The Efficiency of Lichens in Air Biomonitoring in Teleorman County
Abstract
:1. Introduction
2. Materials and Methods
- TR-01 SUD Alexandria Teleorman urban, TR-02 SUD Turnu-Măgurele Teleorman urban, TR-09 SUD Turnu Măgurele Teleorman urban traffic, TR-10 SUD Turnu Măgurele Teleorman urban industrial and TR-11 SUD Zimnicea Teleorman urban. The establishment of target areas for passive biomonitoring of heavy metals at the level of Teleorman County was achieved by fixing 5 monitoring points. The locations of the biomonitoring points were chosen considering two categories of areas:
- Areas that, although they are not in the vicinity of heavy metal pollution sources, show signs of contamination identified with the help of bioindicators;
- Areas referred to as “control areas” where no heavy metal contamination has been reported.
- TR-09-Turnu Măgurele urban heavy road traffic; TR-10-Turnu Măgurele urban industrial.
- TR-11-Zimnicea urban.
- -
- They were subjected to drying at ambient temperature.
- -
- Foreign biological debris (tree bark) was removed.
- -
- They were dried in an oven at approx. 100 °C.
- -
- The determination of the concentration of heavy metals was carried out using an atomic absorption spectrophotometer with a GBC Avanta PM type graphite furnace, with a spectral source, and lamps with a cavitary cathode, manufacturer: GBC Scientific Equipment PTY. Ltd.—Keysborough, Australia; Model: Avanta ULTRA Z 933 PLUS, year of production: 2003 a method which has a much higher sensitivity than flame absorption spectrophotometry.
3. Results
3.1. The Concentration of Lead in the Air (Pb)
3.2. The Concentration of Mercury in the Air (Hg)
3.3. The Concentration of Cadmium in the Air (Cd)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paoli, L.; Maccelli, C.; Guarnieri, M.; Vannini, A.; Loppi, S. Lichens “travelling” in smokers’ cars are suitable biomonitors of indoor air quality. Ecol. Indic. 2019, 103, 576–580. [Google Scholar] [CrossRef]
- Chahloul, N.; Khadhri, A.; Vannini, A.; Mendili, M.; Raies, A.; Loppi, S. Selecting the species to be used in lichen transplant surveys of air pollution in Tunisia. Environ. Monit. Assess. 2023, 195, 570. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Rojas, T.; Cejudo-Ruiz, F.R.; Calvo-Brenes, G. Assessing magnetic properties of biomonitors and road dust as a screening method for air pollution monitoring. Chemosphere 2023, 310, 136795. [Google Scholar] [CrossRef] [PubMed]
- Munzi, S.; Ravera, S.; Caneva, G. Epiphytic lichens as indicators of environmental quality in Rome. Environ. Pollut. 2007, 146, 350e–358e. [Google Scholar] [CrossRef] [PubMed]
- Abas, A.; Asnawi, N.H.; Aiyub, K.; Awang, A.; Abdullah, S.R. Lichen Biodiversity Index (LBI) for the Assessment of Air Quality in an Industrial City in Pahang, Malaysia. Atmosphere 2022, 13, 1905. [Google Scholar] [CrossRef]
- Dhaouadi, S.; Khalloufi, N.; Ayati, K.; Ayeb, N.; Béjaoui, M. Use of lichen species for air pollution biomonitoring: Case of Dar-Chichou forest (Cap-Bon, North-East Tunisia). Environ. Sustain. Indic. 2022, 16, 100211. [Google Scholar] [CrossRef]
- Monaci, F.; Ancora, S.; Paoli, L.; Loppi, S.; Wania, F. Lichen transplants as indicators of gaseous elemental mercury concentrations. Environ. Pollut. 2022, 313, 120189. [Google Scholar] [CrossRef]
- Abas, A. A systematic review on biomonitoring using lichen as the biological indicator: A decade of practices, progress and challenges. Ecol. Indic. 2021, 121, 107–197. [Google Scholar] [CrossRef]
- Adamo, P.; Crisafulli, P.; Giordano, S.; Minganti, V.; Modenesi, P.; Monaci, F. Lichen and moss bags as monitoring devices in urban areas. Part II: Trace element content in living and dead biomonitors and comparison with synthetic materials. Environ. Pollut. 2007, 146, 392–399. [Google Scholar] [CrossRef]
- Beaumont, L.J.; Hughes, L.; Poulsen, M. Predicting Species Distributions: Use of Climatic Parameters in BIOCLIM and Its Impact on Predictions of Species’ Current and Future Distributions. Ecol. Model. 2005, 186, 250–269. [Google Scholar] [CrossRef]
- El-Hussainy, F.; Sharobiem, W. Studies on atmospheric sulfur dioxide values and trends. Al-Azhar Bull. Sci. 2002, 13, 137–151. [Google Scholar]
- Bruyninckx, H. Cleaner air benefits human health and climate change. Eur. Environ. Agency 2017, 2017, 3. [Google Scholar]
- CalitateaAer, Rețeaua Națională de Monitorizare a Calității Aerului. Available online: http://www.calitateaer.ro (accessed on 12 March 2023).
