Synoptic and Dynamical Characteristics of High-Impact Storms Affecting the Iberian Peninsula during the 2018–2021 Extended Winters
Abstract
:1. Introduction
- (i).
- To assess the named events that affected the IP with heavy precipitation and/or strong winds and the impacts caused by the studied events;
- (ii).
- To characterize the variability of the events under study considering the maximum intensity (minimum central pressure), the lifetime of each event, and the number of events per month;
- (iii).
- To characterize the synoptic and dynamical conditions driving the events through critical meteorological variables;
- (iv).
- To evaluate the intensity of the selected events considering the precipitation and wind speed values reached for these;
- (v).
- Finally, to analyze the meteorological variable anomalies for the high-impact storms studied relative to the climatology of the 1991–2020 reference period.
2. Materials and Methods
2.1. Identification and Characterization of the High-Impact Events Affecting the IP
2.2. Meteorological Data and Synoptic Analysis
2.3. Extreme Precipitation and Wind Associated with the Storms, and Concurrent Events
3. Results
3.1. Characterization of the High-Impact Storms during Extended Winters 2018–2021
3.2. Lifecycle Characteristics of the High-Impact Storms
4. Synoptic Analysis
4.1. Case Study Analysis
4.2. Concurrent Extreme Events Analysis
4.3. Climatological Analysis
5. Discussion
6. Conclusions
- Of the events named since 2017 by the meteorological institutes of the countries of the Southwest European Group (SW Group), twenty-eight had impacts on the IP, and of these events, ten had an explosive development.
- The storms lasted for a period of two to four days, with January being the month that had the highest frequency of occurrences (Figure 3).
- For the IP region, the meteorological field analysis for storm Ana (Figure 4 and Figure S1) on the coast of the IP presents values of θe at 850 hPa up to 50 °C, wind speeds at 250 hPa that reach 90 m s−1, IVT with values up to 1200 kg m−1s−1, SST with values between 10 °C and 20 °C, QE values of −680 W m−2, QH values of −175 W m−2, and QN values of −810 W m−2.
- The examination of simultaneous extreme events revealed that the recorded values on storm days were classified as extreme (Figure 5 and Figure 6). Specifically, the Northwest region of the IP experienced the most significant impact from these events, where the value of the 98th percentile was higher in 34.1% of storm days for daily accumulated precipitation, in 45.7% of storm days for instantaneous gusts of wind at 10 m, and 46.8% of storm days of wind speed at 10 m.
- In the IP region, the anomaly analysis (Figure 7) related to the climatology of the 1991–2020 period shows low MSLP values (up to more than −21.6 hPa), high values of IVT (up to more than 327.6 kg m−1s−1) and wind speed at 250 hPa (up to more than 29.6 m s−1), high values of θe at 850 hPa (up to more than 19.1 °C), QE with values up to −150 W m−2, QH with values up to –40 W m−2, and QN values up to more than −160 W m−2.
- The heat flux analysis (QE, QH, and QN) and the anomalies of SST with values up to −1 °C at the Iberian coast (Figure 7J), as well as the heat flux anomaly values (QE, QH, and QN) (Figure 7 and Figure S2) suggest a cooling of the ocean during the passage of the storm. These results reveal the heat exchangers between the ocean and atmosphere, and their contribution to the development of high-impact storms.
