Comparative Analysis of Ozone Pollution Characteristics between Urban Area and Southern Mountainous Area of Urumqi, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Data Sources
2.2.1. Particulate Matter and O3 Concentration Data
2.2.2. GDAS Data
2.3. Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) Model
3. Results and Discussion
3.1. Daily, Monthly, and Seasonal Changes of O3 Concentration
3.2. Daily Variation of O3 Concentration
3.3. Seasonal Weekend Effect of Ozone Concentration
3.4. Relationship between Particulate Matter and O3 Concentration in the Urban Area of Urumqi
3.5. Analysis of O3 Sources
3.5.1. PSCF Analysis
3.5.2. CWT Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, K.; Jacob, D.J.; Liao, H.; Zhu, J.; Shah, V.; Shen, L.; Bates, K.H.; Zhang, Q.; Zhai, S. A two-pollutant strategy for improving ozone and particulate air quality in China. Nat. Geosci. 2019, 12, 906–910. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, K.; Liu, Z.; Zhang, Y.; Shao, T.; Zhang, H. Coordinated control of PM2.5 and O3 is urgently needed in China after implementation of the “Air pollution prevention and control action plan”. Chemosphere 2020, 270, 129441. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Yin, D.; Yu, Y.; Kang, S.; Qin, D.; Dong, L. PM2.5 and O3 Pollution during 2015–2019 over 367 Chinese cities: Spatiotemporal variations, meteorological and topographical impacts. Environ. Pollut. 2020, 264, 114694. [Google Scholar] [CrossRef] [PubMed]
- Huang, S. Air pollution and control: Past, present and future. Chin. Sci. Bull. 2018, 63, 895–919. [Google Scholar] [CrossRef]
- Xiang, S.; Liu, J.; Tao, W.; Yi, K.; Xu, J.; Hu, X.; Liu, H.; Wang, Y.; Zhang, Y.; Yang, H.; et al. Control of both PM2.5 and O3 in Beijing-Tianjin-Hebei and the surrounding areas. Atmos. Environ. 2020, 224, 117259. [Google Scholar] [CrossRef]
- Dai, H.; Zhu, J.; Liao, H.; Li, J.; Liang, M.; Yang, Y.; Yue, X. Co-occurrence of ozone and PM2.5 pollution in the Yangtze River Delta over 2013–2019: Spatiotemporal distribution and meteorological conditions. Atmos. Res. 2021, 249, 105363. [Google Scholar] [CrossRef]
- Lou, S.; Liao, H.; Zhu, B. Impacts of aerosols on surface-layer ozone concentrations in China through heterogeneous reactions and changes in photolysis rates. Atmos. Environ. 2014, 85, 123–138. [Google Scholar] [CrossRef]
- Qu, Y.; Wang, T.; Cai, Y.; Wang, S.; Chen, P.; Li, S.; Li, M.; Yuan, C.; Wang, J.; Xu, S. Influence of atmospheric particulate matter on ozone in Nanjing, China: Observational study and mechanistic analysis. Adv. Atmos. Sci. 2018, 35, 1381–1395. [Google Scholar] [CrossRef]
- Juráň, S.; Grace, J.; Urban, O. Temporal Changes in Ozone Concentrations and Their Impact on Vegetation. Atmosphere 2021, 12, 82. [Google Scholar] [CrossRef]
- Yan, M.L.; Li, T.T.; Liu, X.T.; Duan, H.Y.; Liu, Z.R. Human health effects of short-term ozone exposure: A review of Chinese epidemiological evidence. J. Environ. Health 2012, 29, 752–761. [Google Scholar] [CrossRef]
- Schlink, U.; Herbarth, O.; Richter, M.; Dorling, S.; Nunnari, G.; Cawley, G.; Pelikan, E. Statistical models to assess the health effects and to forecast ground-level ozone. Environ. Model. Softw. 2006, 21, 547–558. [Google Scholar] [CrossRef]
