Hydrogenation of Carbon Dioxide to Methanol over Non-Noble Catalysts: A State-of-the-Art Review
Abstract
:1. Introduction
2. Thermodynamic Analysis
3. Catalyst Development of CO2 Hydrogenation to Methanol
3.1. Cu-Based Catalyst
3.1.1. Supports
3.1.2. Promoters
3.1.3. Preparation Methods
3.2. In2O3-Based Catalyst
3.2.1. Metal Promoters
3.2.2. Oxide Support
3.3. Bimetallic Catalysts
3.4. Solid Solution Catalysts
3.5. Other Catalysts
4. Mechanism Studies
4.1. The HCOO Mechanism and r-HCOO Mechanism
4.2. The RWGS + CO-Hydro Mechanism
4.3. The Trans-COOH Mechanism
5. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chauvy, R.; De Weireld, G. CO2 utilization technologies in Europe: A short review. Energy Technol. 2020, 8, 2000627. [Google Scholar] [CrossRef]
- Ye, R.-P.; Ding, J.; Gong, W.; Argyle, M.D.; Zhong, Q.; Wang, Y.; Russell, C.K.; Xu, Z.; Russell, A.G.; Li, Q.; et al. CO2 hydrogenation to high-value products via heterogeneous catalysis. Nat. Commun. 2019, 10, 5698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atsbha, T.A.; Yoon, T.; Seongho, P.; Lee, C.-J. A review on the catalytic conversion of CO2 using H2 for synthesis of CO, methanol, and hydrocarbons. J. CO2 Util. 2021, 44, 101413. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, X.; Liu, B.; Ma, Q.; Zhao, T.-S.; Zang, J. Recent advances in thermal catalytic CO2 methanation on hydrotalcite-derived catalysts. Fuel 2022, 321, 124115. [Google Scholar] [CrossRef]
- Ra, E.C.; Kim, K.Y.; Kim, E.H.; Lee, H.; An, K.; Lee, J.S. Recycling Carbon Dioxide through Catalytic Hydrogenation: Recent Key Developments and Perspectives. ACS Catal. 2020, 10, 11318–11345. [Google Scholar]
- Zhou, Z.; Gao, P. Direct carbon dioxide hydrogenation to produce bulk chemicals and liquid fuels via heterogeneous catalysis. Chin. J. Catal. 2022, 43, 2045–2056. [Google Scholar] [CrossRef]
- Zhong, J.; Yang, X.; Wu, Z.; Liang, B.; Huang, Y.; Zhang, T. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chem. Soc. Rev. 2020, 49, 1385–1413. [Google Scholar] [CrossRef] [PubMed]
- Hepburn, C.; Adlen, E.; Beddington, J.; Carter, E.A.; Fuss, S.; Dowell, N.M.; Minx, J.C.; Smith, P.; Williams, C.K. The technological and economic prospects for CO2 utilization and removal. Nature 2019, 575, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Dacosta, C.; Van Der Spek, M.; Hung, C.R.; Oregionni, G.D.; Skagestad, R.; Parihar, P.; Gokak, D.; Strømman, A.H.; Ramirez, A. Prospective techno-economic and environmental assessment of carbon capture at a refinery and CO2 utilisation in polyol synthesis. J. CO2 Util. 2017, 21, 405–422. [Google Scholar] [CrossRef]
- Sha, F.; Han, Z.; Tang, S.; Wang, J.; Li, C. Hydrogenation of Carbon Dioxide to Methanol over Non-Cu-based Heterogeneous Catalysts. ChemSusChem 2020, 13, 6160–6181. [Google Scholar]
- Du, X.L.; Jiang, Z.; Su, D.S.; Wang, J.Q. Research progress on the indirect hydrogenation of carbon dioxide to methanol. ChemSusChem 2016, 9, 322–332. [Google Scholar] [CrossRef] [PubMed]
- Studt, F.; Behrens, M.; Kunkes, E.L.; Thomas, N.; Zander, S.; Tarasov, A.; Schumann, J.; Frei, E.; Varley, J.B.; Abild-Pedersen, F. The mechanism of CO and CO2 hydrogenation to methanol over Cu-based catalysts. ChemCatChem 2015, 7, 1105–1111. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.; Li, Z.; Li, H.; Fang, Y. Integration of carbon capture with heterogeneous catalysis toward methanol production: Chemistry, challenges, and opportunities. Catal. Rev. 2023, 1–40. [Google Scholar] [CrossRef]
- Niu, J.; Liu, H.; Jin, Y.; Fan, B.; Qi, W.; Ran, J. Comprehensive review of Cu-based CO2 hydrogenation to CH3OH: Insights from experimental work and theoretical analysis. Int. J. Hydrogen Energy 2022, 15, 9183–9200. [Google Scholar]
- Guil-López, R.; Mota, N.; Llorente, J.; Millán, E.; Pawelec, B.; Fierro, J.L.G.; Navarro, R. Methanol synthesis from CO2: A review of the latest developments in heterogeneous catalysis. Materials 2019, 12, 3902. [Google Scholar] [PubMed] [Green Version]
- Kanuri, S.; Roy, S.; Chakraborty, C.; Datta, S.P.; Singh, S.; Dinda, S. An insight of CO2 hydrogenation to methanol synthesis: Thermodynamics, catalysts, operating parameters, and reaction mechanism. Int. J. Energy Res. 2022, 46, 5503–5522. [Google Scholar]
- Shen, C.; Bao, Q.; Xue, W.; Sun, K.; Zhang, Z.; Jia, X.; Mei, D.; Liu, C.-J. Synergistic effect of the metal-support interaction and interfacial oxygen vacancy for CO2 hydrogenation to methanol over Ni/In2O3 catalyst: A theoretical study. J. Energy Chem. 2022, 65, 623–629. [Google Scholar]
