Evaluation the Urban Atmospheric Conditions Using Micronuclei Assay and Stomatal Index in Tradescantia pallida
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Test Procedures (TRAD-MCN)
2.3. Stomatal Anatomical Analysis
2.4. Analysis of Vehicle Flow in Cities with Low and High Flow and Environmental Variables
2.5. Mapping of the Evaluated Areas
2.6. Statistical Analysis
3. Results
3.1. Mutagenicity and Micronuclei (MCN)
3.2. Leaf Epidermal Characteristics
3.3. Environmental Variables, Micronuclei, and Stomata
3.4. Mapping the Risk Areas
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Han, L.; Wei, H.; Tan, X.; Zhou, W.; Li, W.; Qian, Y. Linking urbanization and air quality together: A review and a perspective on the future sustainable urban development. J. Cleaner Prod. 2022, 346, 130988. [Google Scholar] [CrossRef]
- Piekarska, K.; Karpińska-Smulikowska, J. Mutagenic Activity of Environmental Air Samples from the Area of Wrocław, Poland. Pol. J. Environ. Stud. 2007, 15, 745–752. [Google Scholar]
- Verma, P.K.; Sah, D.; Dubey, J.; Kumari, K.M.; Lakhani, A. Mutagenic and cancer risk estimation of particulate bound polycyclic aromatic hydrocarbons from the emission of different biomass fuels. Chem. Res. Toxicol. 2021, 34, 743–753. [Google Scholar] [CrossRef] [PubMed]
- Sabatino, S.D.; Barbano, F.; Brattich, E.; Pulvirenti, B. The multiple-scale nature of urban heat island and its footprint on air quality in real urban environment. Atmosphere 2020, 11, 1186. [Google Scholar] [CrossRef]
- Gibbs, E.P.J. The evolution of One Health: A decade of progress and challenges for the future. Vet. Rec. 2014, 174, 85–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabinowitz, P.M.; Pappaioanou, M.; Bardosh, K.L.; Conti, L. A planetary vision for one health. BMJ Glob. Health 2018, 3, e001137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinsstag, J.; Crump, L.; Schelling, E.; Hattendorf, J.; Maidane, Y.O.; Ali, K.O.; Cissé, G. Climate change and one health. FEMS Microbiol. Lett. 2018, 365, fny085. [Google Scholar] [CrossRef] [Green Version]
- Prestes, R.M.; Vincenci, K.L. Bioindicadores como avaliação de impacto ambiental. Braz. J. Anim. Environ. Res. 2019, 2, 1473–1493. [Google Scholar]
- Zandalinas, S.I.; Fritschi, F.B.; Mittler, R. Global warming, climate change, and environmental pollution: Recipe for a multifactorial stress combination disaster. Trends Plant Sci. 2021, 26, 588–599. [Google Scholar] [CrossRef]
- Morais, K.V.R.; De Souza, P.M.A.; Morais, J.R.R.; Amaral, Y.A.M.; Catisani, F.; Oliveira, R.M.; Pisani, G.A.A. As doenças emergentes e reemergentes e seus determinantes. Braz. J. Health Rev. 2020, 3, 11227–11241. [Google Scholar] [CrossRef]
- Zanella, J.R.C. Zoonoses emergentes e reemergentes e sua importância para saúde e produção animal. Pesqui. Agropecu. Bras. 2016, 51, 510–519. [Google Scholar] [CrossRef] [Green Version]
- Rabello, A.M.; Oliveira, D.D. Impactos ambientais antrópicos e o surgimento de pandemias. Unifesspa 2020, 26, 1–7. [Google Scholar]
- Jaafari, S.; Shabani, A.A.; Moeinaddini, M.; Danehkar, A.; Sakieh, Y. Applying landscape metrics and structural equation modeling to predict the effect of urban green space on air pollution and respiratory mortality in Tehran. Environ. Monit. Assess. 2020, 192, 412. [Google Scholar] [CrossRef] [PubMed]
