Discriminant Analysis of the Solar Input on the Danube’s Discharge in the Lower Basin
Abstract
:1. Introduction
- -
- The minimum number of factors that form a sufficiently predictive ensemble and that belong to different systems (atmosphere, hydrosphere, external (Solar system)) has not been detected.
- -
- It has not been possible to clearly discriminate between the impact of the different spectral components (solar cycles of 11 and 22 years respectively) on the geophysical system.
- -
- No neural network has been used for the prognostic differentiation of solar cycle components with their characteristic impact on the hydrological evolution of major European rivers.
2. Material and Methods
2.1. Data
2.2. Methods
3. Results and Discussions
4. Conclusions
- (i)
- The forecast of the Danube discharge by considering the ensemble of the three terrestrial predictors is less significant than that obtained by taking into account both the atmospheric and extra-atmospheric predictors.
- (ii)
- In association with certain terrestrial predictors, for instance the PHDI, the contribution of the Hale cycle is more significant than the contribution of the Schwabe cycle to the estimation of the Danube discharge in the lower basin.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tirabassi, G.; Sevilla-Escoboza, R.; Buldú, J.M.; Masoller, C. Inferring the connectivity of coupled oscillators from time-series statistical similarity analysis. Sci. Rep. 2015, 5, 10829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. (Eds.) IPCC, Climate Change 2021: The Physical Science Basis. In Contribution of Working Group I to the Sixth Assessment Report of 689 the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; Volume 692, p. 2391. [Google Scholar] [CrossRef]
- Sedlacek, J.; Sukhodolov, T.; Egorova, T.; Karagodin-Doyennel, A.; Rozanov, E. Future climate under CMIP6 solar activity scenarios. Earth Space Sci. 2023, 10, 002783. [Google Scholar] [CrossRef]
- Tupikina, L.; Rehfeld, K.; Molkenthin, N.; Stolbova, V.; Marwan, N.; Kurths, J. Characterizing the evolution of climate networks. Nonlinear Proc. Geophys. 2014, 21, 705–711. [Google Scholar] [CrossRef]
- Mares, C.; Dobrica, V.; Mares, I.; Demetrescu, C. Solar Signature in Climate Indices. Atmosphere 2022, 13, 1898. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Guiasu, S. Information Theory with Applications; McGraw-Hill Inc.: London, UK, 1977. [Google Scholar]
- Khan, S.; Ganguly, A.R.; Bandyopadhyay, S.; Saigal, S.; Erickson, D.J.; Protopopescu, V.; Ostrouchov, G. Nonlinear statistics reveals stronger ties between ENSO and the tropical hydrological cycle. Geophys. Res. Lett. 2006, 33, L24402. [Google Scholar] [CrossRef] [Green Version]
- Vu, T.M.; Mishra, A.K.; Konapala, G. Information Entropy Suggests Stronger Nonlinear Associations between Hydro-Meteorological Variables and ENSO. Entropy 2018, 20, 38. [Google Scholar] [CrossRef] [Green Version]
- Schultz, D.M.; Lynch, P. 100 years of L. F. Richardson’s Weather Prediction by Numerical Process. Mon. Wea. Rev. 2022, 150, 693–695. [Google Scholar] [CrossRef]
- Charney, J.G.; Fjørtoft, R.; Von Neumann, J. Numerical integration of the barotropic vorticity equation. Tellus 1950, 2, 237–254. [Google Scholar] [CrossRef] [Green Version]
- Fu, C.; James, A.L.; Wachowiak, M.P. Analyzing the combined influence of solar activity and El Niño on streamflow across southern Canada. Water Resour. Res. 2012, 48, W05507. [Google Scholar] [CrossRef]
- Dong, L.; Fu, C.; Liu, J.; Zhang, P. Combined Effects of Solar Activity and El Niño on Hydrologic Patterns in the Yoshino River Basin, Japan. Water Resour. Manag. 2018, 32, 2421. [Google Scholar] [CrossRef]
- Dobrica, V.; Demetrescu, C.; Mares, I.; Mares, C. Long-term evolution of the Lower Danube discharge and corresponding climate variations: Solar signature imprint. Theor. Appl. Climatol. 2018, 133, 985–996. [Google Scholar] [CrossRef]
- Mares, I.; Dobrica, V.; Mares, C.; Demetrescu, C. Assessing the solar variability signature in climate variables by information theory and wavelet coherence. Sci. Rep. 2021, 11, 11337. [Google Scholar] [CrossRef]
- Cubasch, U.; Voss, R.; Hegerl, G.C.; Waszkewitz, J.; Crowley, T.J. Simulation of the influence of solar radiation variations on the global climate with an ocean-atmosphere general circulation model. Clim. Dyn. 1997, 13, 757–767. [Google Scholar] [CrossRef]