- Wang, J.; Li, G.; Li, Z.; Tang, C.; Feng, Z.; An, H.; Liu, H.; Liu, T.; Li, C. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol. Sci. Adv. 2017, 3, e1701290. [Google Scholar]
- Sharma, P.; Ho, P.H.; Shao, J.; Creaser, D.; Olsson, L. Role of ZrO2 and CeO2 support on the In2O3 catalyst activity for CO2 hydrogenation. Fuel 2023, 331, 125878. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, G.; Zhu, J.; Zhang, X.; Ding, F.; Zhang, A.; Guo, X.; Song, C. CO2 hydrogenation to methanol over In2O3-based catalysts: From mechanism to catalyst development. ACS Catal. 2021, 11, 1406–1423. [Google Scholar]
- Ay, S.; Ozdemir, M.; Melikoglu, M. Effects of metal promotion on the performance, catalytic activity, selectivity and deactivation rates of Cu/ZnO/Al2O3 catalysts for methanol synthesis. Chem. Eng. Res. Des. 2021, 175, 146–160. [Google Scholar]
- Natesakhawat, S.; Lekse, J.W.; Baltrus, J.P.; Ohodnicki, P.R., Jr.; Howard, B.H.; Deng, X.; Matranga, C. Active sites and structure–activity relationships of copper-based catalysts for carbon dioxide hydrogenation to methanol. ACS Catal. 2012, 2, 1667–1676. [Google Scholar]
- Ye, H.; Na, W.; Gao, W.; Wang, H. Carbon- Modified CuO/ZnO Catalyst with High Oxygen Vacancy for CO2 Hydrogenation to Methanol. Energy Technol. 2020, 8, 2000194. [Google Scholar]
- Guo, Y.; Guo, X.; Song, C.; Han, X.; Liu, H.; Zhao, Z. Capsule- Structured Copper– Zinc Catalyst for Highly Efficient Hydrogenation of Carbon Dioxide to Methanol. ChemSusChem 2019, 12, 4916–4926. [Google Scholar] [CrossRef] [PubMed]
- Kattel, S.; Yan, B.; Chen, J.G.; Liu, P. CO2 hydrogenation on Pt, Pt/SiO2 and Pt/TiO2: Importance of synergy between Pt and oxide support. J. Catal. 2016, 343, 115–126. [Google Scholar]
- Fan, L.; Fujimoto, K. Development of active and stable supported noble metal catalysts for hydrogenation of carbon dioxide to methanol. Energy Convers. Manag. 1995, 36, 633–636. [Google Scholar]
- Tawalbeh, M.; Javed, R.M.N.; Al-Othman, A.; Almomani, F. The novel contribution of non-noble metal catalysts for intensified carbon dioxide hydrogenation: Recent challenges and opportunities. Energy Convers. Manag. 2023, 279, 116755. [Google Scholar]
- Frei, M.S.; Mondelli, C.; Pérez-Ramírez, J. Development of In2O3-based catalysts for CO2-based methanol production. Chimia 2020, 74, 257–262. [Google Scholar] [CrossRef]
- Wang, J.; Sun, K.; Jia, X.; Liu, C.-J. CO2 hydrogenation to methanol over Rh/In2O3 catalyst. Catal. Today 2021, 365, 341–347. [Google Scholar] [CrossRef]
- Frei, M.S.; Mondelli, C.; Cesarini, A.; Krumeich, F.; Hauert, R.; Stewart, J.A.; Ferré, D.C.; Pérez-Ramírez, J. Role of zirconia in indium oxide-catalyzed CO2 hydrogenation to methanol. ACS Catal. 2019, 10, 1133–1145. [Google Scholar] [CrossRef]
- Liu, J.; Xue, W.; Zhang, W.; Mei, D. Theoretical Study on the Catalytic CO2 Hydrogenation over the MOF-808-Encapsulated Single-Atom Metal Catalysts. J. Phys. Chem. C 2023, 127, 4051–4062. [Google Scholar] [CrossRef]
- Tang, Q.; Shen, Z.; Huang, L.; He, T.; Adidharma, H.; Russell, A.G.; Fan, M. Synthesis of methanol from CO2 hydrogenation promoted by dissociative adsorption of hydrogen on a Ga3Ni5(221) surface. Phys. Chem. Chem. Phys. 2017, 19, 18539–18555. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yao, H.; Jiang, Z.; Fang, T. Theoretical study of methanol synthesis from CO2 hydrogenation on PdCu3(111) surface. Appl. Surf. Sci. 2018, 451, 333–345. [Google Scholar] [CrossRef]
- Ren, M.; Zhang, Y.; Wang, X.; Qiu, H. Catalytic hydrogenation of CO2 to methanol: A review. Catalysts 2022, 12, 403. [Google Scholar] [CrossRef]
- Jadhav, S.G.; Vaidya, P.D.; Bhanage, B.M.; Joshi, J.B. Catalytic carbon dioxide hydrogenation to methanol: A review of recent studies. Chem. Eng. Res. Des. 2014, 92, 2557–2567. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, H.; Gao, P.; Zhu, H.; Zhong, L.; Wang, H.; Wei, W.; Sun, Y. Preparation and CO2 hydrogenation catalytic properties of alumina microsphere supported Cu-based catalyst by deposition-precipitation method. J. CO2 Util. 2017, 17, 263–272. [Google Scholar] [CrossRef]
- Wu, J.; Saito, M.; Takeuchi, M.; Watanabe, T. The stability of Cu/ZnO-based catalysts in methanol synthesis from a CO2 rich feed and from a CO-rich feed. Appl. Catal. A Gen. 2001, 218, 235–240. [Google Scholar] [CrossRef]