- Slama, A.; Śliwczyński, A.; Woźnica, J.; Zdrolik, M.; Wiśnicki, B.; Kubajek, J.; Franek, E. Impact of air pollution on hospital admissions with a focus on respiratory diseases: A time-series multi-city analysis. Environ. Sci. Pollut. Res. 2019, 26, 16998–17009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuiper, I.N.; Svanes, C.; Markevych, I.; Accordini, S.; Bertelsen, R.J.; Bråbäck, L.; Johannessen, A. Lifelong exposure to air pollution and greenness in relation to asthma, rhinitis and lung function in adulthood. Environ. Int. 2021, 146, 106219. [Google Scholar] [CrossRef]
- Marquès, M.; Rovira, J.; Nadal, M.; Domingo, J.L. Effects of air pollution on the potential transmission and mortality of COVID-19: A preliminary case-study in Tarragona Province (Catalonia, Spain). Environ. Res. 2021, 192, 110315. [Google Scholar] [CrossRef]
- Lucchini, R.G.; Dorman, D.C.; Elder, A.; Veronesi, B. Neurological impacts from inhalation of pollutants and the nose–brain connection. Neurotoxicology 2012, 33, 838–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klompmaker, J.O.; Hart, J.E.; James, P.; Sabath, M.B.; Wu, X.; Zanobetti, A.; Dominici, F.; Laden, F. Air pollution and cardiovascular disease hospitalization–Are associations modified by greenness, temperature and humidity? Environ. Int. 2021, 156, 106715. [Google Scholar] [CrossRef]
- Yang, B.Y.; Guo, Y.; Morawska, L.; Bloom, M.S.; Markevych, I.; Heinrich, J.; Dharmage, S.C.; Knibbs, L.D.; Lin, S.; Yim Hung-Lam, S.; et al. Ambient PM1 air pollution and cardiovascular disease prevalence: Insights from the 33 Communities Chinese Health Study. Environ. Int. 2019, 123, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Gold, D.R.; Samet, J.M. Air pollution, climate, and heart disease. Circulation 2013, 128, e411–e414. [Google Scholar] [CrossRef]
- Hvidtfeldt, U.A.; Severi, G.; Andersen, Z.J.; Atkinson, R.; Bauwelinck, M.; Bellander, T.; Fecht, D. Long-term low-level ambient air pollution exposure and risk of lung cancer–A pooled analysis of 7 European cohorts. Environ. Int. 2021, 146, 106249. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Chang, Z.; Wu, J.; Li, W. Air pollution and lung cancer incidence in China: Who are faced with a greater effect? Environ. Int. 2019, 132, 105077. [Google Scholar] [CrossRef] [PubMed]
- Godoi, K.D.S.P.; Spósito, J.C.V.; Rocha, A.d.N.; Candido, L.S.; Silva, C.A.M.; Lemke, A.P.; Mussury, R.M. Mutagenicity in Tradescantia pallida as an Indicator of the Effect of Air Pollution and Human Health. Atmosphere 2021, 12, 1185. [Google Scholar] [CrossRef]
- Salgueiro, S.A.M.; Rocha, A.N.; Mauad, J.R.C.; Silva, C.A.M.; Mussury, R.M. Biomonitoring of air quality in the Bodoquena microregion, Mato Grosso Do Sul: Mutagenic and morphoanatomical alterations in Tradescantia pallida (rose) DR Hunt var. purpurea. Braz. J. Biol. 2024, 84, e250100. [Google Scholar] [CrossRef]
- Rocha, A.N.; Mussury, R.M. Green areas in an urban environment minimize the mutagenic effects of polluting gases. Water Air Soil Pollut. 2020, 231, 574. [Google Scholar] [CrossRef]
- Rocha, A.N.; Candido, L.S.; Pereira, J.G.; Silva, C.A.M.; Da Silva, S.V.; Mussury, R.M. Evaluation of vehicular pollution using the TRAD-MCN mutagenic bioassay with Tradescantia pallida (Commelinaceae). Environ. Pollut. 2018, 240, 440–447. [Google Scholar] [CrossRef] [Green Version]