- Oroian, G.I.; Covrig, I.; Vitman, O.; Odagiu, A.; Burduhos, P.; Milasan, A.; Sulea, C. Testing biomonitoring capacity of trees from urban areas. A case study: Cu, Cd, Pb, Zn pollution in Cluj-Napoca, reflected by foliar accumulation of five species located within intense traffic area. Note 1. Results recorded in 2010. ProEnvironment 2012, 5, 195–199. [Google Scholar]
- Riddell, J.; Jovan, S.; Padgett, P.E.; Sweat, K. Tracking lichen community composition changes due to declining air quality over the last century: The Nash legacy in Southern California. Bibl. Lichenol. 2011, 106, 263–277. [Google Scholar]
- Rusănescu, C.O.; Rusănescu, M.; Paraschiv, G. Analysis of Atmospheric Pollutants in Bucharest in Correlation with Meteorological Parameters. Rev. Chim. 2018, 69, 2005–2011. [Google Scholar] [CrossRef]
- Rusănescu, C.O.; Jinescu, C.; Rusănescu, M.; Begea, M.; Ghermec, O. Evaluation of Air Pollution by NO2, SO2, PM10 in Bucharest. Rev. Chim. 2018, 69, 105–111. [Google Scholar] [CrossRef]
- Sonal, S.V.; Birva, D. Evaluation of the ammonia air pollution and climatic factors interactions, case study Bacau city Romania. Environ. Appl. Sci. 2008, 3, 358–367. [Google Scholar]
- Zhang, W.W.; Ma, J.Z. Waterbirds as bioindicators of wetland heavy metal pollution. Procedia Environ. Sci. 2011, 10, 2769–2774. [Google Scholar] [CrossRef] [Green Version]
- Carrillo, W.; Calva, J.; Benitez, A. The Use of Bryophytes, Lichens and Bromeliads for Evaluating Air and Water Pollution in an Andean City. Forests 2022, 13, 1607. [Google Scholar] [CrossRef]
- Samsudin, M.W.; Din, L.; Zakaria, Z.; Latip, J.; Lihan, T.; Jemain, A.A.; Samsudin, F. Measuring Air Quality using Lichen Mapping at Universiti Kebangsaan Malaysia (UKM) Campus. Procedia Soc. Behav. Sci. 2012, 59, 635–643. [Google Scholar] [CrossRef] [Green Version]
- Abas, A.; Mazlan, S.M.; Latif, M.T.; Aiyub, K.; Muhammad, N.; Nadzir, M.S.M. Lichens reveal the quality of indoor air in Selangor, Malaysia. Ecol. Process. 2021, 10, 3. [Google Scholar] [CrossRef]
- Benítez, Á.; Torres, S.; Morocho, R.; Carrillo, W.; Donoso, D.A.; Calva, J. Platyhypnidium aquaticum as Bioindicator of Metal and Metalloid Contamination of River Water in a Neotropical Mountain City. Plants 2020, 9, 974. [Google Scholar] [CrossRef]
- Bargagli, R. Moss and lichen biomonitoring of atmospheric mercury: A review. Sci. Total Environ. 2016, 572, 216–231. [Google Scholar] [CrossRef] [PubMed]
- Cecconi, E.; Fortuna, L.; Peplis, M.; Tretiach, M. Element accumulation performance of living and dead lichens in a large-scale transplant application. Environ. Sci. Pollut. Res. 2021, 28, 16214–16226. [Google Scholar] [CrossRef] [PubMed]
- Doğrul Demiray, A.; Yolcubal, I.; Akyol, N.H.; Çobanoğlu, G. Biomonitoring of airborne metals using the lichen Xanthoria parietina in Kocaeli province, Turkey. Ecol. Indic. 2012, 18, 632–643. [Google Scholar] [CrossRef]