- Hood, L.; Schimanke, S.; Spangehl, T.; Bal, S.; Cubasch, U. The surface climate response to 11-yr solar forcing during northern winter: Observational analyses and comparisons with GCM simulations. J. Clim. 2013, 26, 7489–7506. [Google Scholar] [CrossRef] [Green Version]
- Widmann, M. One-Dimensional CCA and SVD, and Their Relationship to Regression Maps. J. Clim. 2005, 18, 2785–2792. [Google Scholar] [CrossRef]
- Hunt, B.G. Nonlinear Influences—A Key to Short-Term Climatic Perturbations. J. Atmos. Sci. 1988, 45, 387–395. [Google Scholar] [CrossRef]
- Wen, G.; Cahalan, R.F.; Rind, D.; Jonas, J.; Pilewskie, P.; Dong, L.; Wu, D.L.; Krivova, N.A. Climate responses to SATIRE and SIM-based spectral solar forcing in a 3D atmosphere-ocean coupled GCM. Published by EDP Sciences. J. Space Weather Space Clim. 2017, 7, A11. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, W.W. Nonlinear multivariate and time series analysis by neural network methods. Rev. Geophys. 2004, 42, RG1003. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, W.W. Nonlinear principal component analysis of noisy data. Neural Netw. 2007, 20, 434–443. [Google Scholar] [CrossRef] [Green Version]
- Jenkner, J.; Hsieh, W.W.; Cannon, A.J. Seasonal Modulations of the Active MJO Cycle Characterized by Nonlinear Principal Component Analysis. Mon. Weather Rev. 2011, 139, 2259–2275. [Google Scholar] [CrossRef] [Green Version]
- Elbeltagi, A.; Nagy, A.; Mohammed, S.; Pande, C.; Kumar, M.; Bhat, S.A.; Zsembeli, J.; Huzsvai, L.; Tamás, J.; Kovács, E.; et al. Combination of Limited Meteorological Data for Predicting Reference Crop Evapotranspiration Using Artificial Neural Network Method. Agronomy 2022, 12, 516. [Google Scholar] [CrossRef]
- Mares, I.; Mares, C.; Mihailescu, M. Stochastic modeling of the connection between sea level pressure and discharge in the Danube lower basin by means of Hidden Markov Model. EGU Gen. Assem. Conf. Abstr. 2013, 15, 7606. [Google Scholar]
- Mares, I.; Mares, C.; Dobrica, V.; Demetrescu, C. Selection of Optimal Palmer Predictors for Increasing the Predictability of the Danube Discharge: New Findings Based on Information Theory and Partial Wavelet Coherence Analysis. Entropy 2022, 24, 1375. [Google Scholar] [CrossRef]
- Mares, I.; Mares, C.; Dobrica, V.; Demetrescu, C. Spectral coherence between precipitation in the Danube basin and indices of the teleconnections patterns by means of wavelet transform. Geophys. Res. Abstr. 2018, 20, 7562. Available online: https://meetingorganizer.copernicus.org/EGU2018/-7562.pdf (accessed on 2 June 2023).
- Lorenzo-Lacruz, J.; Morán-Tejeda, E.; Vicente-Serrano, S.M.; Hannaford, J.; García, C.; Peña-Angulo, D.; Murphy, C. Streamflow frequency changes across western Europe and interactions with North Atlantic atmospheric circulation patterns. Glob. Planet. Change 2022, 212, 103797. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlin. Proc. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Moore, J.; Grinsted, A.; Jevrejeva, S. Is there evidence for sunspot forcing of climate at multi-year and decadal periods? Geophys. Res. Lett. 2006, 33, L17705. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.-B. Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Trans. Neural Netw. 2003, 14, 274–281. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- He, Q.; Shang, T.; Zhuang, F.; Shi, Z. Parallel extreme learning machine for regression based on MapReduce. Neurocomputing 2013, 102, 52–58. [Google Scholar] [CrossRef]
- Antico, A.; Torres, M.E. Evidence of a decadal solar signal in the Amazon River: 1903 to 2013. Geophys. Res. Lett. 2015, 42, 782–787. [Google Scholar] [CrossRef] [Green Version]
- Deo, R.C.; Tiwari, M.K.; Adamowski, J.F.; Quilty, J.M. Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model. Stoch. Environ. Res. Risk Assess. 2017, 31, 1211–1240. [Google Scholar] [CrossRef]
- Bergout, T. A New Health Assessment Prediction Approach: Multi-Scale Ensemble Extreme Learning Machine. Preprints 2020, 2020050386. [Google Scholar] [CrossRef]
