Measurement of Long-Term CH4 Emissions and Emission Factors from Beef Feedlots in Australia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites
2.1.1. Southern Feedlot Site (Victoria)
2.1.2. Northern Feedlot Site (Queensland)
2.2. Methodologies and Instrumentation
2.2.1. Concentration-Profile Inverse-Dispersion Modelling
- u* ≥ 0.1 m s−1. This removes error-prone light wind periods from the analysis. It is common in IDM to remove data when u* falls below a threshold value, and previous studies have used thresholds ranging from 0.05 to 0.20 m s−1.
- Inferred background concentration: 1.50 ≤ Cb ≤ = 2.10 ppm for CH4. A best-fit Cb outside these realistic ranges indicates the WindTrax model has produced an unrealistic fit to the Ci profile, possibly due to Ci errors, or due to non-ideal wind conditions (e.g., non-stationary winds) or WindTrax errors.
- Percentage of the LS model trajectories that intersected the cattle pen area (touchdown coverage) ≥ 5% of the feedlot pen area. The touchdown coverage is calculated in WindTrax and provides an estimate of the feedlot area contributing to Ci (the measurement “footprint”). This criterion removes periods where QLS is calculated from a small area of the feedlot.
2.2.2. Calculating Daily Emissions Rates
2.2.3. Animal Modeling
3. Results and Discussion
3.1. CH4 Emissions (g head−1 day−1) and CH4 Yield (g CH4 kg−1 DMI)
3.2. Measurement Uncertainty
3.3. Model Prediction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Appendix A
Southern Feedlot | |||||||||
---|---|---|---|---|---|---|---|---|---|
Year | Month | Air Temp (°C) | u* (m s−1) | L (m) | z0 (m) | SU_US | SV_US | SW_US | Air Pressure (kPa) |
2015 | 3 | 18.6 | 0.4 | −6786.6 | 0.1 | 2.9 | 2.9 | 1.3 | 99.1 |
2015 | 4 | 15.7 | 0.3 | 16.2 | 0.2 | 3.0 | 2.9 | 1.3 | 99.3 |
2015 | 5 | 11.9 | 0.4 | −301.8 | 0.1 | 2.6 | 2.4 | 1.3 | 99.7 |
2015 | 6 | 9.6 | 0.2 | 31.9 | 0.2 | 3.1 | 3.1 | 1.3 | 100.3 |
2015 | 7 | 8.4 | 0.3 | −81.7 | 0.1 | 2.8 | 2.5 | 1.3 | 99.9 |
2015 | 8 | 9.6 | 0.3 | 284.2 | 0.1 | 3.0 | 2.9 | 1.4 | 99.8 |
2015 | 9 | 11.5 | 0.3 | −52.3 | 0.2 | 2.9 | 2.9 | 1.4 | 99.9 |
2015 | 10 | 23.6 | 0.4 | 79.8 | 0.2 | 3.1 | 2.9 | 1.3 | 99.7 |
2015 | 11 | 21.5 | 0.5 | −569.5 | 0.2 | 3.0 | 3.0 | 1.3 | 99.1 |
2015 | 12 | 27.6 | 0.5 | 5.6 | 0.2 | 3.3 | 3.3 | 1.3 | 98.9 |
2016 | 1 | 26.4 | 0.4 | −103.6 | 0.2 | 3.7 | 3.7 | 1.5 | 98.6 |
2016 | 2 | 25.8 | 0.4 | −29.0 | 0.2 | 3.5 | 3.5 | 1.5 | 99.1 |
2016 | 3 | 29.6 | 0.3 | −25.4 | 0.2 | 3.7 | 3.9 | 1.7 | 99.4 |
2016 | 4 | 18.5 | 0.3 | −23.0 | 0.2 | 3.0 | 2.8 | 1.4 | 99.7 |
2016 | 5 | 13.9 | 0.5 | 106.9 | 0.1 | 2.7 | 2.3 | 1.3 | 99.1 |