- Spósito, J.C.V.; Crispim, B.A.; Romãn, A.I.; Mussury, R.M.; Pereira, J.G.; Seno, L.O.; Grisolia, A.B. Evaluation the urban atmospheric conditions in different cities using comet and micronuclei assay in Tradescantia pallida. Chemosphere 2017, 175, 108–113. [Google Scholar] [CrossRef]
- Spósito, J.C.V.; Crispim, B.A.; Mussury, R.M.; Grisolia, A.B. Genetic instability in plants associated with vehicular traffic and climatic variables. Ecotoxicol. Environ. Saf. 2015, 120, 445–448. [Google Scholar] [CrossRef]
- Crispim, B.A.; Spósito, J.C.V.; Mussury, R.M.; Seno, L.O.; Grisolia, A.B. Effects of atmospheric pollutants on somatic and germ cells of Tradescantia pallida (Rose) DR HUNT cv. purpurea. An. Acad. Bras. Ciênc. 2014, 86, 1899–1906. [Google Scholar] [CrossRef] [Green Version]
- Belguidoum, A.; Haichour, R.; Lograda, T.; Ramdani, M. Biomonitoring of air pollution by lichen diversity in the urban area of Setif, Algeria. Biodivers. J. Biol Divers. 2022, 23, 970–981. [Google Scholar] [CrossRef]
- Bayouli, I.T.; Bayouli, H.T.; Dell’oca, A.; Meers, E.; Sun, J. Ecological indicators and bioindicator plant species for biomonitoring industrial pollution: Eco-based environmental assessment. Ecol. Indic. 2021, 125, 107508. [Google Scholar] [CrossRef]
- Ceglinski, L.D.V.; Garcia, E.M.; Reis, F.O.; Tavella, R.A.; Silva Júnior, F.M.R.D. Air quality assessment using the Pollen Abortion assay in Tradescantia pallida in a Mid-sized City in Southern Brazil. Rev. Soc. Cient. Parag. 2021, 2, 6–16. [Google Scholar] [CrossRef]
- Rodrigues, L.T.; Bione, N.C.P.; De Oliveira Filho, P.C.; De Souza, V.F.; Da Fonseca Machado, A.L. Influência sazonal da qualidade do ar na área urbana de Irati-PR: Bioensaios de genotoxicidade ambiental com Tradescantia clone 4430. Braz. J. Dev. 2020, 6, 74297–74315. [Google Scholar] [CrossRef]
- Lorenzi, H.; Souza, H.M. Plantas Ornamentais no Brasil: Arbustivas, Herbáceas e Trepadeiras, 3rd ed.; Instituto Plantarum: Nova Odessa, Brazil, 2001; 1088p. [Google Scholar]
- Campos, C.F.; Cunha, M.C.; Santos, V.S.V.; De Campos Júnior, E.O.; Bonetti, A.M.; Pereira, B.B. Analysis of genotoxic effects on plants exposed to high traffic volume in urban crossing intersections. Chemosphere 2020, 259, 127511. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.P.M.; Segura-Muñoz, S.I.; Nadal, M.; Schuhmacher, M.; Domingo, J.L.; Martinez, C.A.; Magosso Takayanagui, A.M. Traffic-related air pollution biomonitoring with Tradescantia pallida (Rose) Hunt. cv. purpurea Boom in Brazil. Environ. Monit. Assess. 2015, 187, 39. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, M.C.V.; Barbério, A. Biomonitoramento do ar com Tradescantia pallida (Rose) D.R. Hunt var purpurea Boom (Commelinaceae). Rev. Ambiente Água 2012, 7, 279–292. [Google Scholar] [CrossRef]
- Da Silveira Fleck, A.; Moresco, M.B.; Rhoden, C.R. Assessing the genotoxicity of traffic-related air pollutants by means of plant biomonitoring in cities of a Brazilian metropolitan area crossed by a major highway. Atmos. Pollut. Res. 2016, 7, 488–493. [Google Scholar] [CrossRef]
- Ma, T.H.; Cabrera, G.L.; Chen, R.; Gill, B.S.; Sandhu, S.S.; Vandenberg, A.L.; Salamone, M.F. Tradescantia micronucleus bioassay. Mutat. Res./Fundam. Mol. Mech. Mutagen. 1994, 310, 221–230. [Google Scholar] [CrossRef]
- Ma, T.H. Tradescantia MCN-in-Tetrad Mutagen Test for on-Site Monitoring and Further Validation; US Environmental Protection Agency, Health Effects Research Laboratory: Springfield, Virginia, 1981; pp. 1–4.
