M. Investigation into the thermal comfort and physiological adaptability of outdoor physical training in college students. Sci. Total Environ. 2022, 839, 155979. [Google Scholar] [CrossRef]
- Elnabawi, M.H.; Hamza, N.; Dudek, S. Thermal perception of outdoor urban spaces in the hot arid region of Cairo, Egypt. Sustain. Cities Soc. 2016, 22, 136–145. [Google Scholar] [CrossRef]
- Hoppe, P. The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef]
- Fang, Z.S.; Feng, X.W.; Xu, X.N.; Zhou, X.Q.; Lin, Z.; Ji, Y. Investigation into outdoor thermal comfort conditions by different seasonal field surveys in China, Guangzhou. Int. J. Biometeorol. 2019, 63, 1357–1368. [Google Scholar] [CrossRef]
- Abdallah, A.S.H.; Mahmoud, R.M.A. Urban morphology as an adaptation strategy to improve outdoor thermal comfort in urban residential community of new assiut city, Egypt. Sustain. Cities Soc. 2022, 78, 103648. [Google Scholar] [CrossRef]
- Lam, C.K.C.; Lee, H.; Yang, S.R.; Park, S. A review on the significance and perspective of the numerical simulations of outdoor thermal environment. Sustain. Cities Soc. 2021, 71, 102971. [Google Scholar] [CrossRef]
- Lan, H.N.; Lau, K.K.L.; Shi, Y.; Ren, C. Improved urban heat island mitigation using bioclimatic redevelopment along an urban waterfront at Victoria Dockside, Hong Kong. Sustain. Cities Soc. 2021, 74, 103172. [Google Scholar] [CrossRef]
- Lai, D.Y.; Guo, D.H.; Hou, Y.F.; Lin, C.Y.; Chen, Q.Y. Studies of outdoor thermal comfort in northern China. Build. Environ. 2014, 77, 110–118. [Google Scholar] [CrossRef]
- Lin, T.P.; Matzarakis, A. Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int. J. Biometeorol. 2008, 52, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.S.; Xu, X.N.; Zhou, X.Q.; Deng, S.Q.; Wu, H.J.; Liu, J.L.; Lin, Z. Investigation into the thermal comfort of university students conducting outdoor training. Build. Environ. 2019, 149, 26–38. [Google Scholar] [CrossRef]
- Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Hu, Y.H.; Hou, M.T.; Jia, G.S.; Zhao, C.L.; Zhen, X.J.; Xu, Y.H. Comparison of surface and canopy urban heat islands within megacities of eastern China. Isprs J. Photogramm. Remote Sens. 2019, 156, 160–168. [Google Scholar] [CrossRef]
- Wu, Z.F.; Chen, L.D. Optimizing the spatial arrangement of trees in residential neighborhoods for better cooling effects: Integrating modeling with in-situ measurements. Landsc. Urban Plan. 2017, 167, 463–472. [Google Scholar] [CrossRef]
- Abdallah, A.S.H. Passive design strategies to improve student thermal comfort in Assiut University: A field study in the Faculty of Physical Education in hot season. Sustain. Cities Soc. 2022, 86, 104110. [Google Scholar] [CrossRef]
- Elgheznawy, D.; Eltarabily, S. The impact of sun sail-shading strategy on the thermal comfort in school courtyards. Build. Environ. 2021, 202, 108046. [Google Scholar] [CrossRef]
- Lopez-Cabeza, V.P.; Alzate-Gaviria, S.; Diz-Mellado, E.; Rivera-Gomez, C.; Galan-Marin, C. Albedo influence on the microclimate and thermal comfort of courtyards under Mediterranean hot summer climate conditions. Sustain. Cities Soc. 2022, 81, 103872. [Google Scholar] [CrossRef]
- Li, Y.N.; Lin, D.L.; Zhang, Y.H.; Song, Z.P.; Sha, X.H.; Zhou, S.Q.; Chen, C.; Yu, Z.W. Quantifying tree canopy coverage threshold of typical residential quarters considering human thermal comfort and heat dynamics under extreme heat. Build. Environ. 2023, 233, 110100. [Google Scholar] [CrossRef]
