Material Substitution Strategies for Energy Reduction and Greenhouse Gas Emission in Cement Manufacturing
Abstract
:1. Introduction
2. Description of Manufacturing Processes of Cement
3. Various Material Substitution Approaches Applied for the Reduction of Energy in the Cement-Manufacturing Process
Use of Waste or Recycled Materials
4. Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Verma, Y.K.; Mazumdar, B.; Ghosh, P. Thermal energy consumption and its conservation for a cement production unit. Environ. Eng. Res. 2021, 26, 1–9. [Google Scholar]
- Zhang, Z.; Lin, B. Energy conservation and emission reduction of Chinese cement industry: From a perspective of factor substitutions. Emerg. Mark. Financ. Trade 2019, 55, 967–979. [Google Scholar] [CrossRef]
- Mokhtar, A.; Nasooti, M. A decision support tool for cement industry to select energy efficiency measures. Energy Strategy Rev. 2020, 28, 100458. [Google Scholar] [CrossRef]
- Ali, N. The Role of Cement Industry in the Economic Development of Pakistan; EduPedia Publications (P) Ltd.: Delhi, India, 2015. [Google Scholar]
- Ighalo, J.O.; Adeniyi, A.G. A perspective on environmental sustainability in the cement industry. Waste Dispos. Sustain. Energy 2020, 2, 161–164. [Google Scholar] [CrossRef]
- Salas, D.A.; Ramirez, A.D.; Rodriguez, C.R.; Petroche, D.M.; Boero, A.J.; Duque-Rivera, J. Environmental impacts, life cycle assessment and potential improvement measures for cement production: A literature review. J. Clean. Prod. 2016, 113, 114–122. [Google Scholar] [CrossRef]
- Khan, M.A.; Khan, M.Z.; Zaman, K.; Naz, L. Global estimates of energy consumption and greenhouse gas emissions. Renew. Sustain. Energy Rev. 2014, 29, 336–344. [Google Scholar] [CrossRef]
- Madlool, N.A.; Saidur, R.; Hossain, M.S.; Rahim, N. A critical review on energy use and savings in the cement industries. Renew. Sustain. Energy Rev. 2011, 15, 2042–2060. [Google Scholar] [CrossRef]
- Saidur, R. A review on electrical motors energy use and energy savings. Renew. Sustain. Energy Rev. 2010, 14, 877–898. [Google Scholar] [CrossRef]
- Saidur, R.; Rahim, N.A.; Hasanuzzaman, M. A review on compressed-air energy use and energy savings. Renew. Sustain. Energy Rev. 2010, 14, 1135–1153. [Google Scholar] [CrossRef]
- Avami, A.; Sattari, S. Energy conservation opportunities: Cement industry in Iran. Int. J. Energy 2007, 1, 65–71. [Google Scholar]
- Dong, R.; Zhang, Z.; Lu, H.; Yu, Y. Recovery of waste heat in cement plants for the capture of CO2. Front. Chem. Sci. Eng. 2012, 6, 104–111. [Google Scholar] [CrossRef]
- Afkhami, B.; Akbarian, B.; Beheshti, N.; Kakaee, A.; Shabani, B. Energy consumption assessment in a cement production plant. Sustain. Energy Technol. Assess. 2015, 10, 84–89. [Google Scholar] [CrossRef]
- Madlool, N.; Saidur, R.; Rahim, N.; Kamalisarvestani, M. An overview of energy savings measures for cement industries. Renew. Sustain. Energy Rev. 2013, 19, 18–29. [Google Scholar] [CrossRef]
- Energy, C.I.; Performance, C. Getting the Numbers Right; World Business Council for Sustainable Development The Cement Sustainability Initiative: Washington, DC, USA, 2009. [Google Scholar]
- Olagunju, B.D. Life Cycle Assessment of the Production of Cement: A South African Case Study. Master’s Thesis, Durban University of Technology: Dubran, South Africa, 2021. [Google Scholar]
- Olagunju, B.D.; Olanrewaju, O.A. Life Cycle Assessment of Ordinary Portland Cement (OPC) Using both Problem Oriented (Midpoint) Approach and Damage Oriented Approach (Endpoint). In Product Life Cycle-Opportunities for Digital and Sustainable Transformation; IntechOpen: London, UK, 2021. [Google Scholar]
- Talaei, A.; Pier, D.; Iyer, A.V.; Ahiduzzaman, M.; Kumar, A. Assessment of long-term energy efficiency improvement and greenhouse gas emissions mitigation options for the cement industry. Energy 2019, 170, 1051–1066. [Google Scholar] [CrossRef]
- Bumanis, G.; Korjakins, A.; Bajare, D. Environmental benefit of alternative binders in construction industry: Life cycle assessment. Environments 2022, 9, 6. [Google Scholar] [CrossRef]