2016 | 6 | 9.2 | 0.4 | −126.5 | 0.1 | 2.8 | 2.3 | 1.3 | 98.7 |
2016 | 7 | 9.2 | 0.4 | 121.1 | 0.1 | 2.7 | 2.3 | 1.3 | 99.3 |
2016 | 8 | 9.7 | 0.3 | −46.1 | 0.2 | 2.8 | 2.5 | 1.3 | 99.5 |
2016 | 9 | 10.5 | 0.3 | 196.4 | 0.2 | 2.7 | 2.4 | 1.4 | 99.7 |
2016 | 10 | 12.3 | 0.4 | 409.8 | 0.2 | 2.7 | 2.5 | 1.3 | 99.2 |
2016 | 11 | 17.4 | 0.5 | −479.8 | 0.2 | 2.9 | 2.8 | 1.3 | 98.9 |
2016 | 12 | 23.0 | 0.5 | −12,522.2 | 0.2 | 3.1 | 3.1 | 1.4 | 98.6 |
2017 | 1 | 24.8 | 0.4 | 151.8 | 0.2 | 3.1 | 3.1 | 1.4 | 98.6 |
2017 | 2 | 22.2 | 0.4 | 77.9 | 0.2 | 3.0 | 2.9 | 1.4 | 98.8 |
Northern Feedlot | |||||||||
Year | Month | Air Temp (°C) | u* (m s−1) | L (m) | z0 (m) | SU_US | SV_US | SW_US | Air Pressure (kPa) |
2017 | 5 | 18.2 | 0.3 | −584.4 | 0.2 | 2.8 | 2.5 | 1.2 | 96.5 |
2017 | 6 | 15.9 | 0.3 | 10.2 | 0.2 | 3.0 | 2.8 | 1.2 | 96.8 |
2017 | 7 | 15.1 | 0.3 | 18.4 | 0.2 | 3.1 | 2.7 | 1.2 | 96.9 |
2017 | 8 | 19.1 | 0.3 | −159.0 | 0.2 | 2.9 | 2.7 | 1.2 | 96.7 |
2017 | 9 | 18.3 | 0.4 | 47.5 | 0.2 | 3.2 | 2.6 | 1.2 | 96.6 |
References
- Zhang, L.; Tian, H.; Shi, H.; Pan, S.; Chang, J.; Dangal, S.R.S.; Qin, X.; Wang, S.; Tubiello, F.N.; Canadell, J.G.; et al. A 130-year global inventory of methane emissions from livestock: Trends, patterns, and drivers. Glob. Chang. Biol. 2022, 28, 5142–5158. [Google Scholar] [CrossRef]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Roma, Italy, 2013. [Google Scholar]
- Beauchemin, K.A.; Henry Janzen, H.; Little, S.M.; McAllister, T.A.; McGinn, S.M. Life cycle assessment of greenhouse gas emissions from beef production in western Canada: A case study. Agric. Syst. 2010, 103, 371–379. [Google Scholar] [CrossRef]
- Ridoutt, B.; Lehnert, S.A.; Denman, S.; Charmley, E.; Kinley, R.; Dominik, S. Potential GHG emission benefits of Asparagopsis taxiformis feed supplement in Australian beef cattle feedlots. J. Clean. Prod. 2022, 337, 130499. [Google Scholar] [CrossRef]
- Black, J.L.; Davison, T.M.; Box, I. Methane Emissions from Ruminants in Australia: Mitigation Potential and Applicability of Mitigation Strategies. Animals 2021, 11, 951. [Google Scholar] [CrossRef] [PubMed]
- Scoones, I. Livestock, methane, and climate change: The politics of global assessments. WIREs Clim. Chang. 2023, 14, e790. [Google Scholar] [CrossRef]
- MLA. The Australian Red Meat Industries’s Carbon Neutral by 2030 Roadmap; MLA: North Sydney, NSW, Australia, 2020; Available online: https://www.mla.com.au/globalassets/mla-corporate/research-and-development/program-areas/environment-and-sustainability/2689-mla-cn30-roadmap_d3.pdf (accessed on 6 February 2023).