- López Berdonces, M.A.; Higueras, P.L.; Fernández-Pascual, M.; Borreguero, A.M.; Carmona, M. The role of native lichens in the biomonitoring of gaseous mercury at contaminated sites. J. Environ. Manag. 2017, 186, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Marć, M.; Tobiszewski, M.; Zabiegała, B.; de la Guardia, M.; Namieśnik, J. Current air quality analytics and monitoring: A review. Anal. Chim. Acta 2015, 853, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Nimis, P.; Andreussi, S.; Pittao, E. The performance of two lichen species as bioaccumulators of trace metals. Sci. Total Environ. 2001, 275, 43–51. [Google Scholar] [CrossRef]
- Paoli, L.; Fačkovcová, Z.; Lackovičová, A.; Guttová, A. Air pollution in Slovakia (Central Europe): A story told by lichens (1960–2020). Biologia 2021, 76, 3235–3255. [Google Scholar] [CrossRef]
- Paoli, L.; Munzi, S.; Guttová, A.; Senko, D.; Sardella, G.; Loppi, S. Lichens as suitable indicators of the biological effects of atmospheric pollutants around a municipal solid waste incinerator (S Italy). Ecol. Indic. 2015, 52, 362–370. [Google Scholar] [CrossRef]
- Tretiach, M.; Candotto Carniel, F.; Loppi, S.; Carniel, A.; Bortolussi, A.; Mazzilis, D.; Del Bianco, C. Lichen transplants as a suitable tool to identify mercury pollution from waste incinerators: A case study from NE Italy. Environ. Monit. Assess. 2011, 175, 589–600. [Google Scholar] [PubMed]
- Vannini, A.; Nicolardi, V.; Bargagli, R.; Loppi, S. Estimating atmospheric mercury concentrations with lichens. Environ. Sci. Technol. 2014, 48, 8754–8759. [Google Scholar] [CrossRef] [PubMed]
- Abas, A.; Aiyub, K.; Awang, A. Biomonitoring Potentially Toxic Elements (PTEs) Using Lichen Transplant Usnea misaminensis: A Case Study from Malaysia. Sustainability 2022, 14, 7254. [Google Scholar] [CrossRef]
- Abas, A.; Awang, A. Air pollution assessment using lichen biodiversity index (LBI) in Kuala Lumpur, Malaysia. Poll. Res. 2017, 36, 242–249. [Google Scholar]
- Root, H.T.; Jovan, S.; Fenn, M.; Amacher, M.; Hall, J.; Shaw, J.D. Lichen bioindicators of nitrogen and sulfur deposition in dry forests of Utah and New Mexico, USA. Ecol. Indic. 2021, 127, 107727. [Google Scholar] [CrossRef]
- Klimek, B.; Tarasek, A.; Hajduk, J. Trace element concentrations in lichens collected in the Beskidy mountains, the outer Western Carpathians. Bull. Environ. Contam. Toxicol. 2015, 94, 532–536. [Google Scholar] [CrossRef] [Green Version]
- Nannoni, F.; Santolini, R.; Protano, G. Heavy element accumulation in Evernia prunastri lichen transplants around a municipal solid waste landfill in central Italy. Waste Manag. 2015, 43, 353–362. [Google Scholar] [CrossRef]
- Kurnaz, K.; Cobanoglu, G. Biomonitoring of air quality in Istanbul Metropolitan Territory with epiphytic lichen Physcia adscendens (Fr.) Olivier. Fresen. Environ. Bull. 2017, 26, 7296–7308. [Google Scholar]
- Ratier, A.; Dron, J.; Revenko, G.; Austruy, A.; Dauphin, C.-E.; Chaspoul, F.; Wafo, E. Characterization of atmospheric emission sources in lichen from metal and organic contaminant patterns. Environ. Sci. Pollut. Res. 2018, 25, 8364–8379. [Google Scholar] [CrossRef]