- The results in the present work revealed that the high values of upper-level wind speed and lower-level moisture (Figure 4, Figure 5, Figure 6 and Figure 7) in the instant of maximum intensity had great importance for the development and intensification of the storms, being responsible for extreme precipitation events and flooding, as well as the strong winds associated with several destructive impacts.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Catto, J.L.; Ackerley, D.; Booth, J.F.; Champion, A.J.; Colle, B.A.; Pfahl, S.; Pinto, J.G.; Quinting, J.F.; Seiler, S. The Future of Midlatitude Cyclones. Curr. Clim. Chang. Rep. 2019, 5, 407–420. [Google Scholar] [CrossRef]
- Dacre, H.F.; Pinto, J.G. Serial clustering of extratropical cyclones: A review of where, when and why it occurs. Npj Clim. Atmos. Sci. 2020, 3, 48. [Google Scholar] [CrossRef]
- Peixoto, J.P.; Oort, A.H. Physics of Climate; American Institute of Physics: College Park, ML, USA, 1992; 520p. [Google Scholar]
- Rudeva, I.; Simmonds, I.; Crock, D.; Boschat, G. Midlatitude fronts and variability in the southern hemisphere tropical width. J. Clim. 2019, 32, 8243–8260. [Google Scholar] [CrossRef]
- Sinclair, V.A.; Rantanen, M.; Haapanala, P.; Räisänen, J.; Järvinen, H. The characteristics and structure of extra-tropical cyclones in a warmer climate. Weather Clim. Dyn. 2020, 1, 1–25. [Google Scholar] [CrossRef]
- Hawcroft, M.K.; Shaffrey, L.C.; Hodges, K.I.; Dacre, H.F. How Much Northern Hemisphere Precipitation Is Associated with Extratropical Cyclones? Geophys. Res. Lett. 2012, 39, L24809. [Google Scholar] [CrossRef]
- Catto, J.L.; Jakob, C.; Berry, G.; Nicholls, N. Relating Global Precipitation to Atmospheric Fronts. Geophys. Res. Lett. 2012, 39, L10805. [Google Scholar] [CrossRef]
- Pfahl, S.; Wernli, H. Quantifying the Relevance of Cyclones for Precipitation Extremes. J. Clim. 2012, 25, 6770–6780. [Google Scholar] [CrossRef]
- Catto, J.L.; Pfahl, S. The Importance of Fronts for Extreme Precipitation. J. Geophys. Res. Atmos. 2013, 118, 10791–10801. [Google Scholar] [CrossRef]
- Hawcroft, M.K.; Shaffrey, L.C.; Hodges, K.I.; Dacre, H.F. Can Climate Models Represent the Precipitation Associated with Extratropical Cyclones? Clim. Dyn. 2016, 47, 679–695. [Google Scholar] [CrossRef]
- Nieto, R.; Ciric, D.; Vázquez, M.; Liberato, M.L.R.; Gimeno, L. Contribution of the main moisture sources to precipitation during extreme peak precipitation months. Adv. Water Resour. 2019, 131, 103385. [Google Scholar] [CrossRef]
- Fink, A.H.; Brücher, T.; Ermert, V.; Krüger, A.; Pinto, J.G. The European storm Kyrill in January 2007: Synoptic evolution, meteorological impacts and some considerations with respect to climate change. Nat. Hazards Earth Syst. Sci 2009, 9, 405–423. [Google Scholar] [CrossRef]
- Liberato, M.L.R.; Pinto, J.G.; Trigo, I.F.; Trigo, R.M. Klaus—An exceptional winter storm over northern Iberia and southern France. Weather 2011, 66, 330–334. [Google Scholar] [CrossRef]
- Liberato, M.L.R.; Pinto, J.G.; Trigo, R.M.; Ludwig, P.; Ordóñez, P.; Yuen, D.; Trigo, I.F. Explosive development of winter storm Xynthia over the subtropical North Atlantic Ocean. Nat. Hazards Earth Syst. Sci. 2013, 13, 2239–2251. [Google Scholar] [CrossRef]
- Liberato, M.L.R. The 19 January 2013 windstorm over the North Atlantic: Large-scale dynamics and impacts on Iberia. Weather Clim. Extrem. 2014, 5, 16–28. [Google Scholar] [CrossRef]
- Pradhan, P.K.; Liberato, M.L.R.; Ferreira, J.A.; Dasamsetti, S.; Vijaya Bhaskara Rao, S. Characteristics of different convective parameterization schemes on the simulation of intensity and track of severe extratropical cyclones over North Atlantic. Atmos. Res. 2018, 199, 128–144. [Google Scholar] [CrossRef]
- Stojanovic, M.; Gonçalves, A.; Sorí, R.; Vázquez, M.; Ramos, A.M.; Nieto, R.; Gimeno, L.; Liberato, M.L.R. Consecutive Extratropical Cyclones Daniel, Elsa, and Fabien and Their Impact on the Hydrological Cycle of Mainland Portugal. Water 2021, 13, 1476. [Google Scholar] [CrossRef]