- Benhelal, E.; Zahedi, G.; Shamsaei, E.; Bahadori, A. Global strategies and potentials to curb CO2 emissions in cement industry. J. Clean. Prod. 2013, 51, 142–161. [Google Scholar] [CrossRef]
- Sousa, V.; Bogas, J.A. Comparison of energy consumption and carbon emissions from clinker and recycled cement production. J. Clean. Prod. 2021, 306, 127277. [Google Scholar] [CrossRef]
- Poponi, D.; Bryant, T.; Burnard, K.; Cazzola, P.; Dulac, J.; Pales, A.F.; Husar, J.; Janoska, P.; Masanet, E.R.; Munuera, L. Energy Technology Perspectives 2016: Towards Sustainable Urban Energy Systems; International Energy Agency: Paris, France, 2016. [Google Scholar]
- Carriço, A.; Bogas, J.A.; Guedes, M. Thermoactivated cementitious materials–A review. Constr. Build. Mater. 2020, 250, 118873. [Google Scholar] [CrossRef]
- Du Plessis, G.E.; Liebenberg, L.; Mathews, E.H. The use of variable speed drives for cost-effective energy savings in South African mine cooling systems. Appl. Energy 2013, 111, 16–27. [Google Scholar] [CrossRef]
- Atmaca, A.; Yumrutaş, R. Analysis of the parameters affecting energy consumption of a rotary kiln in cement industry. Appl. Therm. Eng. 2014, 66, 435–444. [Google Scholar] [CrossRef]
- Naeimi, A.; Bidi, M.; Ahmadi, M.H.; Kumar, R.; Sadeghzadeh, M.; Nazari, M.A. Design and exergy analysis of waste heat recovery system and gas engine for power generation in Tehran cement factory. Therm. Sci. Eng. Prog. 2019, 9, 299–307. [Google Scholar] [CrossRef]
- Scrivener, K.; Avet, F.; Maraghechi, H.; Zunino, F.; Ston, J.; Hanpongpun, W.; Favier, A. Impacting factors and properties of limestone calcined clay cements (LC3). Green Mater. 2018, 7, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Kadhum, A.O.; Haider, M.O. Experimental Investigation of Self-Compacting High Performance Concrete Containing Calcined Kaolin Clay and Nano Lime. Civ. Eng. J. 2020, 6, 1798–1808. [Google Scholar] [CrossRef]
- Hasanbeigi, A.; Price, L.; Lin, E. Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review. Renew. Sustain. Energy Rev. 2012, 16, 6220–6238. [Google Scholar] [CrossRef] [Green Version]
- Moya, J.A.; Pardo, N.; Mercier, A. The potential for improvements in energy efficiency and CO2 emissions in the EU27 cement industry and the relationship with the capital budgeting decision criteria. J. Clean. Prod. 2011, 19, 1207–1215. [Google Scholar] [CrossRef]
- Baghban, M.H.; Mahjoub, R. Natural kenaf fiber and LC3 binder for sustainable fiber-reinforced cementitious composite: A review. Appl. Sci. 2020, 10, 357. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.; Karim, M.; Hasan, M.; Hossain, M.; Zain, M. Durability of mortar and concrete made up of pozzolans as a partial replacement of cement: A review. Constr. Build. Mater. 2016, 116, 128–140. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Wang, X.; Sanjayan, J.; Wilson, J. Thermal energy storage enhancement of lightweight cement mortars with the application of phase change materials. Procedia Eng. 2017, 180, 1170–1177. [Google Scholar] [CrossRef]
- Asadi, I.; Baghban, M.H.; Hashemi, M.; Izadyar, N.; Sajadi, B. Phase change materials incorporated into geopolymer concrete for enhancing energy efficiency and sustainability of buildings: A review. Case Stud. Constr. Mater. 2022, 17, e01162. [Google Scholar] [CrossRef]
- Thomas, B.S.; Gupta, R.C. A comprehensive review on the applications of waste tire rubber in cement concrete. Renew. Sustain. Energy Rev. 2016, 54, 1323–1333. [Google Scholar] [CrossRef]
- Jani, Y.; Hogland, W. Waste glass in the production of cement and concrete–A review. J. Environ. Chem. Eng. 2014, 2, 1767–1775. [Google Scholar] [CrossRef]
- Abd Rashid, A.F.; Yusoff, S. A review of life cycle assessment method for building industry. Renew. Sustain. Energy Rev. 2015, 45, 244–248. [Google Scholar] [CrossRef] [Green Version]
- Seebach, H.V.; Neumann, E.; Lohnherr, L. State-of-the-Art of Energy-Efficient Grinding Systems. ZKG Int. 1996, 49, 62–67. [Google Scholar]
- GlobalSpec. Material Handling Packaging Equipment and Storage Hoppers. 2023. Available online: https://www.globalspec.com/learnmore/material_handling_packaging_equipment/material_handling_equipment/hoppers (accessed on 5 April 2023).