- Moe, P.W.; Tyrrell, H.F. Methane Production in Dairy Cows. J. Dairy Sci. 1979, 62, 1583–1586. [Google Scholar] [CrossRef]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Kanagawa, Japan, 2006. [Google Scholar]
- IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., Federici, S., Eds.; IPCC: Interlaken, Switzerland, 2019. [Google Scholar]
- Moraes, L.E.; Strathe, A.B.; Fadel, J.G.; Casper, D.P.; Kebreab, E. Prediction of enteric methane emissions from cattle. Glob. Chang. Biol. 2014, 20, 2140–2148. [Google Scholar] [CrossRef]
- Denmead, O.T.; Chen, D.; Rowell, D.; Loh, Z.; Turner, D.A.; Hill, J.; Muir, S.; Bai, M.; Griffith, D.W.T.; Phillips, F.; et al. Emissions of direct and indirect greenhouse gases from Australian cattle feedlots. Adv. Anim. BioSci. 2013, 4, 400. [Google Scholar]
- Bai, M.; Flesch, T.; McGinn, S.; Chen, D. A snapshot of greenhouse gas emissions from a cattle feedlot. J. Environ. Qual. 2015, 44, 1974–1978. [Google Scholar] [CrossRef]
- Loh, Z.; Chen, D.; Bai, M.; Naylor, T.; Griffith, D.; Hill, J.; Denmead, T.; McGinn, S.; Edis, R. Measurement of greenhouse gas emissions from Australian feedlot beef production using open-path spectroscopy and atmospheric dispersion modelling. Aust. J. Exp. Agr. 2008, 48, 244–247. [Google Scholar] [CrossRef]
- McGinn, S.M.; Chen, D.; Loh, Z.; Hill, J.; Beauchemin, K.A.; Denmead, O.T. Methane emissions from feedlot cattle in Australia and Canada. Aust. J. Exp. Agr. 2008, 48, 183–185. [Google Scholar] [CrossRef]
- MLA. Greenhouse Gas Emissions from Australian Beef Cattle Feedlots; Meat & Livestock Australia: North Sydney, NSW, Australia, 2009; p. 42. [Google Scholar]
- Chen, D.; Sun, J.; Bai, M.; Dassanayake, K.B.; Denmead, O.T.; Hill, J. A new cost-effective method to mitigate ammonia loss from intensive cattle feedlots: Application of lignite. Sci. Rep. 2015, 5, 16689. [Google Scholar] [CrossRef]
- Velazco, J.I.; Cottle, D.J.; Hegarty, R.S. Methane emissions and feeding behaviour of feedlot cattle supplemented with nitrate or urea. Anim. Prod. Sci. 2014, 54, 1737–1740. [Google Scholar] [CrossRef]
- Gopalan, P.; Jensen, P.D.; Batstone, D.J. Biochemical Methane Potential of Beef Feedlot Manure: Impact of Manure Age and Storage. J. Environ. Qual. 2013, 42, 1205–1212. [Google Scholar] [CrossRef]
- Redding, M.R.; Lewis, R.; Waller, J.; Phillips, F.; Griffith, D. Large-Chamber Methane and Nitrous Oxide Measurements Are Comparable to the Backward Lagrangian Stochastic Method. J. Environ. Qual. 2013, 42, 1643–1651. [Google Scholar] [CrossRef]
- Hacker, J.M.; Chen, D.; Bai, M.; Ewenz, C.; Junkermann, W.; Lieff, W.; McManus, B.; Neininger, B.; Sun, J.; Coates, T.; et al. Using airborne technology to quantify and apportion emissions of CH4 and NH3 from feedlots. Anim. Prod. Sci. 2016, 56, 190–203. [Google Scholar] [CrossRef]
- Flesch, T.K.; Wilson, J.D.; Harper, L.A.; Crenna, B.P.; Sharpe, R.R. Deducing ground-to-air emissions from observed trace gas concentrations: A field trial. J. Appl. Meteorol. 2004, 43, 487–502. [Google Scholar] [CrossRef]
- Flesch, K.T.; Baron, V.; Wilson, J.; Griffith, D.W.T.; Basarab, J.; Carlson, P. Agricultural gas emissions during the spring thaw: Applying a new measuremnt technique. Agric. Forest Meteorol. 2016, 221, 111–121. [Google Scholar] [CrossRef]
- Griffith, D.W.T.; Deutscher, N.M.; Caldow, C.; Kettlewell, G.; Riggenbach, M.; Hammer, S. A Fourier transform infrared trace gas and isotope analyser for atmospheric applications. Atmos. Meas. Tech. 2012, 5, 2481–2498. [Google Scholar] [CrossRef]
- Griffith, D.W.T. Synthetic calibration and quantitative analysis of gas-phase FT-IR spectra. Appl. Spectrosc. 1996, 50, 59–70. [Google Scholar] [CrossRef]
- Rothman, L.S.; Gordon, I.E.; Barbe, A.; Benner, D.C.; Bernath, P.F.; Birk, M.; Boudon, V.; Brown, L.R.; Campargue, A.; Champion, J.P.; et al. The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Ra. 2009, 110, 533–572. [Google Scholar] [CrossRef]
- Abdi, H. Singular value decomposition (SVD) and generalized singular value decomposition. Encycl. Meas. Stat. 2007, 907, 912. [Google Scholar]