- Roberts, J.F.; Champion, A.J.; Dawkins, L.C.; Hodges, K.I.; Shaffrey, L.C.; Stephenson, D.B.; Stringer, M.A.; Thornton, H.E.; Youngman, B.D. The XWS Open Access Catalogue of Extreme European Windstorms from 1979 to 2012. Nat. Hazards Earth Syst. Sci. 2014, 14, 2487–2501. [Google Scholar] [CrossRef]
- Hewson, T.D.; Neu, U. Cyclones, Windstorms and the IMILAST Project. Tellus Ser. A Dyn. Meteorol. Oceanogr. 2015, 6, 27128. [Google Scholar] [CrossRef]
- Befort, D.J.; Wild, S.; Knight, J.R.; Lockwood, J.F.; Thornton, H.E.; Hermanson, L.; Bett, P.E.; Weisheimer, A.; Leckebusch, G.C. Seasonal forecast skill for extratropical cyclones and windstorms. Q. J. R. Meteorol. Soc. 2019, 145, 92–104. [Google Scholar] [CrossRef]
- Pfahl, S. Characterising the Relationship between Weather Extremes in Europe and Synoptic Circulation Features. Nat. Hazards Earth Syst. Sci. 2014, 14, 1461–1475. [Google Scholar] [CrossRef]
- Pfahl, S.; Sprenger, M. On the Relationship between Extratropical Cyclone Precipitation and Intensity. Geophys. Res. Lett. 2016, 43, 1752–1758. [Google Scholar] [CrossRef]
- Ramos, A.M.; Trigo, R.M.; Liberato, M.L.R. A Ranking of High-Resolution Daily Precipitation Extreme Events for the Iberian Peninsula. Atmos. Sci. Lett. 2014, 15, 328–334. [Google Scholar] [CrossRef]
- Ramos, A.M.; Trigo, R.M.; Liberato, M.L.R.; Tomé, R. Daily Precipitation Extreme Events in the Iberian Peninsula, and Its Association with Atmospheric Rivers. J. Hydrometeorol. 2015, 16, 579–597. [Google Scholar] [CrossRef]
- Ferreira, J.A.; Liberato, M.L.R.; Ramos, A.M. On the Relationship between Atmospheric Water Vapour Transport and Extra-Tropical Cyclones Development. Phys. Chem. Earth 2016, 94, 56–65. [Google Scholar] [CrossRef]
- Sousa, P.M.; Ramos, A.M.; Raible, C.C.; Messmer, M.; Tomé, R.; Pinto, J.G.; Trigo, R.M. North Atlantic integrated water vapor transport—From 850–2100 CE: Impacts on Western European rainfall. J. Clim. 2019, 33, 263–279. [Google Scholar] [CrossRef]
- Doiteau, B.; Dournaux, M.; Montoux, N.; Baray, J.L. Atmospheric Rivers and Associated Precipitation over France and Western Europe: 1980–2020 Climatology and Case Study. Atmosphere 2021, 12, 1075. [Google Scholar] [CrossRef]
- Ulbrich, U.; Leckebusch, G.C.; Pinto, J.G. Extra-tropical cyclones in the present and future climate: A review. Theor. Appl. Climatol. 2009, 96, 117–131. [Google Scholar] [CrossRef]
- Kron, W.; Löw, P.; Kundzewicz, Z.W. Changes in risk of extreme weather events in Europe. Environ. Sci. Policy 2019, 100, 74–83. [Google Scholar] [CrossRef]
- Eiras-Barca, J.; Ramos, A.M.; Pinto, J.G.; Trigo, R.M.; Liberato, M.L.R.; Miguez-Macho, G. The concurrence of atmospheric rivers and explosive cyclogenesis in the North Atlantic and North Pacific basins. Earth Syst. Dyn. 2018, 9, 91–102. [Google Scholar] [CrossRef]
- Raveh-Rubin, S.; Wernli, H. Large-scale wind and precipitation extremes in the Mediterranean: A climatological analysis for 1979–2012. Q. J. R. Meteorol. Soc. 2015, 141, 2404–2417. [Google Scholar] [CrossRef]
- Schemm, S.; Sprenger, M.; Martius, O.; Wernli, H.; Zimmer, M. Increase in the number of extremely strong fronts over Europe? A study based on ERA-interim reanalysis (1979–2014). Geophys. Res. Lett. 2017, 44, 553–561. [Google Scholar] [CrossRef]
- Raveh-Rubin, S.; Catto, J.L. Climatology and dynamics of the link between dry intrusions and cold fronts during winter, Part II: Front-centred perspective. Clim. Dyn. 2019, 53, 1893–1909. [Google Scholar] [CrossRef]
- Liberato, M.L.R.; Trigo, R.M. Extreme precipitation events and related impacts in Western Iberia. In Hydrology in a Changing World: Environmental and Human Dimensions; IAHS Red Book No 363; IAHS Publ.: Göttingen Germany, 2014; pp. 171–176. ISSN 0144-7815. [Google Scholar]
- Pereira, S.; Ramos, A.M.; Rebelo, L.; Trigo, R.M.; Zêzere, J.L. A centennial catalogue of hydro-geomorphological events and their atmospheric forcing. Adv. Water Resour. 2018, 122, 98–112. [Google Scholar] [CrossRef]