- Arakawa, H. Research and development on new synthetic routes for basic chemicals by catalytic hydrogenation of CO2. Stud. Surf. Sci. Catal. 1998, 114, 19–30. [Google Scholar]
- Zachopoulos, A.; Heracleous, E. Overcoming the equilibrium barriers of CO2 hydrogenation to methanol via water sorption: A thermodynamic analysis. J. CO2 Util. 2017, 21, 360–367. [Google Scholar] [CrossRef]
- Jia, X.; Sun, K.; Wang, J.; Shen, C.; Liu, C.-J. Selective hydrogenation of CO2 to methanol over Ni/In2O3 catalyst. J. Energy Chem. 2020, 50, 409–415. [Google Scholar] [CrossRef]
- Yuan, Y.; Qi, L.; Guo, T.; Hu, X.; He, Y.; Guo, Q. A review on the development of catalysts and technologies of CO2 hydrogenation to produce methanol. Chem. Eng. Commun. 2022, 210, 1–31. [Google Scholar]
- Etim, U.J.; Song, Y.; Zhong, Z. Improving the Cu/ZnO-Based Catalysts for Carbon Dioxide Hydrogenation to Methanol, and the Use of Methanol As a Renewable Energy Storage Media. Front. Energy Res. 2020, 8, 545431. [Google Scholar] [CrossRef]
- Jiang, Q.; Liu, Y.; Dintzer, T.; Luo, J.; Parkhomenko, K.; Roger, A.-C. Tuning the highly dispersed metallic Cu species via manipulating Brønsted acid sites of mesoporous aluminosilicate support for CO2 hydrogenation reactions. Appl. Catal. B Environ. 2020, 269, 118804. [Google Scholar]
- Ma, Q.; Geng, M.; Zhang, J.; Zhang, X.; Zhao, T.-S. Enhanced Catalytic Performance for CO2 Hydrogenation to Methanol over N-doped Graphene Incorporated Cu-ZnO-Al2O3 Catalysts. ChemistrySelect 2019, 4, 78–83. [Google Scholar] [CrossRef]
- Fang, X.; Men, Y.; Wu, F.; Zhao, Q.; Singh, R.; Xiao, P.; Du, T.; Webley, P.A. Improved methanol yield and selectivity from CO2 hydrogenation using a novel Cu-ZnO-ZrO2 catalyst supported on Mg-Al layered double hydroxide (LDH). J. CO2 Util. 2019, 29, 57–64. [Google Scholar] [CrossRef]
- Kubovics, M.; Trigo, A.; Sánchez, A.; Marbán, G.; Borrás, A.; Vico, J.M.; Periago, A.M.L.; Domingo, C. Role of Graphene Oxide Aerogel Support on the CuZnO Catalytic Activity: Enhancing Methanol Selectivity in the Hydrogenation Reaction of CO2. ChemCatChem 2022, 14, e202200607. [Google Scholar]
- Duma, Z.G.; Moma, J.; Langmi, H.W.; Louis, B.; Parkhomenko, K.; Musyoka, N.M. Towards High CO2 Conversions Using Cu/Zn Catalysts Supported on Aluminum Fumarate Metal-Organic Framework for Methanol Synthesis. Catalysts 2022, 12, 1104. [Google Scholar] [CrossRef]
- Sun, X.; Jin, Y.; Cheng, Z.; Lan, G.; Wang, X.; Qiu, Y.; Wang, Y.; Liu, H.; Li, Y. Dual active sites over Cu-ZnO-ZrO2 catalysts for carbon dioxide hydrogenation to methanol. J. Environ. Sci. 2023, 131, 162–172. [Google Scholar] [CrossRef]
- Cai, W.; Chen, Q.; Wang, F.; Li, Z.; Yu, H.; Zhang, S.; Cui, L.; Li, C. Comparison of the Promoted CuZnMxOy (M: Ga, Fe) Catalysts for CO2 Hydrogenation to Methanol. Catal. Lett. 2019, 149, 2508–2518. [Google Scholar] [CrossRef]
- Prašnikar, A.; Dasireddy, V.D.B.C.; Likozar, B. Scalable combustion synthesis of copper-based perovskite catalysts for CO2 reduction to methanol: Reaction structure-activity relationships, kinetics, and stability. Chem. Eng. Sci. 2022, 250, 117423. [Google Scholar]
- Han, X.; Li, M.; Chang, X.; Hao, Z.; Chen, J.; Pan, Y.; Kawi, S.; Ma, X. Hollow structuredCu@ZrO2 derived from Zr-MOF for selective hydrogenation of CO2 to methanol. J. Energy Chem. 2022, 71, 277–287. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, X.; Wu, C.; Hang, W.; Hu, X.; Qiao, D.; Yan, B. Engineering Cu+/CeZrO interfaces to promote CO2 hydrogenation to methanol. J. Energy Chem. 2023, 77, 45–53. [Google Scholar] [CrossRef]
- Li, J.; Du, T.; Li, Y.; Jia, H.; Wang, Y.; Song, Y.; Fang, X. Novel layered triple hydroxide sphere CO2 adsorbent supported copper nanocluster catalyst for efficient methanol synthesis via CO2 hydrogenation. J. Catal. 2022, 409, 24–32. [Google Scholar] [CrossRef]
- Fang, X.; Xi, Y.; Jia, H.; Chen, C.; Wang, Y.; Song, Y.; Du, T. Tetragonal zirconia based ternary ZnO-ZrO2-MOX solid solution catalysts for highly selective conversion of CO2 to methanol at High reaction temperature. J. Ind. Eng. Chem. 2021, 35, 8558–8584. [Google Scholar]
- Ipatieff, V.N.; Monroe, G.S. Synthesis of Methanol from Carbon Dioxide and Hydrogen over Copper-Alumina Catalysts. Mechanism of Reaction. J. Am. Chem. Soc. 1945, 67, 2168–2171. [Google Scholar] [CrossRef]
