Possible Influence of Solar Cyclicity on Extratropical Cyclone Trajectories in the North Atlantic
Abstract
:1. Introduction
2. Experimental Data
3. Analysis of Experimental Data
3.1. Secular Variations in North Atlantic Cyclone Trajectories
3.2. Variations in North Atlantic Cyclone Trajectories on the Bidecadal Timescale
3.3. Amplitude Estimates of Storm Track Oscillations in the North Atlantic
4. Discussion of the Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vorobjev, V.I. Synoptic Meteorology; Gidrometeoizdat: Leningrad, Russia, 1991. [Google Scholar]
- Dietze, M.; Bell, R.; Ozturk, U.; Cook, K.L.; Andermann, C.; Beer, A.R.; Damm, B.; Lucia, A.; Fauer, F.S.; Nissen, K.M.; et al. More than heavy rain turning into fast-flowing water—A landscape perspective on the 2021 Eifel floods. Nat. Hazards Earth Syst. Sci. 2022, 22, 1845–1856. [Google Scholar] [CrossRef]
- Brown, G.M.; John, J.I. Solar cycle influences on tropospheric circulation. J. Atmos. Terr. Phys. 1979, 41, 42–52. [Google Scholar] [CrossRef]
- Tinsley, B.A. The solar cycle and the QBO influences on the latitude of storm tracks in the North Atlantic. Geophys. Res. Lett. 1988, 15, 409–412. [Google Scholar] [CrossRef]
- Luterbacher, J.; Rickli, R.; Xoplaki, E.; Tinguely, C.; Beck, C.; Pfister, C.; Wanner, H. The late Maunder Minimum (1675–1715)—A key period for studying decadal scale climatic change in Europe. Clim. Chang. 2001, 49, 441–462. [Google Scholar] [CrossRef]
- Raible, C.C.; Yoshimori, M.; Stocker, T.F.; Casty, C. Extreme midlatitude cyclones and their implications for precipitation and wind speed extremes in simulations of the Maunder Minimum versus present day conditions. Climate Dyn. 2007, 28, 409–423. [Google Scholar] [CrossRef]
- Pogosyan, K.P. General Circulation of the Atmosphere; Gidrometeoizdat: Leningrad, Russia, 1972. [Google Scholar]
- Jenkins, G.; Watts, D. Spectral Analysis and Its Application; Holden-Day: San Francisco, CA, USA, 1968. [Google Scholar]
- Clette, F.; Lefevre, L. The new Sunspot Number: Assembling all corrections. Sol. Phys. 2016, 29, 2629–2651. [Google Scholar] [CrossRef]
- Beer, J.; Blinov, A.; Bonani, G.; Finkel, R.C.; Hofmann, H.J.; Lehmann, B.; Oeschger, H.; Sigg, A.; Schwander, J.; Staffelbach, T.; et al. Use of 10Be in polar ice to trace the 11-year cycle of solar activity. Nature 1990, 347, 164–166. [Google Scholar] [CrossRef]
- Bazilevskaya, G.A.; Usoskin, I.G.; Flückiger, E.O.; Harrison, R.G.; Desorgher, L.; Bütikofer, R.; Krainev, M.B.; Makhmutov, V.S.; Stozhkov, Y.I.; Svirzhevskaya, A.K.; et al. Cosmic Ray Induced Ion Production in the Atmosphere. Space Sci. Rev. 2008, 137, 149–173. [Google Scholar] [CrossRef]
- Ney, E.P. Cosmic radiation and weather. Nature 1959, 183, 451–452. [Google Scholar] [CrossRef]
- Pudovkin, M.I.; Veretenenko, S.V. Variations of the cosmic rays as one of the possible links between the solar activity and the lower atmosphere. Adv. Space Res. 1996, 17, 161–164. [Google Scholar] [CrossRef]
- Tinsley, B.A.; Brown, G.M.; Scherrer, P.H. Solar variability influences on weather and climate: Possible connection through cosmic ray fluxes and storm intensification. J. Geophys. Res. 1989, 94, 14783–14792. [Google Scholar] [CrossRef]
- Svensmark, H. Cosmic rays and Earth’s climate. Space Sci. Rev. 2000, 93, 175–185. [Google Scholar] [CrossRef]
- Alavi, A.S.; Jenkins, G.M. An example of digital filtering. Appl. Stat. 1965, 14, 70–74. [Google Scholar] [CrossRef]
- Dmitriev, P.B.; Kudryavtsev, I.V.; Lazunkov, V.P.; Matveev, G.A.; Savchenko, M.I.; Skorodumov, D.V.; Charikov, Y.E. Solar flares registered by the “IRIS” spectrometer onboard the Coronas-F satellite: Peculiarities of the X-ray emission. Sol. Syst. Res. 2006, 2, 142–152. [Google Scholar] [CrossRef]
- Hathaway, D.H. The Solar Cycle. Living Rev. Sol. Phys. 2015, 12, 4. [Google Scholar] [CrossRef]
- Cook, E.R.; Meko, D.M.; Stockton, C.W. A new assessment of possible solar and lunar forcing of bidecadal drought rhythm in the western United States. J. Climate 1997, 10, 1343–1356. [Google Scholar] [CrossRef]
- Mendoza, B.; Pazos, M. A 22yr hurricane cycle and its relation with geomagnetic activity. J. Atmos. Sol.-Terr. Phys. 2009, 71, 2047–2054. [Google Scholar] [CrossRef]
- Ogurtsov, M.; Veretenenko, S.V.; Helama, S.; Jalkanen, R.; Lindholm, M. Assessing the signals of the Hale solar cycle in temperature proxy records from Northern Fennoscandia. Adv. Space Res. 2020, 66, 2113–2121. [Google Scholar] [CrossRef]