- Aunan, K.; Pan, X.C. Exposure-response functions for health effects of ambient air pollution applicable for China—A meta-analysis. Sci. Total. Environ. 2004, 329, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Jerrett, M.; Burnett, R.T.; Pope, C.A.; Ito, K.; Thurston, G.; Krewski, D.; Shi, Y.; Calle, E.; Thun, M. Long-term ozone exposure and mortality. N. Engl. J. Med. 2009, 360, 1085–1095. [Google Scholar] [CrossRef] [PubMed]
- Katanoda, K.; Sobue, T.; Satoh, H.; Tajima, K.; Suzuki, T.; Nakatsuka, H.; Takezaki, T.; Nakayama, T.; Nitta, H.; Tanabe, K.; et al. An association between long-term exposure to ambient air pollution and mortality from lung cancer and respiratory diseases in Japan. J. Epidemiol. 2011, 21, 132–143. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.J.; Hu, W.Q.; Yang, S.Y.; Zhu, X.; Zhao, C.C.; Bai, Z.Y. Spatial-temporal analysis of PM2.5-related health impact and economic losses in China from 2000 to 2017. J. Cent. China Norm. Univ. (Nat. Sci. Ed.) 2021, 55, 110–120. [Google Scholar] [CrossRef]
- Zhou, T. New physical science behind climate change: What does IPCC AR6 tell us? Innovation 2021, 2, 100173. [Google Scholar] [CrossRef]
- An, Z.; Huang, R.-J.; Zhang, R.; Tie, X.; Li, G.; Cao, J.; Zhou, W.; Shi, Z.; Han, Y.; Gu, Z.; et al. Severe haze in Northern China: A synergy of anthropogenic emissions and atmospheric processes. Proc. Natl. Acad. Sci. USA 2019, 116, 8657–8666. [Google Scholar] [CrossRef]
- Fu, T.-M.; Zheng, Y.; Paulot, F.; Mao, J.; Yantosca, R.M. Positive but variable sensitivity of August surface ozone to large-scale warming in the southeast United States. Nat. Clim. Chang. 2015, 5, 454–458. [Google Scholar] [CrossRef]
- Allen, S.K.; Plattner, G.K.; Nauels, A.; Xia, Y.; Stocker, T.F. Climate Change 2013: The Physical Science Basis. An overview of the Working Group 1 Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). 2014. Available online: https://ui.adsabs.harvard.edu/abs/2014EGUGA..16.3544A/abstract (accessed on 13 March 2023).
- Zhang, Q.; Yang, J.; Wang, W.; Ma, P.; Lu, G.; Liu, X.; Yu, H.; Fang, F. Climatic Warming and Humidification in the Arid Region of Northwest China: Multi-Scale Characteristics and Impacts on Ecological Vegetation. J. Meteorol. Res. 2021, 35, 113–127. [Google Scholar] [CrossRef]
- Wang, P.; Guo, H.; Hu, J.; Kota, S.H.; Ying, Q.; Zhang, H. Responses of PM2.5 and O3 concentrations to changes of meteorology and emissions in China. Sci. Total Environ. 2019, 662, 297–306. [Google Scholar] [CrossRef]
- Cristofanelli, P.; Bonasoni, P. Background ozone in the southern Europe and Mediterranean area: Influence of the transport processes. Environ. Pollut. 2009, 157, 1399–1406. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.T.; Zhang, Q.; Wen, X.Y.; Dou, N.C.; Zhao, W.T.; Luo, S.Z.; Chen, Z.; Qu, C.K. Spatial and temporal distribution of PM2.5 and seasonal analysis of potential source areas in Yuncheng City. Environ. Sci. 2022, 43, 74–84. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Wang, S.T.; Liu, Y.; Li, B. Transport path of particulate matter in Tian shui City based on HYSPLIT4 model. China Environ. Sci. 2021, 41, 3529–3538. [Google Scholar] [CrossRef]
- Li, H.L.; He, Q.; Liu, X.C.; Zhao, Q.W. Transport path and potential source of PM10 in eastern Pamir Plateau. China Environ. Sci. 2020, 40, 4660–4668. [Google Scholar] [CrossRef]