- Li, M.M.J.; Chen, C.; Ayvalı, T.; Suo, H.; Zheng, J.; Teixeira, I.F.; Ye, L.; Zou, H.; O’Hare, D.; Tsang, S.C.E. CO2 Hydrogenation to Methanol over Catalysts Derived from Single Cationic Layer CuZnGa LDH Precursors. ACS Catal. 2018, 8, 4390–4401. [Google Scholar] [CrossRef]
- Lo, I.C.; Wu, H.-S. Methanol formation from carbon dioxide hydrogenation using Cu/ZnO/Al2O3 catalyst. J. Taiwan Inst. Chem. Eng. 2019, 98, 124–131. [Google Scholar] [CrossRef]
- Lu, P.; Chizema, L.G.; Hondo, E.; Tong, M.; Xing, C.; Lu, C.; Mei, Y.; Yang, R. CO2 Hydrogenation to Methanol via In- situ Reduced Cu/ZnO Catalyst Prepared by Formic acid Assisted Grinding. ChemistrySelect 2019, 4, 5667–5677. [Google Scholar] [CrossRef]
- Du, S.; Tang, W.; Lu, X.; Wang, S.; Guo, Y.; Gao, P.X. Cu- Decorated ZnO Nanorod Array Integrated Structured Catalysts for Low- Pressure CO2 Hydrogenation to Methanol. Adv. Mater. Interfaces 2017, 5, 1700730. [Google Scholar] [CrossRef]
- Prachumsai, W.; Pangtaisong, S.; Assabumrungrat, S.; Bunruam, P.; Nakvachiratrakul, C.; Saebea, D.; Praserthdam, P.; Soisuwan, S. Carbon dioxide reduction to synthetic fuel on zirconia supported copper-based catalysts and gibbs free energy minimization: Methanol and dimethyl ether synthesis. J. Environ. Chem. Eng. 2021, 9, 104979. [Google Scholar]
- Hamryszak, L.; Madej-Lachowska, M.; Grzesik, M.; Kocot, K.; Ruggiero-Mikolajczyk, M. Effect of addition of Ce, Cr or/and Ga to a Cu/Zn/Zr catalyst on the methanol synthesis from carbon dioxide and hydrogen. Przem. Chem. 2019, 98, 133–137. [Google Scholar]
- Wang, G.; Mao, D.; Guo, X.; Yu, J. Methanol synthesis from CO2 hydrogenation over CuO-ZnO-ZrO2-MxOy catalysts (M = Cr, Mo and W). Int. J. Hydrogen Energy 2019, 44, 4197–4207. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, Z.; Liu, X.; Hua, K.; Shao, Z.; Wei, B.; Huang, C.; Wang, H.; Sun, Y. A Short Review of Recent Advances in Direct CO2 Hydrogenation to Alcohols. Top. Catal. 2021, 64, 371–394. [Google Scholar]
- Shawabkeh, R.A.; Faqir, N.M.; Rawajfeh, K.M.; Hussein, I.A.; Hamza, A. Adsorption of CO2 on Cu/SiO2 nano-catalyst: Experimental and theoretical study. Appl. Surf. Sci. 2022, 586, 152726. [Google Scholar]
- Cruz-Navarro, D.S.; Torres-Rodríguez, M.; Gutiérrez-Arzaluz, M.; Mugica-Álvarez, V.; Pergher, S.B. Comparative Study of Cu/ZSM-5 Catalysts Synthesized by Two Ion-Exchange Methods. Crystals 2022, 12, 1104. [Google Scholar]
- Biswal, T.; Shadangi, K.P.; Sarangi, P.K.; Srivastava, R.K. Conversion of carbon dioxide to methanol: A comprehensive review. Chemosphere 2022, 298, 134299. [Google Scholar] [CrossRef]
- Cored, J.; Lopes, C.W.; Liu, L.; Soriano, J.; Agostini, G.; Solsona, B.; Sánchez-Tovar, R.; Concepción, P. Cu-Ga3+-doped wurtzite ZnO interface as driving force for enhanced methanol production in co-precipitated Cu/ZnO/Ga2O3 catalysts. J. Catal. 2022, 407, 149–161. [Google Scholar] [CrossRef]
- Sang, G.; Ran, J.; Huang, X.; Ou, Z.; Tang, L. Understanding the role of Ga on the activation mechanism of CO2 over modified Cu surface by DFT calculation. Mol. Catal. 2022, 528, 112477. [Google Scholar] [CrossRef]
- L’hospital, V.; Angelo, L.; Zimmermann, Y.; Parkhomenko, K.; Roger, A.-C. Influence of the Zn/Zr ratio in the support of a copper-based catalyst for the synthesis of methanol from CO2. Catal. Today 2021, 369, 95–104. [Google Scholar] [CrossRef]
- Guo, H.; Li, Q.; Zhang, H.; Peng, F.; Xiong, L.; Yao, S.; Huang, C.; Chen, X. CO2 hydrogenation over acid-activated Attapulgite/Ce0.75Zr0.25O2 nanocomposite supported Cu-ZnO based catalysts. Mol. Catal. 2019, 476, 110499. [Google Scholar] [CrossRef]
- Koh, M.K.; Wong, Y.J.; Mohamed, A.R. Effect of synthesis method on the ultimate properties of copper-based catalysts supported on KIT-6 for direct CO2 hydrogenation to methanol. Mater. Today Chem. 2021, 21, 100489. [Google Scholar] [CrossRef]
- Paris, C.; Karelovic, A.; Manrique, R.; Le Bras, S.; Devred, F.; Vykoukal, V.; Styskalik, A.; Eloy, P.; Debecker, D.P. CO2 Hydrogenation to Methanol with Ga- and Zn-Doped Mesoporous Cu/SiO2 Catalysts Prepared by the Aerosol-Assisted Sol-Gel Process. ChemSusChem 2020, 13, 6409–6417. [Google Scholar]
- Xiao, J.; Mao, D.; Wang, G.; Guo, X.; Yu, J. CO2 hydrogenation to methanol over CuOZnOTiO2ZrO2 catalyst prepared by a facile solid-state route: The significant influence of assistant complexing agents. Int. J. Hydrogen Energy 2019, 44, 14831–14841. [Google Scholar] [CrossRef]