- SikaGroup. Cement Additives. 2023. Available online: https://www.sika.com/en/construction/cement/additives.html (accessed on 4 May 2023).
- Alsop, P.A. Cement Plant Operations Handbook: For Dry Process Plants; Tradeship Publications Ltd.: Dorking, UK, 2007. [Google Scholar]
- Duda, W.H. International Process Engineering in the Cement Industry. In Cement Data Book; Bauverlag: Damstadt, Germany, 1985; Volume 1. [Google Scholar]
- Ludwig, H.-M.; Zhang, W. Research review of cement clinker chemistry. Cem. Concr. Res. 2015, 78, 24–37. [Google Scholar] [CrossRef]
- Alemayehu, F.; Sahu, O. Minimization of variation in clinker quality. Adv. Mater. 2013, 2, 23–28. [Google Scholar] [CrossRef]
- Ortega, J. Rotary Kiln—Clinkerization and Thermal Zones The Cement Newsletter by InfluencCement. 2022. Available online: https://www.linkedin.com/pulse/chapter-10-rotary-kiln-clinkerization-thermal-zones-juan-ortega/ (accessed on 9 April 2023).
- Zeman, F. Oxygen combustion in cement production. Energy Procedia 2009, 1, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Aldieb, M.A.; Ibrahim, H.G. Variation of feed chemical composition and its effect on clinker formation–simulation process. In Proceedings of the World Congress on Engineering and Computer Science, San Francisco, CA, USA, 20–22 October 2010; pp. 1–7. [Google Scholar]
- Abdul-Wahab, S.A.; Al-Rawas, G.A.; Ali, S.; Al-Dhamri, H. Impact of the addition of oil-based mud on carbon dioxide emissions in a cement plant. J. Clean. Prod. 2016, 112, 4214–4225. [Google Scholar] [CrossRef]
- Hossain, M.U.; Poon, C.S.; Lo, I.M.; Cheng, J.C. Comparative LCA on using waste materials in the cement industry: A Hong Kong case study. Resour. Conserv. Recycl. 2017, 120, 199–208. [Google Scholar] [CrossRef]
- Junior, E.S.A.; de Sales Braga, N.T.; Barata, M.S. Life cycle assessment to produce LC³ cements with kaolinitic waste from the Amazon region, Brazil. Case Stud. Constr. Mater. 2023, 18, e01729. [Google Scholar]
- El-Salamony, A.-H.R.; Mahmoud, H.M.; Shehata, N. Enhancing the efficiency of a cement plant kiln using modified alternative fuel. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100310. [Google Scholar] [CrossRef]
- Fyffe, J.R.; Breckel, A.C.; Townsend, A.K.; Webber, M.E. Use of MRF residue as alternative fuel in cement production. Waste Manag. 2016, 47, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Vizcaíno-Andrés, L.; Sánchez-Berriel, S.; Damas-Carrera, S.; Pérez-Hernández, A.; Scrivener, K.; Martirena-Hernández, J. Industrial trial to produce a low clinker, low carbon cement. Mater. Construcción 2015, 65, e045. [Google Scholar]
- Sousa, V.; Bogas, J.A.; Real, S.; Meireles, I.; Carriço, A. Recycled cement production energy consumption optimization. Sustain. Chem. Pharm. 2023, 32, 101010. [Google Scholar] [CrossRef]
- He, Z.; Zhu, X.; Wang, J.; Mu, M.; Wang, Y. Comparison of CO2 emissions from OPC and recycled cement production. Constr. Build. Mater. 2019, 211, 965–973. [Google Scholar] [CrossRef]
- de Queiroz Lamas, W.; Palau, J.C.F.; De Camargo, J.R. Waste materials co-processing in cement industry: Ecological efficiency of waste reuse. Renew. Sustain. Energy Rev. 2013, 19, 200–207. [Google Scholar] [CrossRef]