- Sassen, K. Indirect climate forcing over the western US from Asian dust storms. Geophys. Res. Lett. 2002, 29, 103-1–103-4. [Google Scholar] [CrossRef]
- Kumar, R.; Barth, M.C.; Madronich, S.; Naja, M.; Carmichael, G.R.; Pfister, G.G.; Knote, C.; Brasseur, G.P.; Ojha, N.; Sarangi, T. Effects of dust aerosols on tropospheric chemistry during a typical pre-monsoon season dust storm in northern India. Atmos. Chem. Phys. 2014, 14, 1113–1158. [Google Scholar] [CrossRef]
- Li, K.; Jacob, D.J.; Liao, H.; Shen, L.; Zhang, Q.; Bates, K.H. Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proc. Natl. Acad. Sci. USA 2019, 116, 422–427. [Google Scholar] [CrossRef]
- Gryparis, A.; Forsberg, B.; Katsouyanni, K.; Analitis, A.; Touloumi, G.; Schwartz, J.; Samoli, E.; Medina, S.; Anderson, H.R.; Niciu, E.M.; et al. Acute effects of ozone on mortality from the “Air Pollution and health: A European approach” project. Am. J. Respir. Crit. Care Med. 2004, 170, 1039–1135. [Google Scholar] [CrossRef]
- Peng, R.D.; Samoli, E.; Pham, L.; Dominici, F.; Touloumi, G.; Ramsay, T.; Burnett, R.T.; Krewski, D.; Le Tertre, A.; Cohen, A.; et al. Acute effects of ambient ozone on mortality in Europe and North America: Results from the APHENA study. Air Qual. Atmos. Health 2013, 6, 445–453. [Google Scholar] [CrossRef]
- Li, D.; Liu, J.; Zhang, J.; Gui, H.; Du, P.; Yu, T.; Wang, J.; Lu, Y.; Liu, W.; Cheng, Y. Identification of long-range transport pathways and potential sources of PM2.5 and PM10 in Beijing from 2014 to 2015. J. Environ. Sci. 2017, 56, 214–229. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, J.; Liao, H.; Yang, Y.; Yue, X. Meteorological influences on PM2.5 and O3 trends and associated health burden since China’s clean air actions. Sci. Total Environ. 2019, 744, 140837. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Hopke, P. A study of the sources of acid precipitation in Ontario, Canada. Atmos. Environ. (1967) 1989, 23, 1499–1509. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, X.Y.; Draxler, R.R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ. Model. Softw. 2009, 24, 938–939. [Google Scholar] [CrossRef]
- Li, Y.J.; An, X.Q.; Fan, G.Z. Transport pathway and potential source area of atmospheric particulates in Beijing. China Environ. Sci. 2019, 39, 915–927. [Google Scholar] [CrossRef]
- Polissar, A.V.; Hopke, P.K.; Harris, J.M. Source regions for atmospheric aerosol measured at Barrow, Alaska. Environ. Sci. Technol. 2001, 35, 4214–4226. [Google Scholar] [CrossRef]
- Polissar, A.; Hopke, P.; Paatero, P.; Kaufmann, Y.; Hall, D.; Bodhaine, B.; Dutton, E.; Harris, J. The aerosol at Barrow, Alaska: Long-term trends and source locations. Atmos. Environ. 1999, 33, 2441–2458. [Google Scholar] [CrossRef]
- Sun, L.; Xue, L.; Wang, Y.; Li, L.; Lin, J.; Ni, R.; Yan, Y.; Chen, L.; Li, J.; Zhang, Q.; et al. Impacts of meteorology and emissions on summertime surface ozone increases over central eastern China between 2003 and 2015. Atmos. Chem. Phys. 2019, 19, 1455–1469. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Gong, D.; Quan, W.; Zhao, X.; Ma, Z.; Kim, S.-J. Evolution of surface O3 and PM2.5 concentrations and their relationships with meteorological conditions over the last decade in Beijing. Atmos. Environ. 2015, 108, 67–75. [Google Scholar] [CrossRef]