- Choi, H.; Oh, S.; Tran, S.B.T.; Park, J.Y. Size-controlled model Ni catalysts on Ga2O3 for CO2 hydrogenation to methanol. J. Catal. 2019, 376, 68–76. [Google Scholar] [CrossRef]
- Ouyang, L.; Noël, V.; Courty, A.; Campagne, J.-M.; Ouali, A.; Vrancken, E. Copper Nanoparticles with a Tunable Size: Implications for Plasmonic Catalysis. ACS Appl. Nano Mater. 2022, 5, 2839–2847. [Google Scholar] [CrossRef]
- Ali, S.; Kumar, D.; Mondal, K.C.; El-Naas, M.H. Development of highly active Cu-based CO2 hydrogenation catalysts by solution combustion synthesis (SCS): Effects of synthesis variables. Catal. Commun. 2022, 172, 106543. [Google Scholar]
- Wang, S.; Song, L.; Qu, Z. Cu/ZnAl2O4 catalysts prepared by ammonia evaporation method: Improving methanol selectivity in CO2 hydrogenation via regulation of metal-support interaction. Chem. Eng. J. 2023, 469, 144008. [Google Scholar]
- Murthy, P.S.; Liang, W.; Jiang, Y.; Huang, J. Cu-based nanocatalysts for CO2 hydrogenation to methanol. Energy 2021, 35, 8558–8584. [Google Scholar] [CrossRef]
- Zafar, F.; Zhao, R.; Ali, M.; Park, Y.M.; Roh, Y.-S.; Gao, X.; Tian, J.; Bae, J.W. Unprecedented contributions of In2O3 promoter on ordered mesoporous Cu/Al2O3 for CO2 hydrogenation to oxygenates. Chem. Eng. J. 2022, 439, 135649. [Google Scholar] [CrossRef]
- Tian, G.; Wu, Y.; Wu, S.; Huang, S.; Gao, J. Solid-State Synthesis of Pd/In2O3 Catalysts for CO2 Hydrogenation to Methanol. Catal. Lett. 2023, 153, 903–910. [Google Scholar] [CrossRef]
- Rui, N.; Wang, Z.; Sun, K.; Ye, J.; Ge, Q.; Liu, C. CO2 hydrogenation to methanol over Pd/In2O3: Effects of Pd and oxygen vacancy. Appl. Catal. B Environ. 2017, 218, 488–497. [Google Scholar] [CrossRef]
- Sun, K.; Rui, N.; Zhang, Z.; Sun, Z.; Ge, Q.; Liu, C.-J. A highly active Pt/In2O3 catalyst for CO2 hydrogenation to methanol with enhanced stability. Green Chem. 2020, 22, 5059–5066. [Google Scholar] [CrossRef]
- Rui, N.; Zhang, F.; Sun, K.; Liu, Z.; Xu, W.; Stavitski, E.; Senanayake, S.D.; Rodriguez, J.A.; Liu, C.-J. Hydrogenation of CO2 to Methanol on a Auδ+–In2O3-x Catalyst. ACS Catal. 2020, 10, 11307–11317. [Google Scholar] [CrossRef]
- Sun, K.; Zhang, Z.; Shen, C.; Rui, N.; Liu, C.-J. The feasibility study of the indium oxide supported silver catalyst for selective hydrogenation of CO2 to methanol. Green Energy Environ. 2022, 7, 807–817. [Google Scholar] [CrossRef]
- Zhu, J.; Cannizzaro, F.; Liu, L.; Zhang, H.; Kosinov, N.; Filot, I.A.W.; Rabeah, J.; Brückner, A.; Hensen, E.J.M. Ni−In Synergy in CO2 Hydrogenation to Methanol. ACS Catal. 2021, 11, 11371–11384. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Su, W.; Kong, L.; Wang, J.; Lv, P.; Hao, J.; Gao, X.; Yu, G. The homojunction formed by h-In2O3(110) and c-In2O3(440) promotes carbon dioxide hydrogenation to methanol on graphene oxide modified In2O3. J. Colloid Interface Sci. 2022, 623, 1048–1062. [Google Scholar] [CrossRef]
- Wu, Q.; Shen, C.; Rui, N.; Sun, K.; Liu, C.-J. Experimental and theoretical studies of CO2 hydrogenation to methanol on Ru/In2O3. J. CO2 Util. 2021, 53, 101720. [Google Scholar] [CrossRef]
- Shen, C.; Sun, K.; Zhang, Z.; Rui, N.; Jia, X.; Mei, D.; Liu, C. Highly active Ir/In2O3 catalysts for selective hydrogenation of CO2 to methanol: Experimental and theoretical studies. ACS Catal. 2021, 11, 4036–4046. [Google Scholar] [CrossRef]
- Sun, K.; Shen, C.; Zou, R.; Liu, C. Highly active Pt/In2O3-ZrO2 catalyst for CO2 hydrogenation to methanol with enhanced CO tolerance: The effects of ZrO2. Appl. Catal. B Environ. 2023, 320, 122018. [Google Scholar] [CrossRef]
- Li, W.; Huang, H.; Li, H.; Zhang, W.; Liu, H. Facile synthesis of pure monoclinic and tetragonal zirconia nanoparticles and their phase effects on the behavior of supported molybdena catalysts for methanol-selective oxidation. Langmuir 2008, 24, 8358–8366. [Google Scholar] [CrossRef]
- Xu, Y.M.; Ding, Z.L.; Qiu, R.; Hou, R.J. Effect of support and reduction temperature in the hydrogenation of CO2 over the Cu-Pd bimetallic catalyst with high Cu/Pd ratio. Int. J. Hydrogen Energy 2022, 47, 27973–27985. [Google Scholar] [CrossRef]
- Lin, F.W.; Jiang, X.; Boreriboon, N.; Song, C.S.; Wang, Z.H.; Cen, K.F. CO2 hydrogenation to methanol over bimetallic Pd-Cu catalysts supported on TiO2-CeO2 and TiO2-ZrO2. Catal. Today 2021, 371, 150–161. [Google Scholar] [CrossRef]