- Hénin, R.; Ramos, A.M.; Liberato, M.L.R. A ranking of concurrent precipitation and wind events for the Iberian Peninsula. Int. J. Climatol. 2021, 41, 1421–1437. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Nicholls, N.; Easterling, D.; Goodess, C.; Kanae, S.; Kossin, J.; Luo, Y.; Marengo, J.; McInnes, K.; Rahimi, M.; et al. Changes in climate extremes and their impacts on the natural physical environment. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC); Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; pp. 109–230. [Google Scholar]
- Leonard, M.; Westra, S.; Phatak, A.; Lambert, M.; van den Hurk, B.; McInnes, K.; Risbey, J.; Schuster, S.; Jakob, D.; Stafford-Smith, M. A Compound Event Framework for Understanding Extreme Impacts. Wiley Interdiscip. Rev. Clim. Chang. 2014, 5, 113–128. [Google Scholar] [CrossRef]
- Zscheischler, J.; Martius, O.; Westra, S.; Bevacqua, E.; Raymond, C.; Horton, R.M.; van den Hurk, B.; AghaKouchak, A.; Jézéquel, A.; Mahecha, M.D.; et al. A Typology of Compound Weather and Climate Events. Nat. Rev. Earth Environ. 2020, 1, 333–347. [Google Scholar] [CrossRef]
- Zscheischler, J.; Westra, S.; van den Hurk, B.; Seneviratne, S.I.; Ward, P.J.; Pitman, A.; Aghakouchak, A.; Bresch, D.N.; Leonard, M.; Wahl, T.; et al. Future Climate Risk from Compound Events. Nat. Clim. Chang. 2018, 8, 469–477. [Google Scholar] [CrossRef]
- Liberato, M.L.R.; Ramos, A.M.; Trigo, R.M.; Trigo, I.F.; Durán-Quesada, A.M.; Nieto, R.; Gimeno, L. Moisture Sources and Large-Scale Dynamics Associated With a Flash Flood Event. In Lagrangian Modeling of the Atmosphere; Geophysical Monograph Series; American Geophysical Union: Washington, DC, USA, 2012. [Google Scholar] [CrossRef]
- Bevacqua, E.; Maraun, D.; Hobæk Haff, I.; Widmann, M.; Vrac, M. Multivariate statistical modelling of compound events via pair-copula constructions: Analysis of floods in Ravenna (Italy). Hydrol. Earth Syst. Sci. 2017, 21, 2701–2723. [Google Scholar] [CrossRef]
- De Luca, P.; Messori, G.; Pons, F.M.E. Dynamical systems theory sheds new light on compound climate extremes in Europe and Eastern North America. Q. J. R. Meteorol. Soc. 2020, 146, 1636–1650. [Google Scholar] [CrossRef]
- Poschlod, B.; Zscheischler, J.; Sillmann, J.; Wood, R.R.; Ludwig, R. Climate Change Effects on Hydrometeorological Compound Events over Southern Norway. Weather Clim. Extrem. 2020, 28, 100253. [Google Scholar] [CrossRef]
- Owen, L.E.; Catto, J.L.; Stephenson, D.B.; Dunstone, N.J. Compound Precipitation and Wind Extremes over Europe and Their Relationship to Extratropical Cyclones. Weather Clim. Extrem. 2021, 33, 100342. [Google Scholar] [CrossRef]
- Bloomfield, H.C.; Hillier, J.; Griffin, A.; Kay, A.L.; Shaffrey, L.C.; Pianosi, F.; James, R.; Kumar, D.; Champion, A.; Bates, P.D. Co-Occurring Wintertime Flooding and Extreme Wind over Europe, from Daily to Seasonal Timescales. Weather Clim. Extrem. 2023, 39, 100550. [Google Scholar] [CrossRef]
- Waliser, D.; Guan, B. Extreme Winds and Precipitation during Landfall of Atmospheric Rivers. Nat. Geosci. 2017, 10, 179–183. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, X.; Chen, C. Characteristics of Concurrent Precipitation and Wind Speed Extremes in China. Weather Clim. Extrem. 2021, 32, 100322. [Google Scholar] [CrossRef]
- Martius, O.; Pfahl, S.; Chevalier, C. A global quantification of compound precipitation and wind extremes. Geophys. Res. Lett. 2016, 43, 7709–7717. [Google Scholar] [CrossRef]
- Messmer, M.; Simmonds, I. Global Analysis of Cyclone-Induced Compound Precipitation and Wind Extreme Events. Weather Clim. Extrem. 2021, 32, 100324. [Google Scholar] [CrossRef]
- Catto, J.L.; Dowdy, A. Understanding Compound Hazards from a Weather System Perspective. Weather Clim. Extrem. 2021, 32, 100550. [Google Scholar] [CrossRef]
- Ridder, N.N.; Ukkola, A.M.; Pitman, A.J.; Perkins-Kirkpatrick, S.E. Increased Occurrence of High Impact Compound Events under Climate Change. Npj Clim. Atmos. Sci. 2022, 5, 3. [Google Scholar] [CrossRef]
- Institut für Meteorologie. Met.fu-berlin. 2023. Available online: http://www.met.fu-berlin.de/adopt-a-vortex/historie/ (accessed on 7 June 2021).