- Shao, P.; An, J.; Xin, J.; Wu, F.; Wang, J.; Ji, D.; Wang, Y.S. Source apportionment of VOCs and the contribution to photochemical ozone formation during summer in the typical industrial area in the Yangtze River Delta, China. Atmos. Res. 2016, 176–177, 64–74. [Google Scholar] [CrossRef]
- Liu, T.; Wang, X.; Hu, J.; Wang, Q.; An, J.; Gong, K.; Sun, J.; Li, L.; Qin, M.; Li, J.; et al. Driving forces of changes in air quality during the COVID-19 lockdown period in the Yangtze River Delta region, China. Environ. Sci. Technol. Lett. 2020, 7, 779–786. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, S.; Ma, J.; Shen, J.; Wang, P.; Wang, P.; Zhang, H. Enhanced atmospheric oxidation capacity and associated ozone increases during COVID-19 lockdown in the Yangtze River Delta. Sci. Total Environ. 2021, 768, 144796. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Lyu, X.; Deng, X.; Huang, X.; Jiang, F.; Ding, A. Aggravating O3 pollution due to NOx emission control in eastern China. Sci. Total Environ. 2019, 677, 732–744. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Wang, G.; Du, X.L.; Jin, C.; Yang, H.L.; Liu, J.; Yang, Q.L.; Tchouopou, L.J.; Li, J.; Chang, C.T. Evaluation of Adsorbing Haze PM2.5 Fine Particulate Matters with Plants in Beijing-Tianjin-Hebei Region in China. Sci. China Life Sci. 2013, 43, 6. [Google Scholar] [CrossRef]
- Zhu, C.Y.; He, Q.; Zhao, Z.J.; Liu, X.C.; Pu, Z.C. Comparative analysis of particulate matter pollution characteristics between urban area and southern suburb of Urumqi. China Environ. Sci. 2022, 42, 4073–4085. [Google Scholar] [CrossRef]
- Ragland, K. A comparison of weekend-weekday ozone and hydrocarbon concentrations in the Baltimore-Washington metropolitan area. Atmos. Environ. 1976, 10, 564. [Google Scholar] [CrossRef]
- Li, C.L. Analysis on variation characteristics of ozone and correlation with meteorological elements in urban atmosphere of Xuzhou. Environ. Sci. Manag. 2018, 43, 77–81. [Google Scholar] [CrossRef]
- Geng, F.; Tie, X.; Xu, J.; Zhou, G.; Peng, L.; Gao, W.; Tang, X.; Zhao, C. Characterizations of ozone, NOx, and VOCs measured in Shanghai, China. Atmos. Environ. 2008, 42, 6873–6883. [Google Scholar] [CrossRef]
- Chen, J.; Shen, H.; Li, T.; Peng, X.; Cheng, H.; Ma, C. Temporal and spatial features of the correlation between PM2.5 and O3 concentrations in China. Int. J. Environ. Res. Public Health 2019, 16, 4824. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, L.; Liao, H.; Dang, R. Correlations between PM2.5 and ozone over China and associated underlying reasons. Atmosphere 2019, 10, 352. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Zhao, D.; Chai, F.H.; Liang, G.X.; Xue, Z.G.; Wang, B.B.; Liang, Y.J.; Chen, Y.; Zhang, M. Correlation between the atmospheric visibility and aerosol fine particle concentrations in Guangzhou and Beijing. China Environ. 2010, 30, 967–971. [Google Scholar] [CrossRef]
- Tian, X.L.; Xie, Z.H.; Liu, M.X.; Yang, N.; Ren, Y.T.; Cheng, B.W. Changes in O3 and PM2.5 Concentrations and Characteristics of Composite Pollution in Tangshan City from 2014 to 2020. In Proceedings of the 2021 Annual Scientific and Technical Conference of the Chinese Society for Environmental Science (I), Surakarta, Indonesia, 24–25 August 2021; pp. 580–586. Available online: http://cpfd.cnki.com.cn/Article/CPFDTOTAL-HJKP202110001084.htm (accessed on 13 March 2023).