- Li, J.Y.; Zheng, B.H.; Bedra, K.B. Evaluating the improvements of thermal comfort by different natural elements within courtyards in Singapore. Urban Clim. 2022, 45, 101253. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, L.; Petitti, D.; Vollaro, E.D.L.; Coppi, M.; Vollaro, A.D.L. Relating microclimate, human thermal comfort and health during heat waves: An analysis of heat island mitigation strategies through a case study in an urban outdoor environment. Sustain. Cities Soc. 2017, 30, 79–96. [Google Scholar] [CrossRef]
- Crank, P.J.; Sailor, D.J.; Ban-Weiss, G.; Taleghani, M. Evaluating the ENVI-met microscale model for suitability in analysis of targeted urban heat mitigation strategies. Urban Clim. 2018, 26, 188–197. [Google Scholar] [CrossRef]
- Fahmy, M.; Mahdy, M.; Mahmoud, S.; Abdelalim, M.; Ezzeldin, S.; Attia, S. Influence of urban canopy green coverage and future climate change scenarios on energy consumption of new sub-urban residential developments using coupled simulation techniques: A case study in Alexandria, Egypt. Energy Rep. 2020, 6, 638–645. [Google Scholar] [CrossRef]
- Kim, S.W.; Brown, R.D.; Winslow, J.F. Urban green and blue infrastructure effect on the micro-scale thermal environment in a residential neighborhood: Mueller, Austin, TX. Int. J. Sustain. Dev. World Ecol. 2023, 1–15. [Google Scholar] [CrossRef]
- Shashua-Bar, L.; Tsiros, I.X.; Hoffman, M. Passive cooling design options to ameliorate thermal comfort in urban streets of a Mediterranean climate (Athens) under hot summer conditions. Build. Environ. 2012, 57, 110–119. [Google Scholar] [CrossRef]
- Mahmoud, R.M.A.; Abdallah, A.S.H. Assessment of outdoor shading strategies to improve outdoor thermal comfort in school courtyards in hot and arid climates. Sustain. Cities Soc. 2022, 86, 104147. [Google Scholar] [CrossRef]
- Forouzandeh, A. Numerical modeling validation for the microclimate thermal condition of semi-closed courtyard spaces between buildings. Sustain. Cities Soc. 2018, 36, 327–345. [Google Scholar] [CrossRef]
- Feng, L.; Yang, S.Q.; Zhou, Y.N.; Shuai, L.R. Exploring the effects of the spatial arrangement and leaf area density of trees on building wall temperature. Build. Environ. 2021, 205, 108295. [Google Scholar] [CrossRef]
- Hong, B.; Lin, B.R. Numerical studies of the outdoor wind environment and thermal comfort at pedestrian level in housing blocks with different building layout patterns and trees arrangement. Renew. Energy 2015, 73, 18–27. [Google Scholar] [CrossRef]
- Zhao, Y.F.; Chen, Y.H.; Li, K.N. A simulation study on the effects of tree height variations on the facade temperature of enclosed courtyard in North China. Build. Environ. 2022, 207, 108566. [Google Scholar] [CrossRef]
- Shi, Y.R.; Xiang, Y.R.; Zhang, Y.F. Urban Design Factors Influencing Surface Urban Heat Island in the High-Density City of Guangzhou Based on the Local Climate Zone. Sensors 2019, 19, 3459. [Google Scholar] [CrossRef]
- Berkovic, S.; Yezioro, A.; Bitan, A. Study of thermal comfort in courtyards in a hot arid climate. Sol. Energy 2012, 86, 1173–1186. [Google Scholar] [CrossRef]
- Alkhoudiri, A.; Navarro, I.; Fort, J.M.; Alumran, S. Parametric comparative analysis of outdoor thermal comfort in a desert climate: A case study of single-family houses in Riyadh. Urban Clim. 2022, 46, 101300. [Google Scholar] [CrossRef]