- Instituto Português do Mar e da Atmosfera-IPMA. 2023. Available online: https://www.ipma.pt/en/index.html (accessed on 7 June 2021).
- Agencia Estatal Meteorología-AEMet. Borrascas Con Gran Impacto: Información Divulgativa y de Otras Temporadas. 2023. Available online: http://www.aemet.es/es/conocermas/borrascas (accessed on 7 June 2021).
- Météo France. 2023. Available online: http://www.meteofrance.com/accueil (accessed on 7 June 2021).
- RMI. 2023. Available online: https://www.meteo.be/en/ (accessed on 9 June 2021).
- MeteoLux. 2023. Available online: https://www.meteolux.lu/?lang=fr/ (accessed on 9 June 2021).
- Met Office. 2023. Available online: https://www.metoffice.gov.uk/ (accessed on 9 June 2021).
- Met Éireann. 2023. Available online: https://www.met.ie/ (accessed on 9 June 2021).
- KNMI. 2023. Available online: https://www.knmi.nl/home (accessed on 9 June 2021).
- Gonçalves, A.; Liberato, M.L.R.; Nieto, R. High impact storms affecting the Iberian Peninsula: 2017–2019 extended winters. In Proceedings of the 2nd International Conference on Urban Risks (ICUR 2022), Lisbon, Portugal, 23–25 June 2022. [Google Scholar]
- Zschenderlein, P.; Wernli, H. How Intense Daily Precipitation Depends on Temperature and the Occurrence of Specific Weather Systems–an Investigation with ERA5 Reanalyses in the Extratropical Northern Hemisphere. Weather Clim. Dyn. 2022, 3, 391–411. [Google Scholar] [CrossRef]
- Gonçalves, A.; Marques, M.C.; Loureiro, S.; Nieto, R.; Liberato, M.L.R. Disruption Risk Analysis of the Overhead Power Lines in Portugal. Energy 2023, 263, 125583. [Google Scholar] [CrossRef]
- Vautard, R.; van Oldenborgh, G.J.; Otto, F.E.L.; Yiou, P.; de Vries, H.; van Meijgaard, E.; Stepek, A.; Soubeyroux, J.-M.; Philip, S.; Kew, S.F.; et al. Human influence on European winter windstorms such as those of January 2018. Earth Syst. Dynam. 2019, 10, 271–286. [Google Scholar] [CrossRef]
- Zhuozhuo, L.; Fei, L.I.; Orsolini, Y.J.; Yongqi, G.A.O.; Shengping, H.E. Understanding of European cold extremes, sudden stratospheric warming, and Siberian snow accumulation in the winter of 2017/18. J. Clim. 2020, 33, 527–545. [Google Scholar] [CrossRef]
- Ribeiro, S.L.; Gonçalves, A.; Cascarejo, I.; Liberato, M.L.R.; Fonseca, T.F. Development of a Catalogue of Damage in Portuguese Forest Associated with Extreme Extratropical Cyclones. Sci. Total Environ. 2022, 814, 151948. [Google Scholar] [CrossRef] [PubMed]
- Sousa, P.M.; Barriopedro, D.; Trigo, R.M.; Ramos, A.M.; Nieto, R.; Gimeno, L.; Turkman, K.F.; Liberato, M.L.R. Impact of Euro-Atlantic Blocking Patterns in Iberia Precipitation Using a Novel High Resolution Dataset. Clim. Dyn. 2016, 46, 2573–2591. [Google Scholar] [CrossRef]
- Ulbrich, U.; Leckebusch, G.C.; Grieger, J.; Schuster, M.; Akperov, M.; Bardin, M.Y.; Feng, Y. Are Greenhouse Gas Signals of Northern Hemisphere Winter Extra-Tropical Cyclone Activity Dependent on the Identification and Tracking Algorithm? Meteorol. Z. 2013, 22, 61–68. [Google Scholar] [CrossRef]
- Neu, U.; Akperov, M.G.; Bellenbaum, N.; Benestad, R.; Blender, R.; Caballero, R.; Cocozza, A. Imilast: A Community Effort to Intercompare Extratropical Cyclone Detection and Tracking Algorithms. Bull. Am. Meteorol. Soc. 2013, 94, 529–547. [Google Scholar] [CrossRef]
- Pinto, J.G.; Zacharias, S.; Fink, A.H.; Leckebusch, G.C.; Ulbrich, U. Factors contributing to the development of extreme North Atlantic cyclones and their relationship with the NAO. Clim. Dyn. 2009, 32, 711–737. [Google Scholar] [CrossRef]
- Karremann, M.K.; Liberato, M.L.R.; Ordóñez, P.; Pinto, J.G. Characterization of synoptic conditions and cyclones associated with top ranking potential wind loss events over Iberia. Atmos. Sci. Lett. 2016, 17, 354–361. [Google Scholar] [CrossRef]
- IPMA–Boletim Climatológico. 2023. Available online: https://www.ipma.pt/pt/publicacoes/boletins.jsp?cmbDep=cli&cmbTema=pcl&idDep=cli&idTema=pcl&curAno=-1 (accessed on 20 June 2021).