- Yan, F.H.; Chen, W.H.; Chang, M.; Wang, W.W.; Liu, Y.L.; Zhong, B.Q.; Mao, J.Y.; Yang, S.S.; Wang, X.M.; Liu, S.F. Characteristics and Meteorological Factors of Complex Nonat-tainment Pollution of Atmospheric Photochemical Oxidant (Ox) and PM2.5 in the Pearl River Delta Region, China. Huan Jing Ke Xue 2021, 42, 1600–1614. [Google Scholar] [CrossRef] [PubMed]
- Guan, Q.; Zheng, Y.F.; Zhao, H.; Yuan, Y.; Wang, Y. Effects of PM2.5 and Meteorological Factors on Ozone in Urumqi. Sci. Technol. Eng. 2019, 19, 7. [Google Scholar] [CrossRef]
- Deng, X.J.; Zhou, X.J.; Wu, D.; Tie, X.X.; Tan, H.B.; Li, F.; Bi, X.Y.; Deng, T.; Jiang, D.H. Effect of atmospheric aerosol on surface ozone variation over the Pearl River Delta region. Sci. China (Earth Sci.) 2011, 41, 93–102. [Google Scholar] [CrossRef]
- Chen, S.; Wang, H.; Lu, K.; Zeng, L.; Hu, M.; Zhang, Y. The trend of surface ozone in Beijing from 2013 to 2019: Indications of the persisting strong atmospheric oxidation capacity. Atmos. Environ. 2020, 242, 117801. [Google Scholar] [CrossRef]
- Shao, P.; Xin, J.Y.; An, J.L.; Wang, J.X.; Wu, F.K.; Wang, Y. An analysis on the relationship between ground-level ozone and particulate matter in an industrial area in the Yangtze River Delta during summertime. Chin. J. Atmos. Sci. 2017, 41, 618–628. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, M.; Wang, S.; Wang, Y.; Feng, L.; Wu, K. Air pollutant emission characteristics and HYSPLIT model analysis during heating period in Shenyang, China. Environ. Monit. Assess. 2020, 193, 9. [Google Scholar] [CrossRef] [PubMed]
- Pu, W.; Shi, X.; Wang, L.; Xu, J.; Ma, Z. Potential source regions of air pollutants at a regional background station in Northern China. Environ. Technol. 2019, 40, 3412–3421. [Google Scholar] [CrossRef]
- Liao, T.; Wang, S.; Ai, J.; Gui, K.; Duan, B.; Zhao, Q.; Zhang, X.; Jiang, W.; Sun, Y. Heavy pollution episodes, transport pathways and potential sources of PM2.5 during the winter of 2013 in Chengdu (China). Sci. Total Environ. 2017, 584–585, 1056–1065. [Google Scholar] [CrossRef]
- Hopke, P.K.; Gao, N.; Cheng, M.D. Combining chemical and meteorological data to infer source areas of airborne pollutants. Chemom. Intell. Lab. Syst. 1993, 19, 187–199. [Google Scholar] [CrossRef]
- Han, Y.J.; Holsen, T.M.; Hopke, P.K. Estimation of source locations of total gaseous mercury measured in New York State using trajectory-based models. Atmos. Environ. 2007, 41, 6033–6047. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, C.; He, Q.; Zhao, Z.; Liu, X.; Pu, Z. Comparative Analysis of Ozone Pollution Characteristics between Urban Area and Southern Mountainous Area of Urumqi, China. Atmosphere 2023, 14, 1387. https://doi.org/10.3390/atmos14091387
Zhu C, He Q, Zhao Z, Liu X, Pu Z. Comparative Analysis of Ozone Pollution Characteristics between Urban Area and Southern Mountainous Area of Urumqi, China. Atmosphere. 2023; 14(9):1387. https://doi.org/10.3390/atmos14091387
Chicago/Turabian StyleZhu, Cuiyun, Qing He, Zhujun Zhao, Xinchun Liu, and Zongchao Pu. 2023. "Comparative Analysis of Ozone Pollution Characteristics between Urban Area and Southern Mountainous Area of Urumqi, China" Atmosphere 14, no. 9: 1387. https://doi.org/10.3390/atmos14091387
APA StyleZhu, C., He, Q., Zhao, Z., Liu, X., & Pu, Z. (2023). Comparative Analysis of Ozone Pollution Characteristics between Urban Area and Southern Mountainous Area of Urumqi, China. Atmosphere, 14(9), 1387. https://doi.org/10.3390/atmos14091387