- Lopes, F.; Courtillot, V.; Le Mouël, J.-L. Triskeles and Symmetries of Mean Global Sea-Level Pressure. Atmosphere 2022, 13, 1354. [Google Scholar] [CrossRef]
- Raspopov, O.M.; Dergachev, V.A.; Kolström, T. Hale cyclicity of solar activity and its relation to climate variability. Sol. Phys. 2004, 224, 445–463. [Google Scholar] [CrossRef]
- Pudovkin, M.I.; Lyubchich, A.A. Manifestation of solar and magnetic activity cycles in air temperature variations in Leningrad. Geomagn. Aeron. 1989, 29, 326–329. [Google Scholar]
- Serebrennikov, M.T.; Pervosvansky, A.A. Hidden Periodicity Determination; Nauka: Moscow, Russia, 1965. [Google Scholar]
- Hamilton, W. Statistics in Physical Science; Ronald Press: New York, NY, USA, 1964. [Google Scholar]
- Agekyan, T.A. Fundamentals of the Error Theory for Astronomers and Physicists; Nauka: Moscow, Russia, 1972. [Google Scholar]
- Obridko, V.N.; Nagovitsyn, Y.A. Solar Activity, Cyclicity and Prediction Methods; VVM: St. Petersburg, Russia, 2017. [Google Scholar]
- Jelbring, H. Analysis of sunspot cycle phase variations—Based on D. Justin-Schove’s proxy data. J. Coast. Res. 1995, 17, 363–369. [Google Scholar]
- Kidston, J.; Scaife, A.A.; Hardiman, S.C.; Mitchell, D.M.; Butchart, N.; Baldwin, M.P.; Gray, L.J. Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci. 2015, 8, 433–440. [Google Scholar] [CrossRef]
- Veretenenko, S. Stratospheric polar vortex as an important link between the lower atmosphere circulation and solar activity. Atmosphere 2022, 13, 1132. [Google Scholar] [CrossRef]
- Stozhkov, Y.I.; Okhlopkov, V.P.; Svirzhevsky, N.S. Cosmic ray fluxes in present and past times. Sol. Phys. 2004, 224, 323–333. [Google Scholar] [CrossRef]
- Thomas, S.R.; Owens, M.J.; Lockwood, M. The 22-year Hale cycle in cosmic ray flux—Evidence for direct heliospheric modulation. Sol. Phys. 2014, 289, 407–421. [Google Scholar] [CrossRef]
- Stozhkov, Y.I.; Makhmutov, V.S.; Bazilevskaya, G.A.; Svirzhevsky, N.S.; Svirzhevskaya, A.K.; Philippov, M.V. Modulation effects in cosmic rays during a period of anomalously low solar activityl. Bull. Russ. Acad. Sci. Phys. 2021, 85, 1049–1051. [Google Scholar] [CrossRef]
- Stozhkov, Y.I.; Svirzhevsky, N.S.; Bazilevskaya, G.A.; Kvashnin, A.N.; Makhmutov, V.S.; Svirzhevskaya, A.K. Long-term (50 years) measurements of cosmic ray fluxes in the atmosphere. Adv. Space Res. 2009, 44, 1124–1137. [Google Scholar] [CrossRef]
- Rusch, D.W.; Gerard, J.-C.; Solomon, S.; Crutzen, P.J.; Reid, G.C. The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere I. Odd nitrogen. Planet. Space Sci. 1981, 29, 767–774. [Google Scholar] [CrossRef]
- Solomon, S.; Rusch, D.W.; Gerard, J.-C.; Reid, G.C.; Crutzen, P.J. The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere: II. Odd hydrogen. Planet. Space Sci. 1981, 29, 885–893. [Google Scholar] [CrossRef]
- Brasseur, G.P.; Solomon, S. Aeronomy of the Middle Atmosphere; Springer: Dordrecht, The Netherlands, 2005. [Google Scholar]
- Rozanov, E.; Calisto, M.; Egorova, T.; Peter, T.; Schmutz, W. Influence of the precipitating energetic particles on atmospheric chemistry and climate. Surv. Geophys. 2012, 33, 483–501. [Google Scholar] [CrossRef]
- Veretenenko, S. Effects of Solar Proton Events of January 2005 on the middle atmosphere dynamics in the Northern hemisphere. Adv. Space Res. 2021, 68, 1814–1824. [Google Scholar] [CrossRef]
- Veretenenko, S.V. Effects of energetic Solar Proton Events of solar cycle 23 on intensity of the stratospheric polar vortex. Geomagn. Aeron. 2021, 61, 985–992. [Google Scholar] [CrossRef]
- Tinsley, B.A. The global atmospheric electric circuit and its effects on cloud microphysics. Rep. Progr. Phys. 2008, 71, 66801–66900. [Google Scholar] [CrossRef]
- Pudovkin, M.I.; Veretenenko, S.V. Cloudiness decreases associated with Forbush-decreases of galactic cosmic rays. J. Atmos. Terr. Phys. 1995, 57, 1349–1355. [Google Scholar] [CrossRef]
- Svensmark, J.; Enghoff, M.B.; Shaviv, N.J.; Svensmark, H. The response of clouds and aerosols to cosmic ray decreases. J. Geophys. Res. 2016, 121, 8152–8181. [Google Scholar] [CrossRef]
- Matsumoto, H.; Svensmark, H.; Enghoff, M.B. Effects of Forbush decreases on clouds determined from PATMOS-x. J. Atmos. Sol.–Terr. Phys. 2022, 230, 105845. [Google Scholar] [CrossRef]
- NOAA PSL. Available online: htpps://psl.noaa.gov/data/gridded/data.olrcdr.interp/html (accessed on 25 January 2023).