- Resúmenes Climatológicos. España. 2023. Available online: https://www.aemet.es/es/serviciosclimaticos/vigilancia_clima/resumenes (accessed on 20 June 2021).
- Sanders, F.; Gyakum, J.R. Synoptic-Dynamic Climatology of the “Bomb”. Am. Meteorol. Soc. 1980, 108, 1589–1606. [Google Scholar]
- Trigo, I.F. Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: A comparison between ERA-40 and NCEP/NCAR reanalyses. Clim. Dyn. 2006, 26, 127–143. [Google Scholar] [CrossRef]
- Sanders, F. Explosive cyclogenesis in the west-central North Atlantic Ocean, 1981–1984. Part I: Composite structure and mean behavior. Mon. Wea. Rev. 1986, 114, 1781–1794. [Google Scholar] [CrossRef]
- Zhang, S.; Fu, G.; Lu, C.; Liu, J. Characteristics of Explosive Cyclones over the Northern Pacific. J. Appl. Meteorol. Clim. 2017, 56, 3187–3210. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, W.; Berrisford, P.; Horányi, A.; Sabater, J.M.; Nicolas, J.; Radu, R.; Schepers, D.; Simmons, A.; Soci, C.; et al. Global reanalysis: Goodbye ERA-Interim, hello ERA5. ECMWF Newsl. 2019, 159, 17–24. [Google Scholar] [CrossRef]
- Dacre, H.F.; Josey, S.A.; Grant, A.L.M. Extratropical-Cyclone-Induced Sea Surface Temperature Anomalies in the 2013–2014 Winter. Weather Clim. Dyn. 2020, 1, 27–44. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, C.; Xu, J.; Zhang, S.; Tang, R.; Huang, Z.; Zheng, Y.; Guan, Z.; Mao, H.; Xue, Y. Physical Process Contributions to the Development of a Super Explosive Cyclone Over the Gulf Stream. Front. Earth Sci. 2021, 9, 1–15. [Google Scholar] [CrossRef]
- Bolton, D. The computation of equivalent potential temperature. Mon. Weather Rev. 1980, 108, 1046–1053. [Google Scholar] [CrossRef]
- Holton, J.R.; Hakim, G.J. Basic Conservation Laws. In An Introduction to Dynamic Meteorology, 5th ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 31–66. ISBN 9780123848666. [Google Scholar] [CrossRef]
- Schemm, S.; Rudeva, I.; Simmonds, I. Extratropical fronts in the lower troposphere–global perspectives obtained from two automated methods. Q. J. R. Meteorol. Soc. 2015, 141, 1686–1698. [Google Scholar] [CrossRef]
- Catto, J.L.; Shaffrey, L.C.; Hodges, K.I. Can Climate Models Capture the Structure of Extratropical Cyclones? J. Clim. 2010, 23, 1621–1635. [Google Scholar] [CrossRef]
- Agencia Estatal Meteorología-AEMet. Borrascas Con Gran Impacto: Borrasca Ana. 2023. Available online: https://www.aemet.es/es/conocermas/borrascas/2017-2018/estudios_e_impactos/ana (accessed on 20 August 2023).
- IPMA. Boletim Climatológico Dezembro 2017. Portugal Continental. 2017. Available online: https://www.ipma.pt/resources.www/docs/im.publicacoes/edicoes.online/20180111/FwUgbvLXmdNueCABQKBI/cli_20171201_20171231_pcl_mm_co_pt.pdf (accessed on 20 August 2023).