- Han, C.Y.; Zhang, H.T.; Li, C.M.; Huang, H.; Wang, S.; Wang, P.; Li, J.P. The regulation of Cu-ZnO interface by Cu-Zn bimetallic metal organic framework-templated strategy for enhanced CO2 hydrogenation to methanol. Appl. Catal. A Gen. 2022, 643, 118805. [Google Scholar] [CrossRef]
- Yu, J.; Chen, G.Q.; Guo, Q.S.; Guo, X.M.; Da Costa, P.; Mao, D.S. Ultrasmall bimetallic Cu/ZnOX nanoparticles encapsulated in UiO-66 by deposition-precipitation method for CO2 hydrogenation to methanol. Fuel 2022, 324, 124694. [Google Scholar] [CrossRef]
- Wang, C.R.; Fang, Y.H.; Liang, G.F.; Lv, X.Y.; Duan, H.M.; Li, Y.D.; Chen, D.F.; Long, M.J. Mechanistic study of Cu-Ni bimetallic catalysts supported by graphene derivatives for hydrogenation of CO2 to methanol. J. CO2 Util. 2021, 49, 101542. [Google Scholar] [CrossRef]
- Shi, Z.S.; Pan, M.; Wei, X.L.; Wu, D.F. Cu-In intermetallic compounds as highly active catalysts for CH3OH formation from CO2 hydrogenation. Int. J. Energy Res. 2022, 46, 1285–1298. [Google Scholar] [CrossRef]
- Studt, F.; Sharafutdinov, I.; Abild-Pedersen, F.; Elkjaer, C.F.; Hummelshoj, J.S.; Dahl, S.; Chorkendorff, I.; Norskov, J.K. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat. Chem. 2014, 6, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Rasteiro, L.F.; De Sousa, R.A.; Vieira, L.H.; Ocampo-Restrepo, V.K.; Verga, L.G.; Assaf, J.M.; Da Silva, J.L.F.; Assaf, E.M. Insights into the alloy-support synergistic effects for the CO2 hydrogenation towards methanol on oxide-supported Ni5Ga3 catalysts: An experimental and DFT study. Appl. Catal. B Environ. 2022, 302, 120842. [Google Scholar]
- Duyar, M.S.; Gallo, A.; Snider, J.L.; Jaramillo, T.F. Low-pressure methanol synthesis from CO2 over metal-promoted Ni-Ga intermetallic catalysts. J. CO2 Util. 2020, 39, 101151. [Google Scholar] [CrossRef]
- Ojelade, O.A.; Zaman, S.F.; Daous, M.A.; Al-Zahrani, A.A.; Malik, A.S.; Driss, H.; Shterk, G.; Gascon, J. Optimizing Pd:Zn molar ratio in PdZn/CeO2 for CO2 hydrogenation to methanol. Appl. Catal. A Gen. 2019, 584, 117185. [Google Scholar] [CrossRef]
- Yin, Y.; Hu, B.; Li, X.; Zhou, X.; Hong, X.; Liu, G. Pd@zeolitic imidazolate framework-8 derived PdZn alloy catalysts for efficient hydrogenation of CO2 to methanol. Appl. Catal. B Environ. 2018, 234, 143–152. [Google Scholar] [CrossRef]
- Snider, L.; Streibel, V.; Hubert, M.A.; Choksi, T.S.; Valle, E.; Upham, D.C.; Schumann, J.; Duyar, M.S.; Gallo, A.; Abild-Pedersen, F.; et al. Revealing the Synergy between Oxidend Alloy Phases on the Performance of Bimetallic In–Pd Catalysts for CO2 Hydrogenation to Methanol. ACS Catal. 2019, 9, 3399–3412. [Google Scholar] [CrossRef]
- Cai, Z.J.; Huang, M.; Dai, J.J.; Zhan, G.W.; Sun, F.L.; Zhuang, G.L.; Wang, Y.Y.; Tian, P.; Chen, B.; Ullah, S.; et al. Fabrication of Pd/In2O3 Nanocatalysts Derived from MIL-8(In) Loaded with Molecular Metalloporphyrin (TCPP(Pd)) Toward CO2 Hydrogenation to Methanol. ACS Catal. 2022, 12, 709–723. [Google Scholar] [CrossRef]
- Collins, S.E.; Baltanas, M.A.; Delgado, J.J.; Borgna, A.; Bonivardi, A.L. CO2 hydrogenationo methanol on Ga2O3-Pd/SiO2 catalysts: Dual oxide-metal sites or (bi)metallic surface sites. Catal. Today 2021, 381, 154–162. [Google Scholar] [CrossRef]
- Li, M.M.; Zou, H.; Zheng, J.; Wu, T.S.; Chan, T.S.; Soo, Y.L.; Wu, X.P.; Gong, X.Q.; Chen, T.; Roy, K.; et al. Methanol Synthesis at a Wide Range of H2/CO2 Ratios over a Rh-In Bimetallic Catalyst. Angew. Chem Int Edit. 2020, 59, 16039–16046. [Google Scholar] [CrossRef]
- Geng, F.Y.; Zhan, X.; Hicks, J.C. Promoting Methanol Synthesis and Inhibiting CO2 Methanation with Bimetallic In-Ru Catalysts. ACS Sustain. Chem. Eng. 2021, 9, 11891–11902. [Google Scholar] [CrossRef]
- Sha, F.; Tang, C.Z.; Tang, S.; Wang, Q.N.; Han, Z.; Wang, J.J.; Li, C. The promoting role of Gan ZnZrOx solid solution catalyst for CO2 hydrogenation to methanol. J. Catal. 2021, 04, 383–392. [Google Scholar] [CrossRef]
- Han, Z.; Tang, C.; Sha, F.; Tang, S.; Wang, J. CO2 hydrogenation to methanol on ZnO-ZrO2 solid solution catalysts with ordered mesoporous structure. J. Catal. 2021, 396, 242–250. [Google Scholar] [CrossRef]
- Tada, S.; Ochiai, N.; Kinoshita, H.; Yoshida, M.; Shimada, N.; Joutsuka, T.; Nishijima, M.; Honma, T.; Kobayashi, Y.; Iyoki, K. Active Sites on ZnXZr1-XO2-X Solid Solution Catalysts or CO2-to-Methanol Hydrogenation. ACS Catal. 2022, 12, 7748–7759. [Google Scholar] [CrossRef]