- Boonpeng, C.; Sriviboon, C.; Polyiam, W.; Sangiamdee, D.; Watthana, S.; Boonpragob, K. Assessing atmospheric pollution in a petrochemical industrial district using a lichen-air quality index (LiAQI). Ecol. Indic. 2018, 95, 589–594. [Google Scholar] [CrossRef]
- Augusto, S.; Pereira, M.J.; Soares, A.; Branquinho, C. The contribution of environmental biomonitoring with lichens to assess human exposure to dioxins. Int. J. Hyg. Environ. Health 2007, 210, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Blasco, M.; Domeno, C.; Nerín, C. Lichens biomonitoring as feasible methodology to assess air pollution in natural ecosystems: Combined study of quantitative PAHs analyses and lichen biodiversity in the Pyrenees Mountains. Anal. Bioanal. Chem. 2008, 391, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Bergamaschi, L.; Rizzio, E.; Giaveri, G.; Loppi, S.; Gallorini, M. Comparison between the accumulation capacity of four lichen species transplanted to a urban site. Environ. Pollut. 2007, 148, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Guttova, A.; Lackovicova, A.; Pisut, I.; Pisut, P. Decrease in air pollution load in urban environment of Bratislava (Slovakia) inferred from accumulation of metal elements in lichens. Environ. Monit. Assess. 2011, 182, 361–373. [Google Scholar] [CrossRef]
- Stefanut, S.; Manole, A. Guide to the Use of Species in Biomonitoring Programs; Publishing House Ars Docendi: Bucharest, Romania, 2017; pp. 30–34. [Google Scholar]
- Cernat Popa, M.M. Analysis of Air Quality in Teleorman by Means of Biomonitors—Lichens, Fiability and Durability no 1/2003; Editura “Academica Brancusi”: Targu Jiu, Romania, 2023; pp. 270–278. [Google Scholar]
- Bültmann, H. The lichen syntaxa in the checklist of higher syntaxa of europe—An overview and what we can do with them. Ann. Bot. 2012, 2, 11–18. [Google Scholar]
Measurement Points | Cd-Measurement | Cd-Biomonitor | Hg-Measurement | Hg-Biomonitor | Pb-Measurement | Pb-Biomonitor |
---|---|---|---|---|---|---|
TR-01 | 0.15 | 0.17 | 0.31 | 0.31 | 0.33 | 0.30 |
TR-02 | 0.13 | 0.14 | 0.28 | 0.29 | 0.14 | 0.18 |
TR-09 | 0.17 | 0.16 | 0.27 | 0.25 | 0.19 | 0.21 |
TR-10 | 0.11 | 0.19 | 0.36 | 0.33 | 0.16 | 0.17 |
TR-11 | 0.16 | 0.20 | 0.30 | 0.27 | 0.21 | 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cernat Popa, M.M.; Rusănescu, C.O. The Efficiency of Lichens in Air Biomonitoring in Teleorman County. Atmosphere 2023, 14, 1287. https://doi.org/10.3390/atmos14081287
Cernat Popa MM, Rusănescu CO. The Efficiency of Lichens in Air Biomonitoring in Teleorman County. Atmosphere. 2023; 14(8):1287. https://doi.org/10.3390/atmos14081287
Chicago/Turabian StyleCernat Popa, Maria Magdalena, and Carmen Otilia Rusănescu. 2023. "The Efficiency of Lichens in Air Biomonitoring in Teleorman County" Atmosphere 14, no. 8: 1287. https://doi.org/10.3390/atmos14081287
APA StyleCernat Popa, M. M., & Rusănescu, C. O. (2023). The Efficiency of Lichens in Air Biomonitoring in Teleorman County. Atmosphere, 14(8), 1287. https://doi.org/10.3390/atmos14081287