- Fink, A.H.; Pohle, S.; Pinto, J.G.; Knippertz, P. Diagnosing the Influence of Diabatic Processes on the Explosive Deepening of Extratropical Cyclones. Geophys. Res. Lett. 2012, 39, L07803. [Google Scholar] [CrossRef]
- Baehr, C.; Pouponneau, B.; Ayrault, F.; Joly, A. Dynamical Characterization of the FASTEX cyclogenesis cases. Q. J. R. Meteorol. Soc. 1999, 125, 3469–3494. [Google Scholar] [CrossRef]
- Ludwig, P.; Pinto, J.G.; Reyers, M.; Gray, S.L. The role of anomalous SST and surface fluxes over the southeastern North Atlantic in the explosive development of windstorm Xynthia. Q. J. R. Meteorol. Soc. 2014, 140, 1729–1741. [Google Scholar] [CrossRef]
- Nelson, J.; He, R.; Warner, J.C.; Bane, J. Air-Sea Interactions during Strong Winter Extratropical Storms. Ocean Dyn. 2014, 64, 1233–1246. [Google Scholar] [CrossRef]
- Kobashi, F.; Doi, H.; Iwasaka, N. Sea Surface Cooling Induced by Extratropical Cyclones in the Subtropical North Pacific: Mechanism and Interannual Variability. J. Geophys. Res. Ocean. 2019, 124, 2179–2195. [Google Scholar] [CrossRef]
- Bengtsson, L.; Hodges, K.I.; Roeckner, E. Storm Tracks and Climate Change. J. Clim. 2006, 19, 3518–3543. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 hourly data on single levels from 1940 to present. Copernic. Clim. Change Serv. (C3S) Clim. Data Store (CDS) 2023, 10. [Google Scholar] [CrossRef]
- Brasseur, O. Development and Application of a Physical Approach to Estimating Wind Gusts. Mon. Weather. Rev. 2001, 129, 5–25. [Google Scholar] [CrossRef]
- Ágústsson, H.; Ólafsson, H. Forecasting Wind Gusts in Complex Terrain. Meteorol. Atmos. Phys. 2009, 103, 173–185. [Google Scholar] [CrossRef]
- Thomas, S.R.; Nicolau, S.; Martínez-Alvarado, O.; Drew, D.J.; Bloomfield, H.C. How Well Do Atmospheric Reanalyses Reproduce Observed Winds in Coastal Regions of Mexico? Meteorol. Appl. 2021, 28, e2023. [Google Scholar] [CrossRef]
- Molina, M.O.; Gutiérrez, C.; Sánchez, E. Comparison of ERA5 Surface Wind Speed Climatologies over Europe with Observations from the HadISD Dataset. Int. J. Climatol. 2021, 41, 4864–4878. [Google Scholar] [CrossRef]
- Zhai, R.; Huang, C.; Yang, W.; Tang, L.; Zhang, W. Applicability Evaluation of ERA5 Wind and Wave Reanalysis Data in the South China Sea. J. Oceanol. Limnol. 2023, 41, 495–517. [Google Scholar] [CrossRef]
- Ramos, A.M.; Tomé, R.; Trigo, R.M.; Liberato, M.L.R.; Pinto, J.G. Projected changes in atmospheric rivers affecting Europe in CMIP5 models. Geophys. Res. Lett. 2016, 43, 9315–9323. [Google Scholar] [CrossRef]
- Hawcroft, M.; Walsh, E.; Hodges, K.; Zappa, G. Significantly Increased Extreme Precipitation Expected in Europe and North America from Extratropical Cyclones. Environ. Res. Lett. 2018, 13, 124006. [Google Scholar] [CrossRef]
- IPCC. Global Warming of 1.5 °C. In An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V.P., Zhai, H.-O., Pörtner, D., Roberts, J., Skea, P.R., Shukla, A., Pirani, W., Moufouma-Okia, C., Péan, R., Pidcock, S., et al., Eds.; World Meteorological Organization: Geneva, Switzerland, 2018. [Google Scholar]
- IPCC. Climate Change 2022-Impacts, Adaptation, and Vulnerability. Summary for Policymakers. 2022. Available online: https://report.ipcc.ch/ar6wg2/pdf/IPCC_AR6_WGII_SummaryForPolicymakers.pdf (accessed on 10 May 2023).