- Ding, Q.; Li, Z.R.; Xiong, W.; Zhang, Y.S.; Ye, A.A.I.; Huang, W.X. Structural evolution and catalytic performance in CO2 hydrogenation reaction of ZnO-ZrO2 composite oxides. Appl. Surf. Sci. 2022, 587, 152884. [Google Scholar] [CrossRef]
- Wang, Y.D.; Yu, H.R.; Hu, Q.; Huang, Y.P.; Wang, X.M.; Wang, Y.H.; Wang, F.H. Application of microimpinging stream reactor coupled with ultrasound in Cu/CeZrOx solid solution catalyst reparation for CO2 hydrogenation to methanol. Renew Energy 2023, 202, 834–843. [Google Scholar] [CrossRef]
- Shi, Z.S.; Tan, Q.Q.; Wu, D.F. Ternary copper-cerium-zirconium mixed metal oxide catalyst or direct CO2 hydrogenation to methanol. Mater. Chem. Phys. 2018, 219, 263–272. [Google Scholar] [CrossRef]
- Ban, H.; Li, C.; Asami, K.; Fujimoto, K. Influence of rare-earth elements (La, Ce, Nd and Pr) n the performance of Cu/Zn/Zr catalyst for CH3OH synthesis from CO2. Catal. Commun. 2014, 4, 50–54. [Google Scholar] [CrossRef]
- Wang, G.N.; Chen, L.M.; Sun, Y.H.; Wu, J.L.; Fu, M.L.; Ye, D.Q. Carbon dioxide ydrogenation to methanol over Cu/ZrO2/CNTs: Effect of carbon surface chemistry. RSC Adv. 2015, 5, 45320–45330. [Google Scholar] [CrossRef]
- Zhang, Y.H.; He, Y.M.; Cao, M.Y.; Liu, B.; Li, J.L. High selective methanol synthesis from CO2 hydrogenation over Mo-Co-C-N catalyst. Fuel 2022, 325, 124854. [Google Scholar] [CrossRef]
- Song, I.; Park, C.; Choi, H.C. Synthesis and properties of molybdenum disulphide: From bulk o atomic layers. RSC Adv. 2015, 5, 7495–7514. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.H.; Zeng, H.C. Boxlike Assemblages of Few-Layer MoS2 Nanosheets with Edge Blockage for High-Efficiency Hydrogenation of CO2 to Methanol. ACS Catal. 2022, 12, 9873–9886. [Google Scholar] [CrossRef]
- Wang, J.J.; Meeprasert, J.; Han, Z.; Wang, H.; Feng, Z.D.; Tang, C.Z.; Sha, F.; Tang, S.; Li, G.N.; Pidko, E.A.; et al. Highly dispersed Cd cluster supported on TiO2 as an efficient catalyst for CO2 hydrogenation to methanol. Chin. J. Catal. 2022, 43, 761–770. [Google Scholar] [CrossRef]
- Li, Y.; Chan, S.H.; Sun, Q. Heterogeneous catalytic conversion of CO2: A comprehensive theoretical review. Nanoscale 2015, 7, 8663–8683. [Google Scholar] [CrossRef]
- Yang, Y.; Evans, J.; Rodriguez, J.A.; White, M.G.; Liu, P. Fundamental studies of methanol synthesis from CO2 hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(0001). Phys. Chem. Chem. Phys. 2010, 12, 9909–9917. [Google Scholar] [CrossRef]
- Du, J.; Zong, L.; Zhang, S.; Gao, Y.; Dou, L.; Pan, J.; Shao, T. Numerical investigation on the heterogeneous pulsed dielectric barrier discharge plasma catalysis for CO2 hydrogenation at atmospheric pressure: Effects of Ni and Cu catalysts on the selectivity conversions to CH4 and CH3OH. Plasma Process. Polym. 2021, 19, 2100111. [Google Scholar] [CrossRef]
- Hu, Z.-M.; Takahashi, K.; Nakatsuji, H. Mechanism of the hydrogenation of CO2 to methanol on a Cu(100) surface-dipped adcluster model study. Surf. Sci. 1999, 442, 90–106. [Google Scholar] [CrossRef]
- Dang, S.; Yang, H.; Gao, P.; Wang, H.; Li, X.; Wei, W.; Sun, Y. A review of research progress on heterogeneous catalysts for methanol synthesis from carbon dioxide hydrogenation. Catal. Today 2019, 330, 61–75. [Google Scholar] [CrossRef]
- Song, L.; Wang, H.; Wang, S.; Qu, Z. Dual-site activation of H2 over Cu/ZnAl2O4 boosting CO2 hydrogenation to methanol. Appl. Catal. B Environ. 2023, 322, 122137. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, M.; Zhang, X.; Gao, Y.; Liu, J.; Zhang, X.; Gong, C.; Cao, X.; Ju, Z.; Peng, Y. Density Functional Theory Study of CO2 Hydrogenation on Transition-Metal-Doped Cu(211) Surfaces. Molecules 2023, 28, 2852. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Hua, B.; Wang, L.-C.; Zhou, Z.; Stowers, K.J.; Ding, D. Discovery of single-atom alloy catalysts for CO2-to-methanol reaction by density functional theory calculations. Catal. Today 2022, 388–389, 403–409. [Google Scholar] [CrossRef]
- Liu, L.; Wang, X.; Lu, S.; Li, J.; Zhang, H.; Su, X.; Xue, F.; Cao, B.; Fang, T. Mechanism of CO2 hydrogenation over a Zr1–Cu single-atom catalyst. New J. Chem. 2022, 46, 5043–5051. [Google Scholar] [CrossRef]
- Xie, G.; Jin, R.; Ren, P.; Fang, Y.; Zhang, R. Boosting CO2 hydrogenation to methanol by adding trace amount of Au into Cu/ZnO catalysts. Appl. Catal. B Environ. 2023, 324, 122233. [Google Scholar] [CrossRef]
- Grabow, L.C.; Mavrikakis, M. Mechanism of Methanol Synthesis on Cu through CO2 and CO Hydrogenation. ACS Catal. 2011, 1, 365–384. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, X.; Ke, Q. Mechanism of CO2 hydrogenation to methanol on the W-doped Rh(111) surface unveiled by first-principles calculation. Colloids Surf. A Physicochem. Eng. Asp. 2022, 638, 128332. [Google Scholar] [CrossRef]
- Feng, Z.; Tang, C.; Zhang, P.; Li, K.; Li, G.; Wang, J.; Feng, Z.; Li, C. Asymmetric Sites on the ZnZrOx Catalyst for Promoting Formate Formation and Transformation in CO2 Hydrogenation. J. Am. Chem. Soc. 2023, 145, 12663–12672. [Google Scholar] [CrossRef] [PubMed]
- Rasteiro, L.F.; Rossi, M.A.L.S.; Assaf, J.M.; Assaf, E.M. Low-pressure hydrogenation of CO2 to methanol over Ni-Ga alloys synthesized by a surfactant-assisted co-precipitation method and a proposed mechanism by DRIFTS analysis. Catal. Today 2021, 381, 261–271. [Google Scholar] [CrossRef]
- Yang, Y.; White, M.G.; Liu, P. Theoretical Study of Methanol Synthesis from CO2 Hydrogenation on Metal-Doped Cu(111) Surfaces. J. Phys. Chem. C 2011, 116, 248–256. [Google Scholar] [CrossRef]
- Liu, J.; Ke, Q.; Chen, X. First-principles investigation of methanol synthesis from CO2 hydrogenation on Cu@Pd core–shell surface. J. Mater. Sci. 2020, 56, 3790–3803. [Google Scholar] [CrossRef]
- Ou, Z.; Ran, J.; Niu, J.; Qin, C.; He, W.; Yang, L. A density functional theory study of CO2 hydrogenation to methanol over Pd/TiO2 catalyst: The role of interfacial site. Int. J. Hydrogen Energy 2020, 45, 6328–6340. [Google Scholar] [CrossRef]
- Yu, J.; Yang, M.; Zhang, J.; Ge, Q.; Zimina, A.; Pruessmann, T.; Zheng, L.; Grunwaldt, J.-D.; Sun, J. Stabilizing Cu+ in Cu/SiO2 Catalysts with a Shattuckite-Like Structure Boosts CO2 Hydrogenation into Methanol. ACS Catal. 2020, 10, 14694–14706. [Google Scholar] [CrossRef]
- Zhao, Y.-F.; Yang, Y.; Mims, C.; Peden, C.H.F.; Li, J.; Mei, D. Insight into methanol synthesis from CO2 hydrogenation on Cu(111): Complex reaction network and the effects of H2O. J. Catal. 2011, 281, 199–211. [Google Scholar]
- Yang, Y.; Mims, C.A.; Disselkamp, R.S.; Kwak, J.H.; Peden, C.H.F.; Campbell, C.T. (Non) formation of methanol by direct hydrogenation of formate on copper catalysts. J. Phys. Chem. C 2010, 114, 17205–17211. [Google Scholar] [CrossRef]
Catalyst | T (°C) | P (MPa) | Space Velocity a | H2/CO2 Ratio | Conv. (%) | Sel. (%) | STY c | Ref. |
---|---|---|---|---|---|---|---|---|
CuO/ZnO-400 | 260 | 3 | (G) 12,000 | 3 | 18.5 | 41.7 | 0.3 | [24] |
CZA-r@CZM | 240 | 3 | (G) 32,000 | 3 | 11.7 | 73.0 | 0.730 | [25] |
CZZ@Al-TUD-1 | 280 | 2 | (G) 10,000 | 3 | 10 | 20.3 | 0.180 | [43] |
10NG-CZA | 200 | 3 | N.A. | 3 | 8.2 | 84 | N.A. | [44] |
aCZZ-LDH | 250 | 3 | (G) 2000 | 3 | 4.9 | 78.3 | 0.037 | [45] |
CuZnO@rGO | 260 | 1 | 20,000 b | 3 | N.A. | ~100 | 0.007 | [46] |
15Cu/6.4ZnO/AlFum MOF | 230 | 5 | (G) 10,000 | 3 | 45.6 | 3.48 | 0.057 | [47] |
CuZn10Zr | 220 | 3 | (W) 6000 | 3 | 14.0 | 54.4 | 0.65 | [48] |
30Cu-ZZ66/34 | 280 | 5 | (G) 25,000 | N.A. | 19.6 | 50 | 0.725 | [49] |
CuZnGa | 270 | 3 | N.A. | 3 | 15.9 | N.A. | 0.136 | [50] |
Cu5Sr3Ti2OX | 220 | 2 | (G) 12,000 | 3 | 1.7 | 62.8 | N.A. | [51] |
CM-300 | 220 | 3 | (W) 15,600 | 3 | 5.0 | 85 | 0.144 | [52] |
Cu0.3Ce0.3Zr0.7 | 240 | 3 | N.A. | 3 | 4.1 | 55.3 | 0.192 | [53] |
Cu3/LTH | 250 | 3 | (G) 3000 | 3 | 23.0 | 73.6 | 0.145 | [54] |
3Mg-C-ZZ SSC | 320 | 3 | (G) 2000 | 3 | 12.9 | 81.5 | N.A. | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Chen, X.; Deng, C.; Hu, K.; Gao, R.; Zhang, L.; Wang, L.; Zhang, C. Hydrogenation of Carbon Dioxide to Methanol over Non-Noble Catalysts: A State-of-the-Art Review. Atmosphere 2023, 14, 1208. https://doi.org/10.3390/atmos14081208
Xu L, Chen X, Deng C, Hu K, Gao R, Zhang L, Wang L, Zhang C. Hydrogenation of Carbon Dioxide to Methanol over Non-Noble Catalysts: A State-of-the-Art Review. Atmosphere. 2023; 14(8):1208. https://doi.org/10.3390/atmos14081208
Chicago/Turabian StyleXu, Lujing, Xixi Chen, Chao Deng, Kehao Hu, Ruxing Gao, Leiyu Zhang, Lei Wang, and Chundong Zhang. 2023. "Hydrogenation of Carbon Dioxide to Methanol over Non-Noble Catalysts: A State-of-the-Art Review" Atmosphere 14, no. 8: 1208. https://doi.org/10.3390/atmos14081208
APA StyleXu, L., Chen, X., Deng, C., Hu, K., Gao, R., Zhang, L., Wang, L., & Zhang, C. (2023). Hydrogenation of Carbon Dioxide to Methanol over Non-Noble Catalysts: A State-of-the-Art Review. Atmosphere, 14(8), 1208. https://doi.org/10.3390/atmos14081208