- Veretenenko, S.V.; Dergachev, V.A.; Dmitriyev, P.B. Solar rhythms in the characteristics of the Arctic frontal zone in the North Atlantic. Adv. Space Res. 2010, 45, 391–397. [Google Scholar] [CrossRef]
- Frederick, J.E.; Tinsley, B.A. The response of longwave radiation at the South Pole to electrical and magnetic variations: Links to meteorological generators and the solar wind. J. Atmos. Sol.-Terr. Phys. 2018, 179, 214–224. [Google Scholar] [CrossRef]
- Frederick, J.E.; Tinsley, B.A.; Zhou, L. Relationships between the solar wind magnetic field and ground-level longwave irradiance at high northern latitudes. J. Atmos. Sol.-Terr. Phys. 2019, 193, 105063. [Google Scholar] [CrossRef]
- Baumgaertner, A.J.G.; Seppälä, A.; Jöckel, P.; Clilverd, M.A. Geomagnetic activity related NOx enhancements and polar surface air temperature variability in a chemistry climate model: Modulation of the NAM index. Atmos. Chem. Phys. 2011, 11, 4521–4531. [Google Scholar] [CrossRef]
- Tsurutani, B.T.; Gonzalez, W.D.; Gonzalez, A.L.C.; Guarnieri, F.L.; Gopalswamy, N.; Grande, M.; Kamide, Y.; Kasahara, Y.; Lu, G.; Mann, I.; et al. Corotating solar wind streams and recurrent geomagnetic activity: A review. J. Geophys. Res. 2006, 111, A07S01. [Google Scholar] [CrossRef]
- Cliver, E.V.; Boriakoff, V.; Bounar, K.H. The 22-year cycle of geomagnetic and solar wind activity. J. Geophys. Res. 1996, 101, 27091–27109. [Google Scholar] [CrossRef]
- Mayaud, P.N. The aa indices: A 100 year series characterizing the magnetic activity. J. Geophys. Res. 1972, 77, 6870–6874. [Google Scholar] [CrossRef]
- Gray, L.J.; Beer, J.; Geller, M.; Haigh, J.D.; Lockwood, M.; Matthes, K.; Cubasch, U.; Fleitmann, D.; Harrison, G.; Hood, L.; et al. Solar influences on climate. Rev. Geophys. 2010, 48, RG4001. [Google Scholar] [CrossRef]
- Scafetta, N.; Willson, R.C. ACRIM total solar irradiance satellite composite validation versus TSI proxy models. Astrophys. Space Sci. 2014, 350, 421–442. [Google Scholar] [CrossRef]
- Veretenenko, S.; Ogurtsov, M. Manifestation and possible reasons of ~60-year oscillations in solar-atmospheric links. Adv. Space Res. 2019, 64, 104–116. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veretenenko, S.; Dmitriev, P. Possible Influence of Solar Cyclicity on Extratropical Cyclone Trajectories in the North Atlantic. Atmosphere 2023, 14, 1339. https://doi.org/10.3390/atmos14091339
Veretenenko S, Dmitriev P. Possible Influence of Solar Cyclicity on Extratropical Cyclone Trajectories in the North Atlantic. Atmosphere. 2023; 14(9):1339. https://doi.org/10.3390/atmos14091339
Chicago/Turabian StyleVeretenenko, Svetlana, and Pavel Dmitriev. 2023. "Possible Influence of Solar Cyclicity on Extratropical Cyclone Trajectories in the North Atlantic" Atmosphere 14, no. 9: 1339. https://doi.org/10.3390/atmos14091339
APA StyleVeretenenko, S., & Dmitriev, P. (2023). Possible Influence of Solar Cyclicity on Extratropical Cyclone Trajectories in the North Atlantic. Atmosphere, 14(9), 1339. https://doi.org/10.3390/atmos14091339