- Dacre, H.F.; Hawcroft, M.K.; Stringer, M.A.; Hodges, K.I. An Extratropical Cyclone Atlas a Tool for Illustrating Cyclone Structure and Evolution Characteristics. Bull. Am. Meteorol. Soc. 2012, 93, 1497–1502. [Google Scholar] [CrossRef]
- Calvo-Sancho, C.; González-Alemán, J.J.; Bolgiani, P.; Santos-Muñoz, D.; Farrán, J.I.; Martín, M.L. An Environmental Synoptic Analysis of Tropical Transitions in the Central and Eastern North Atlantic. Atmos. Res. 2022, 278, 106353. [Google Scholar] [CrossRef]
Name of the Storm | Date, Position, and the Minimum Pressure of the Storm | Impacts of Storm (W, P, W + P) | ||||
---|---|---|---|---|---|---|
SW European Group | Met Fu Berlin | Date | Latitude | Longitude | Minimum Pressure (hPa) | |
(dd/mm/yyyy UTC) | (°N) | (°E) | ||||
2017–2018 | ||||||
Ana * | Yves | 11/12/2017 06 | 48 | −2 | 958 | W + P |
Carmen | Ingmar | 01/01/2018 06 | 49 | −6 | 989 | W |
Emma * | Ulrike | 26/02/2018 06 | 42 | −35 | 963 | W + P |
Félix | Yuliya | 11/03/2018 00 | 45 | −11 | 967 | W + P |
Gisele | Zsuzsa | 14/03/2018 12 | 51 | −18 | 965 | W + P |
Hugo * | Carola | 23/03/2018 18 | 49 | −10 | 969 | W + P |
2018–2019 | ||||||
Beatriz | Yaprak | 07/11/2018 06 | 55 | −28 | 958 | W + P |
Diana | Halka | 29/11/2018 12 | 58 | −16 | 949 | P |
Gabriel * | Oskar | 29/01/2019 18 | 47 | 0 | 985 | W + P |
Helena | Quirin | 31/01/2019 12 | 52 | −15 | 971 | W + P |
Laura | Cornelius | 06/03/2019 18 | 56 | −8 | 974 | W + P |
2019–2020 | ||||||
Ceciclia | Luis | 22/11/2019 12 | 46 | −9 | 976 | W + P |
Daniel | Xander | 16/12/2019 18 | 45 | −3 | 994 | W + P |
Elsa * | Yadid | 19/12/2019 00 | 55 | −15 | 965 | W + P |
Fabien * | Ailton | 21/12/2019 12 | 49 | −11 | 962 | W + P |
Gloria | Ilka | 17/01/2020 12 | 48 | −29 | 988 | W + P |
Jorge * | Charlotte | 29/02/2020 12 | 56 | −11 | 953 | W + P |
Karine | Diana I | 02/03/2020 00 | 51 | −5 | 984 | W + P |
Leon | Diana II | 01/03/2020 12 | 48 | 0 | 991 | W + P |
2020–2021 | ||||||
Alex * | Brigitte | 02/10/2020 06 | 49 | −2 | 968 | W + P |
Barbara | Imika I | 21/10/2020 06 | 49 | −2 | 989 | W + P |
Dora * | Wenke I and II | 04/12/2020 06 | 52 | 2 | 968 | W |
Ernest | Yvonne | 07/12/2020 12 | 47 | −7 | 988 | W + P |
Filomena | Bartosz | 08/01/2021 18 | 36 | −6 | 996 | P |
Gaetan * | - | 21/01/2021 18 | 58 | 3 | 950 | W + P |
Hortense | Irek | 21/01/2021 18 | 50 | 1 | 983 | W + P |
Ignacio | Lars | 23/01/2021 12 | 45 | −9 | 999 | W + P |
Lola | - | 22/04/2021 18 | 43 | −24 | 982 | W + P |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, A.C.R.; Nieto, R.; Liberato, M.L.R. Synoptic and Dynamical Characteristics of High-Impact Storms Affecting the Iberian Peninsula during the 2018–2021 Extended Winters. Atmosphere 2023, 14, 1353. https://doi.org/10.3390/atmos14091353
Gonçalves ACR, Nieto R, Liberato MLR. Synoptic and Dynamical Characteristics of High-Impact Storms Affecting the Iberian Peninsula during the 2018–2021 Extended Winters. Atmosphere. 2023; 14(9):1353. https://doi.org/10.3390/atmos14091353
Chicago/Turabian StyleGonçalves, Ana C. R., Raquel Nieto, and Margarida L. R. Liberato. 2023. "Synoptic and Dynamical Characteristics of High-Impact Storms Affecting the Iberian Peninsula during the 2018–2021 Extended Winters" Atmosphere 14, no. 9: 1353. https://doi.org/10.3390/atmos14091353
APA StyleGonçalves, A. C. R., Nieto, R., & Liberato, M. L. R. (2023). Synoptic and Dynamical Characteristics of High-Impact Storms Affecting the Iberian Peninsula during the 2018–2021 Extended Winters. Atmosphere, 14(9), 1353. https://doi.org/10.3390/atmos14091353