- NIR. National Inventory Report 2020; The Australian Government Submission to the United Nations Framework Convention on Climate Change, Australian National Greenhouse Accounts (Released in May 2022); Australian Government: Canberra, Australia, 2022; Volume 1, p. 428. [Google Scholar]
- Moate, P.J.; Williams, S.R.O.; Jacobs, J.L.; Hannah, M.C.; Beauchemin, K.A.; Eckard, R.J.; Wales, W.J. Wheat is more potent than corn or barley for dietary mitigation of enteric methane emissions from dairy cows. J. Dairy Sci. 2017, 100, 7139–7153. [Google Scholar] [CrossRef]
- Roque, B.M.; Van Lingen, H.J.; Vrancken, H.; Kebreab, E. Effect of Mootral—A garlic- and citrus-extract-based feed additive—On enteric methane emissions in feedlot cattle. Transl. Anim. Sci. 2019, 3, 1383–1388. [Google Scholar] [CrossRef]
- Grainger, C.; Beauchemin, K.A. Can enteric methane emissions from ruminants be lowered without lowering their production? Anim. Feed Sci. Tech. 2011, 166–167, 308–320. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; McGinn, S.M. Methane emissions from feedlot cattle fed barley or corn diets. J. Anim. Sci. 2005, 83, 653–661. [Google Scholar] [CrossRef]
- Todd, R.W.; Altman, M.B.; Cole, N.A.; Waldrip, H.M. Methane Emissions from a Beef Cattle Feedyard during Winter and Summer on the Southern High Plains of Texas. J. Environ. Qual. 2014, 43, 1125–1130. [Google Scholar] [CrossRef] [PubMed]
- McGinn, S.M.; Flesch, T.K. Ammonia and greenhouse gas emissions at beef cattle feedlots in Alberta Canada. Agri. Forest Meteorol. 2018, 258, 43–49. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Tamayao, P.; Rosser, C.; Terry, S.A.; Gruninger, R. Understanding variability and repeatability of enteric methane production in feedlot cattle. Front. Anim. Sci. 2022, 3, 1029094. [Google Scholar] [CrossRef]
- Flesch, T.K.; Wilson, J.D.; Harper, L.A.; Todd, R.W.; Cole, N.A. Determining ammonia emissions from a cattle feedlot with an inverse dispersion technique. Agr. Forest Meteorol. 2007, 144, 139–155. [Google Scholar] [CrossRef]
- Harper, L.A.; Flesch, T.K.; Weaver, K.H.; Wilson, J.D. The effect of biofuel production on swine farm methane and ammonia emissions. J. Environ. Qual. 2010, 39, 1984–1992. [Google Scholar] [CrossRef] [PubMed]
Composition | Southern Feedlot | Northern Feedlot | |
---|---|---|---|
Dry matter (DM) | g kg−1 | 760 | 707 |
Crude protein | g kg−1 DM | 138 | 138 |
Non-protein nitrogen | g kg−1 DM | 6.9 | 6.6 |
Neutral detergent fiber | g kg−1 DM | 213 | 207 |
Acid detergent fiber | g kg−1 DM | 97 | 92 |
Net energy for maintenance | MJ kg−1 DM | 2.00 | 1.94 |
Net energy for bodyweight gain | MJ kg−1 DM | 1.33 | 1.30 |
Feedlot | No. of Animal | Induction Live Weight | Weight Gain | DMI | N Intake |
---|---|---|---|---|---|
kg head−1 day−1 | kg head−1 day−1 | kg head−1 day−1 | kg day−1 | ||
Southern feedlot | 16,233 | 381 ± 3.7 | 1.5 | 10.6 | 3.69 |
Northern feedlot | 16,881 | 483 ± 1.3 | 1.4 | 11.4 | 3.84 |
Feedlot Cattle CH4 Emissions | CH4 Yield | |
---|---|---|
g head−1 day−1 | g CH4 kg−1 DMI | |
Southern feedlot | 138.5 (3) | 13.1 |
Northern feedlot | 215.4 (8) | 18.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, M.; Coates, T.; Hill, J.; Flesch, T.K.; Griffith, D.W.T.; Van der Saag, M.; Rinehart, D.; Chen, D. Measurement of Long-Term CH4 Emissions and Emission Factors from Beef Feedlots in Australia. Atmosphere 2023, 14, 1352. https://doi.org/10.3390/atmos14091352
Bai M, Coates T, Hill J, Flesch TK, Griffith DWT, Van der Saag M, Rinehart D, Chen D. Measurement of Long-Term CH4 Emissions and Emission Factors from Beef Feedlots in Australia. Atmosphere. 2023; 14(9):1352. https://doi.org/10.3390/atmos14091352
Chicago/Turabian StyleBai, Mei, Trevor Coates, Julian Hill, Thomas K. Flesch, David W. T. Griffith, Matthew Van der Saag, Des Rinehart, and Deli Chen. 2023. "Measurement of Long-Term CH4 Emissions and Emission Factors from Beef Feedlots in Australia" Atmosphere 14, no. 9: 1352. https://doi.org/10.3390/atmos14091352
APA StyleBai, M., Coates, T., Hill, J., Flesch, T. K., Griffith, D. W. T., Van der Saag, M., Rinehart, D., & Chen, D. (2023). Measurement of Long-Term CH4 Emissions and Emission Factors from Beef Feedlots in Australia. Atmosphere, 14(9), 1352. https://doi.org/10.3390/atmos14091352