- Popek, R.; Przybysz, A.; Gawrońska, H.; Klamkowski, K.; Gawroński, S.W. Impact of particulate matter accumulation on the photosynthetic apparatus of roadside woody plants growing in the urban conditions. Ecotoxicol. Environ. Saf. 2018, 163, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Kiyomizu, T.; Yamagishi, S.; Kume, A.; Hanba, Y.T. Contrasting photosynthetic responses to ambient air pollution between the urban shrub Rhododendron pulchrum and urban tall tree Ginkgo biloba in Kyoto city: Stomatal and leaf mesophyll morpho-anatomies are key traits. Trees 2019, 33, 63–77. [Google Scholar] [CrossRef]
- Khosropour, E.; Attarod, P.; Shirvany, A.; Pypker, T.G.; Bayramzadeh, V.; Hakimi, L.; Moeinaddini, M. Response of Platanus orientalis leaves to urban pollution by heavy metals. J. For. Res. 2019, 30, 1437–1445. [Google Scholar] [CrossRef]
- Gostin, I. Air Pollution Stress and Plant Response. In Plant Responses to Air Pollution; Kulshrestha, U., Pallavi, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 99–117. [Google Scholar]
- Alves, E.S.; Tremondi, F.; Longui, E.L. Análise estrutural de folhas de Eugenia uniflora L. (Myrtaceae) coletadas em ambientes rurais e urbanos, SP, Brasil. Acta Bot. Brasílica 2008, 22, 241–248. [Google Scholar] [CrossRef] [Green Version]
- IBGE—Instituto Brasileiro de Geografia e Estatística. Censo Demográfico. 2018. Available online: https://cidades.ibge.gov.br/brasil/ms/panorama (accessed on 10 May 2021).
- Crispim, B.A.; Vaini, J.O.; Grisolia, A.B.; Teixeira, T.Z.; Mussury, R.M.; Seno, L.O. Biomonitoring the genotoxic effects of pollutants on Tradescantia pallida (Rose) DR Hunt in Dourados, Brazil. Environ. Sci. Pollut. Res. 2012, 19, 718–723. [Google Scholar] [CrossRef] [PubMed]
- Roman, A.I.; Grisolia, A.B.; Candido, L.S.; Barros, S.S.; Mussury, R.M. Avaliação da Poluição do ar com Base nos Aspectos Anatômicos Foliares e Genotóxicos em Tradescantia Pallida (Rose) D.r Hunt var. Purpurea; Dissertação. Mestrado em Biologia Geral/Bioprospecção, Universidade Federal da Grande Dourados: Dourados, MS, Brazil, 2015. [Google Scholar]
- Coordenadoria-Geral De Modernização Administrativa (CGMA). Perfil Territorial Vale do Ivinhema. Available online: http://sit.mda.gov.br/download/caderno/caderno_territorial_127_Vale%20do%20Ivinhema%20-%20MS.pdf (accessed on 6 May 2020).
- Johansen, D.A. Plant Microtechnique; Mac Graw Hill Book Company: New York, NY, USA, 1940. [Google Scholar]
- Cutter, E.G. Anatomia Vegetal. Parte I—Células e Tecidos, 2nd ed.; Roca: São Paulo, Brazil, 1986. [Google Scholar]
- Pereira, B.B.; De Campos Júnior, E.O.; Morelli, S. In situ biomonitoring of the genotoxic effects of vehicular pollution in Uberlândia, Brazil, using a Tradescantia micronucleus assay. Ecotoxicol. Environ. Saf. 2013, 87, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Meireles, J.; Rocha, R.; Neto, A.C.; Cerqueira, E. Genotoxic effects of vehicle traffic pollution as evaluated by micronuclei test in Tradescantia (Trad-MCN). Mutat. Res./Fundam. Mol. Mech. Mutagen. 2009, 675, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, S.K.; Tripathi, B.D. Assessing the genotoxicity of urban air pollutants in Varanasi City using Tradescantia micronucleus (Trad-MCN) bioassay. Environ. Int. 2008, 34, 1092–1096. [Google Scholar] [CrossRef]
- IBGE—Instituto Brasileiro de Geografia e Estatística. Censo Demográfico Nova Andradina. 2018. Available online: https://www.ibge.gov.br/cidades-e-estados/ms/nova-andradina.html (accessed on 25 October 2021).