- Saif Al-Dhamri, H.; Black, L. Use of oil-based mud cutting waste in cement clinker manufacturing. In Proceedings of the 34th Cement and Concrete Science Conference, Sheffield, UK, 15 September 2014; pp. 427–430. [Google Scholar]
- Rodríguez, N.H.; Martínez-Ramírez, S.; Blanco-Varela, M.T.; Donatello, S.; Guillem, M.; Puig, J.; Fos, C.; Larrotcha, E.; Flores, J. The effect of using thermally dried sewage sludge as an alternative fuel on Portland cement clinker production. J. Clean. Prod. 2013, 52, 94–102. [Google Scholar] [CrossRef]
- Li, H.; Xu, W.; Yang, X.; Wu, J. Preparation of Portland cement with sugar filter mud as lime-based raw material. J. Clean. Prod. 2014, 66, 107–112. [Google Scholar] [CrossRef]
- Silva, L.H.P.; Nehring, V.; de Paiva, F.F.G.; Tamashiro, J.R.; Galvín, A.P.; López-Uceda, A.; Kinoshita, A. Use of blast furnace slag in cementitious materials for pavements-Systematic literature review and eco-efficiency. Sustain. Chem. Pharm. 2023, 33, 101030. [Google Scholar] [CrossRef]
- Vijayan, D.; Arvindan, S.; Janarthanan, T.S. Evaluation of ferrock: A greener substitute to cement. Mater. Today: Proc. 2020, 22, 781–787. [Google Scholar] [CrossRef]
- Anastasiou, E.; Liapis, A.; Papayianni, I. Comparative life cycle assessment of concrete road pavements using industrial by-products as alternative materials. Resour. Conserv. Recycl. 2015, 101, 1–8. [Google Scholar] [CrossRef]
- Barišić, I.; Marković, B.; Zagvozda, M. Freeze–thaw resistance assessment of cement-bound steel slag aggregate for pavement structures. Int. J. Pavement Eng. 2019, 20, 448–457. [Google Scholar] [CrossRef]
- Bilir, T.; Yüksel, I.; Topcu, I.B.; Gencel, O. Effects of bottom ash and granulated blast furnace slag as fine aggregate on abrasion resistance of concrete. Sci. Eng. Compos. Mater. 2017, 24, 261–269. [Google Scholar] [CrossRef]
- El-Hassan, H.; Kianmehr, P. Pervious concrete pavement incorporating GGBS to alleviate pavement runoff and improve urban sustainability. Road Mater. Pavement Des. 2018, 19, 167–181. [Google Scholar] [CrossRef]
- Ho, H.-L.; Huang, R.; Hwang, L.-C.; Lin, W.-T.; Hsu, H.-M. Waste-based pervious concrete for climate-resilient pavements. Materials 2018, 11, 900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moradi, S.; Shahnoori, S. Eco-friendly mix for Roller-Compacted Concrete: Effects of Persian-Gulf-Dredged marine sand on durability and resistance parameters of concrete. Constr. Build. Mater. 2021, 281, 122555. [Google Scholar] [CrossRef]
- Eyo, E.U.; Ng’ambi, S.; Abbey, S. Performance of clay stabilized by cementitious materials and inclusion of zeolite/alkaline metals-based additive. Transp. Geotech. 2020, 23, 100330. [Google Scholar] [CrossRef]
- Sua-iam, G.; Makul, N.; Cheng, S.; Sokrai, P. Workability and compressive strength development of self-consolidating concrete incorporating rice husk ash and foundry sand waste–A preliminary experimental study. Constr. Build. Mater. 2019, 228, 116813. [Google Scholar] [CrossRef]
- Javid, A.A.S.; Nejad, M.A.A. Packing density and surface finishing condition effects on the mechanical properties of various concrete pavements containing cement replacement admixtures. Constr. Build. Mater. 2017, 141, 307–314. [Google Scholar] [CrossRef]
- Özbay, E.; Erdemir, M.; Durmuş, H.İ. Utilization and efficiency of ground granulated blast furnace slag on concrete properties–A review. Constr. