Mesospheric Ozone Depletion Depending on Different Levels of Geomagnetic Disturbances and Seasons
Abstract
:1. Introduction
2. Materials and Methods
2.1. Energetic Electron Presipitation during Geomagnetic Disturbances
2.2. One-Dimensional Radiative-Convective Photochemical Model with Ion Chemistry
2.3. Superposed Epoch Analysis
2.4. Seasonal Partition Description
3. Results
3.1. EEP Ozone Depletion and Geomagnetic Disturbances
3.2. EEP Ozone Depletion and Seasons
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mironova, I.A.; Aplin, K.L.; Arnold, F.; Bazilevskaya, G.A.; Harrison, R.G.; Krivolutsky, A.A.; Nicoll, K.A.; Rozanov, E.V.; Turunen, E.; Usoskin, I.G. Energetic Particle Influence on the Earth’s Atmosphere. Space Sci. Rev. 2015, 194, 1–96. [Google Scholar] [CrossRef] [Green Version]
- Artamonov, A.; Mironova, I.; Kovaltsov, G.; Mishev, A.; Plotnikov, E.; Konstantinova, N. Calculation of atmospheric ionization induced by relativistic electrons with non-vertical precipitation: Update of model CRAC:EPII. Adv. Space Res. 2017, 59, 2295–2300. [Google Scholar] [CrossRef] [Green Version]
- Porter, H.S.; Jackman, C.H.; Green, A.E.S. Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air. J. Chem. Phys. 1976, 65, 154–167. [Google Scholar] [CrossRef]
- Sinnhuber, M.; Nieder, H.; Wieters, N. Energetic Particle Precipitation and the Chemistry of the Mesosphere/Lower Thermosphere. Surv. Geophys. 2012, 33, 1281–1334. [Google Scholar] [CrossRef]
- Mironova, I.; Karagodin-Doyennel, A.; Rozanov, E. The effect of Forbush decreases on the polar-night HOx concentration affecting stratospheric ozone. Front. Earth Sci. 2021, 8, 669. [Google Scholar] [CrossRef]
- Solomon, S.; Rusch, D.W.; Gerard, J.C.; Reid, G.C.; Crutzen, P.J. The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere: II. Odd hydrogen. Planet. Space Sci 1981, 29, 885–893. [Google Scholar] [CrossRef]
- Barth, C.A. Nitric oxide in the lower thermosphere. Planet. Space Sci. 1992, 40, 315–336. [Google Scholar] [CrossRef]
- Brasseur, G.P.; Solomon, S. Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Rozanov, E.; Calisto, M.; Egorova, T.; Peter, T.; Schmutz, W. Influence of the Precipitating Energetic Particles on Atmospheric Chemistry and Climate. Surv. Geophys. 2012, 33, 483–501. [Google Scholar] [CrossRef] [Green Version]
- Andersson, M.E.; Verronen, P.T.; Rodger, C.J.; Clilverd, M.A.; Seppälä, A. Missing driver in the Sun–Earth connection from energetic electron precipitation impacts mesospheric ozone. Nat. Commun. 2014, 5, 5197. [Google Scholar] [CrossRef] [Green Version]
- Mironova, I.; Sinnhuber, M.; Bazilevskaya, G.; Clilverd, M.; Funke, B.; Makhmutov, V.; Rozanov, E.; Santee, M.L.; Sukhodolov, T.; Ulich, T. Exceptional middle latitude electron precipitation detected by balloon observations: Implications for atmospheric composition. Atmos. Chem. Phys. 2022, 22, 6703–6716. [Google Scholar] [CrossRef]
- Grankin, D.; Mironova, I.; Bazilevskaya, G.; Rozanov, E.; Egorova, T. Atmospheric Response to EEP during Geomagnetic Disturbances. Atmosphere 2023, 14, 273. [Google Scholar] [CrossRef]
- Verronen, P.T.; Lehmann, R. Enhancement of odd nitrogen modifies mesospheric ozone chemistry during polar winter. Geophys. Res. Lett. 2015, 42, 10445–10452. [Google Scholar] [CrossRef] [Green Version]
- Jackman, C.H.; Marsh, D.R.; Vitt, F.M.; Roble, R.G.; Randall, C.E.; Bernath, P.F.; Funke, B.; López-Puertas, M.; Versick, S.; Stiller, G.P.; et al. Northern Hemisphere atmospheric influence of the solar proton events and ground level enhancement in January 2005. Atmos. Chem. Phys. 2011, 11, 6153–6166. [Google Scholar] [CrossRef] [Green Version]