- Claxton, L.D. The history, genotoxicity, and carcinogenicity of carbon-based fuels and their emissions. Part 3: Diesel and gasoline. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2015, 763, 30–85. [Google Scholar] [CrossRef]
- De Carvalho, R.M.; Machado, J.L.C.; De Aguiar, R.P.S.; Da Mata, A.M.O.F.; Silva, R.R.; Teixeira, J.S.; Amã, A. Tradescantia pallida as a biomonitoring tool to assess the influence of vehicle exhaustion and benzene derivatives. Afr. J. Biotechnol. 2017, 16, 280–287. [Google Scholar]
- Da Costa, G.M.; Cassanego, M.B.B.; Petry, C.T.; Sasamori, M.H.; Endres-Júnior, D.; Droste, A. Avaliação da influência do tempo de exposição de Tradescantia pallida var. purpurea para biomonitoramento da genotoxicidade do ar atmosférico. Rev. Bras. Biociências 2015, 13, 224–230. [Google Scholar]
- Nidzgorska-Lencewicz, J.; Czarnecka, M. Thermal inversion and particulate matter concentration in Wrocław in winter season. Atmosphere 2020, 11, 1351. [Google Scholar] [CrossRef]
- Baesse, C.Q.; De Magalhães, T.V.C.; Morelli, S.; Melo, C. Effect of urbanization on the micronucleus frequency in birds from forest fragments. Ecotoxicol. Environ. Saf. 2019, 171, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Alves, E.S.; Giusti, P.M.; Domingos, M.; Saldiva, P.H.N.; Guimarães, E.T.; Lobo, D.J.A. Estudo anatômico foliar do clone híbrido 4430 de Tradescantia: Alterações decorrentes da poluição aérea urbana. Rev. Bras. Bot. 2001, 24, 567–576. [Google Scholar] [CrossRef] [Green Version]
- Balasooriya, B.L.W.K.; Samson, R.; Mbikwa, F.; Boeckx, P.; Van Meirvenne, M. Biomonitoring of urban habitat quality by anatomical and chemical leaf characteristics. Environ. Exp. Bot. 2009, 65, 386–394. [Google Scholar] [CrossRef]
- Pourkhabbaz, A.; Rastin, N.; Olbrich, A.; Langenfeld-Heyser, R.; Polle, A. Influence of environmental pollution on leaf properties of urban plane trees, Platanus orientalis L. Bull. Environ. Contam. Toxicol. 2010, 85, 251–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soares, T.D.B.; Rocha, A.d.N.; de Carvalho, E.M.; Mauad, J.R.C.; de Souza, S.A.; Silva, C.A.M.; Mussury, R.M. Evaluation the Urban Atmospheric Conditions Using Micronuclei Assay and Stomatal Index in Tradescantia pallida. Atmosphere 2023, 14, 984. https://doi.org/10.3390/atmos14060984
Soares TDB, Rocha AdN, de Carvalho EM, Mauad JRC, de Souza SA, Silva CAM, Mussury RM. Evaluation the Urban Atmospheric Conditions Using Micronuclei Assay and Stomatal Index in Tradescantia pallida. Atmosphere. 2023; 14(6):984. https://doi.org/10.3390/atmos14060984
Chicago/Turabian StyleSoares, Talita Daiane Bernardo, Aline do Nascimento Rocha, Emerson Machado de Carvalho, Juliana Rosa Carrijo Mauad, Silvana Aparecida de Souza, Caio Augusto Mussury Silva, and Rosilda Mara Mussury. 2023. "Evaluation the Urban Atmospheric Conditions Using Micronuclei Assay and Stomatal Index in Tradescantia pallida" Atmosphere 14, no. 6: 984. https://doi.org/10.3390/atmos14060984
APA StyleSoares, T. D. B., Rocha, A. d. N., de Carvalho, E. M., Mauad, J. R. C., de Souza, S. A., Silva, C. A. M., & Mussury, R. M. (2023). Evaluation the Urban Atmospheric Conditions Using Micronuclei Assay and Stomatal Index in Tradescantia pallida. Atmosphere, 14(6), 984. https://doi.org/10.3390/atmos14060984