- Yaseen, Z.M.; Faris, H.; Al-Ansari, N. Hybridized Extreme Learning Machine Model with Salp Swarm Algorithm: A Novel Predictive Model for Hydrological Application. Complexity 2020, 2020, 8206245. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, V.H.A.; Reynoso, M.G.; Siqueira, H.V. Multi-Objective Ensembles of Echo State Networks and Extreme Learning Machines for Streamflow Series Forecasting. Eng. Appl. Artif. Intell. 2020, 95, 103910. [Google Scholar] [CrossRef]
- Khan, A.; Ali, A.; Islam, N.; Manzoor, S.; Zeb, H.; Azeem, M.; Ihtesham, S. Robust Extreme Learning Machine Using New Activation and Loss Functions Based on M-Estimation for Regression and Classification. Sci. Program. 2022, 2020, 6446080. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Pappenberger, F.; Scipal, K.; Buizza, R. Hydrological aspects of meteorological verification. Atmos. Sci. Lett. 2008, 9, 43–52. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Alfieri, L.; Pappenberger, F.; Wetterhall, F.; Haiden, T.; Richardson, D.; Salamon, P. Evaluation of ensemble streamflow predictions in Europe. J. Hydrol. 2014, 517, 913–922. [Google Scholar] [CrossRef] [Green Version]
- Mitrović, T.; Antanasijević, D.; Lazović, S.; Perić-Grujić, A.; Ristić, M. Virtual water quality monitoring at inactive monitoring sites using Monte Carlo optimized artificial neural networks: A case study of Danube River (Serbia). Sci. Total Environ. 2019, 654, 1000–1009. [Google Scholar] [CrossRef] [PubMed]
- Jones, N. How machine learning could help to improve climate forecasts. Nature 2017, 548, 379. [Google Scholar] [CrossRef] [PubMed]
- Pandhiani, S.; Shabri, A. Time Series Forecasting Using Wavelet-Least Squares Support Vector Machines and Wavelet Regression Models for Monthly Stream Flow Data. Open J. Statist. 2013, 3, 183–194. [Google Scholar] [CrossRef] [Green Version]
- Dumitrescu, D.; Costin, H. Inteligenta artificiala. In Retele Neuronale-Teorie si Aplicatii; Brosate: Bucuresti, Romania, 1996; p. 45. [Google Scholar]
- Timme, N.M.; Lapish, C. A tutorial for information theory in neuroscience. eNeuro 2018, 5, ENEURO.0052-18.2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Mouël, J.L.; Lopes, F.; Courtillot, V. A solar signature in many climate indices. J. Geophys. Res. Atmos. 2019, 124, 2600–2619. [Google Scholar] [CrossRef]
- Utrabo-Carazo, E.; Azorin-Molina, C.; Aguilar, E.; Brunet, M. A spectral analysis of near-surface mean wind speed and gusts over the Iberian Peninsula. Geophys. Res. Lett. 2023, 50, e2023GL103323. [Google Scholar] [CrossRef]
- Kuramoto, Y. Chemical Oscillations, Waves, and Turbulence; Courier Dover Publications: Mineola, NY, USA, 2003. [Google Scholar]
- Kabir, M.; Stan, M. Computing with hybrid CMOS/STO circuits. In Proceedings of the 51st Annual Design Automation Conference, San Francisco, CA, USA, 1–5 June 2014; pp. 1–6. [Google Scholar]
- Pikovsky, A.; Rosenblum, M.; Kurths, J. Synchronization, a Universal Concept in Nonlinear Sciences; Cambridge University Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Hale, G.E.; Nicholson, S.B. The law of sun-spot polarity. Astrophys. J. 1925, 62, 270. [Google Scholar] [CrossRef]
- Perdigão, R.A.P. Polyadic Entropy, Synergy and Redundancy among Statistically Independent Processes in Nonlinear Statistical Physics with Microphysical Codependence. Entropy 2018, 20, 26. [Google Scholar] [CrossRef] [Green Version]
- Wrzesiński, D.; Sobkowiak, L.; Mares, I.; Dobrica, V.; Mares, C. Variability of River Runoff in Poland and Its Connection to Solar Variability. Atmosphere 2023, 14, 1184. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mares, C.; Mares, I.; Dobrica, V.; Demetrescu, C. Discriminant Analysis of the Solar Input on the Danube’s Discharge in the Lower Basin. Atmosphere 2023, 14, 1281. https://doi.org/10.3390/atmos14081281
Mares C, Mares I, Dobrica V, Demetrescu C. Discriminant Analysis of the Solar Input on the Danube’s Discharge in the Lower Basin. Atmosphere. 2023; 14(8):1281. https://doi.org/10.3390/atmos14081281
Chicago/Turabian StyleMares, Constantin, Ileana Mares, Venera Dobrica, and Crisan Demetrescu. 2023. "Discriminant Analysis of the Solar Input on the Danube’s Discharge in the Lower Basin" Atmosphere 14, no. 8: 1281. https://doi.org/10.3390/atmos14081281
APA StyleMares, C., Mares, I., Dobrica, V., & Demetrescu, C. (2023). Discriminant Analysis of the Solar Input on the Danube’s Discharge in the Lower Basin. Atmosphere, 14(8), 1281. https://doi.org/10.3390/atmos14081281