Instrument | Parameter | Measuring Range | Accuracy |
---|---|---|---|
HOBO Pro | Air temperature | –40.0 to 70.0 °C | ±0.5 °C |
HOBO Pro | Relative humidity | 0 to 100% | ±2.5% |
Kestrel5500 | Wind speed | 0 to 5 m·s−1 | ±0.05 m·s−1 |
JTR04 | Black bulb temperature | 10.0 to 85.0 °C | ±0.5 °C |
Variable | Settings |
---|---|
Size and resolution | 51 × 48 × 20 |
x = 3 m, Y = 3 m, and Z = 3 m | |
Date | 21 July 2022 |
Duration | 7:00 a.m.–18:00 p.m. |
Solar radiation correction ratio | 1.0 |
Initial Ta and RH | 29.3 °C/79.1% |
Wind velocity and wind direction at 10 m | 1.1 m/s, 135° |
Specific humidity at 2500 m | 10.76 g/kg |
Soil initial temperature | 31.5 °C (0–20 cm)/33.9 °C (20–50 cm)/32.9 °C (<50 cm) |
Soil initial humidity | 30% (0–20 cm)/40% (20–50 cm)/50% (<50 cm) |
Albedo | Wall: 0.30 |
Roof: 0.45 | |
Asphalt: 0.20 | |
Brick road: 0.30 |
PET Value | Thermal Sensation | Grade of Physiological Stress |
---|---|---|
- | Very cold | Extreme cold stress |
- | Cold | Strong cold stress |
<11.3 °C | Cool | Moderate cold stress |
11.3–19.2 °C | Slightly cool | Slight cold stress |
19.2–24.6 °C | Comfortable | No thermal stress |
24.6–29.1 °C | Slightly warm | Slight heat stress |
29.1–36.3 °C | Warm | Moderate heat stress |
36.3–53.6 °C | Hot | Strong heat stress |
>53.6 °C | Very hot | Extreme heat stress |
Monitoring Points | Parameters | Minimum | Maximum | Mean | Standard Deviations |
---|---|---|---|---|---|
Point 1 | Ta (°C) | 29.3 | 33.9 | 32.7 | 1.19 |
Tg (°C) | 30.5 | 34.3 | 32.9 | 1.21 | |
RH (%) | 58.7 | 76.0 | 65.5 | 5.39 | |
Va (m/s) | 0 | 1.5 | 0.4 | 0.39 | |
Point 2 | Ta (°C) | 30.1 | 33.9 | 32.6 | 1.17 |
Tg (°C) | 30.4 | 34.1 | 32.8 | 1.10 | |
RH (%) | 58.2 | 75.8 | 64.5 | 5.33 | |
Va (m/s) | 0 | 0.8 | 0.3 | 0.27 | |
Point 3 | Ta (°C) | 30.0 | 33.9 | 32.6 | 1.25 |
Tg (°C) | 30.2 | 34.3 | 32.9 | 1.34 | |
RH (%) | 57.9 | 77.0 | 64.8 | 5.68 | |
Va (m/s) | 0 | 2.2 | 0.6 | 0.47 | |
Point 4 | Ta (°C) | 30.3 | 34.4 | 33.0 | 1.30 |
Tg (°C) | 28.8 | 34.5 | 32.9 | 1.68 | |
RH (%) | 57.4 | 76.4 | 64.4 | 5.59 | |
Va (m/s) | 0 | 2.8 | 0.5 | 0.64 | |
Point 5 | Ta (°C) | 30.1 | 34.3 | 32.8 | 1.34 |
Tg (°C) | 29.2 | 34.8 | 33.1 | 1.74 | |
RH (%) | 56.4 | 76.3 | 63.9 | 5.80 | |
Va (m/s) | 0 | 1.7 | 0.7 | 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.; Yang, J.; Huang, J.; Zhong, R. Examining the Effects of Tree Canopy Coverage on Human Thermal Comfort and Heat Dynamics in Courtyards: A Case Study in Hot-Humid Regions. Atmosphere 2023, 14, 1389. https://doi.org/10.3390/atmos14091389
Lin C, Yang J, Huang J, Zhong R. Examining the Effects of Tree Canopy Coverage on Human Thermal Comfort and Heat Dynamics in Courtyards: A Case Study in Hot-Humid Regions. Atmosphere. 2023; 14(9):1389. https://doi.org/10.3390/atmos14091389
Chicago/Turabian StyleLin, Chang, Jiahao Yang, Jun Huang, and Ruize Zhong. 2023. "Examining the Effects of Tree Canopy Coverage on Human Thermal Comfort and Heat Dynamics in Courtyards: A Case Study in Hot-Humid Regions" Atmosphere 14, no. 9: 1389. https://doi.org/10.3390/atmos14091389
APA StyleLin, C., Yang, J., Huang, J., & Zhong, R. (2023). Examining the Effects of Tree Canopy Coverage on Human Thermal Comfort and Heat Dynamics in Courtyards: A Case Study in Hot-Humid Regions. Atmosphere, 14(9), 1389. https://doi.org/10.3390/atmos14091389