- Seppälä, A.; Verronen, P.T.; Sofieva, V.F.; Tamminen, J.; Kyrölä, E.; Rodger, C.J.; Clilverd, M.A. Destruction of the tertiary ozone maximum during a solar proton event. Geophys. Res. Lett. 2006, 33, L07804. [Google Scholar] [CrossRef] [Green Version]
- Ondrášková, A.; Krivolutsky, A.; Kukoleva, A.; Vyushkova, T.; Kuminov, A.; Zakharov, G. Response of the lower ionosphere to solar proton event on July 14, 2000. Model simulations over both poles. J. Atmos. -Sol.-Terr. Phys. 2008, 70, 539–545. [Google Scholar] [CrossRef]
- Krivolutsky, A.A.; V’yushkova, T.Y.; Cherepanova, L.A.; Kukoleva, A.A.; Repnev, A.I.; Banin, M.V. The three-dimensional photochemical model CHARM. Incorporation of solar activity. Geomagn. Aeron. 2015, 55, 59–88. [Google Scholar] [CrossRef]
- Ozolin, Y.E.; Karol’, I.L.; Rozanov, E.V.; Egorova, T.A. A model of the impact of solar proton events on the ionic and gaseous composition of the mesosphere. Izv. Atmos. Ocean. Phys. 2009, 45, 737–750. [Google Scholar] [CrossRef]
- Rodger, C.J.; Clilverd, M.A.; Green, J.C.; Lam, M.M. Use of POES SEM-2 observations to examine radiation belt dynamics and energetic electron precipitation into the atmosphere. J. Geophys. Res. (Space Phys.) 2010, 115, A04202. [Google Scholar] [CrossRef] [Green Version]
- Yahnin, A.G.; Yahnina, T.A.; Raita, T.; Manninen, J. Ground pulsation magnetometer observations conjugated with relativistic electron precipitation. J. Geophys. Res. (Space Phys.) 2017, 122, 9169–9182. [Google Scholar] [CrossRef] [Green Version]
- Mironova, I.; Kovaltsov, G.; Mishev, A.; Artamonov, A. Ionization in the Earth’s Atmosphere Due to Isotropic Energetic Electron Precipitation: Ion Production and Primary Electron Spectra. Remote Sens. 2021, 13, 4161. [Google Scholar] [CrossRef]
- Bazilevskaya, G.A.; Kalinin, M.S.; Krainev, M.B.; Makhmutov, V.S.; Svirzhevskaya, A.K.; Svirzhevsky, N.S.; Stozhkov, Y.I.; Philippov, M.V.; Balabin, Y.V.; Gvozdevsky, B.B. Precipitation of magnetospheric electrons into the Earth’s atmosphere and the electrons of the outer radiation belt. Bull. Russ. Acad. Sci. Phys. 2017, 81, 215–218. [Google Scholar] [CrossRef]
- Bazilevskaya, G.A.; Dyusembekova, A.S.; Kalinin, M.S.; Krainev, M.B.; Makhmutov, V.S.; Svirzhevskaya, A.K.; Svirzhevsky, N.S.; Stozhkov, Y.I.; Tulekov, E.A. Comparison of the Results on Precipitation of High-Energy Electrons in the Stratosphere and on Satellites. Cosm. Res. 2021, 59, 24–29. [Google Scholar] [CrossRef]
- Mironova, I.; Bazilevskaya, G.; Makhmutov, V.; Mironov, A.; Bobrov, N. Energetic Electron Precipitation via Satellite and Balloon Observations: Their Role in Atmospheric Ionization. Remote Sens. 2023, 15, 3291. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mironova, I.; Grankin, D.; Rozanov, E. Mesospheric Ozone Depletion Depending on Different Levels of Geomagnetic Disturbances and Seasons. Atmosphere 2023, 14, 1205. https://doi.org/10.3390/atmos14081205
Mironova I, Grankin D, Rozanov E. Mesospheric Ozone Depletion Depending on Different Levels of Geomagnetic Disturbances and Seasons. Atmosphere. 2023; 14(8):1205. https://doi.org/10.3390/atmos14081205
Chicago/Turabian StyleMironova, Irina, Dmitry Grankin, and Eugene Rozanov. 2023. "Mesospheric Ozone Depletion Depending on Different Levels of Geomagnetic Disturbances and Seasons" Atmosphere 14, no. 8: 1205. https://doi.org/10.3390/atmos14081205
APA StyleMironova, I., Grankin, D., & Rozanov, E. (2023). Mesospheric Ozone Depletion Depending on Different Levels of Geomagnetic Disturbances and Seasons. Atmosphere, 14(8), 1205. https://doi.org/10.3390/atmos14081205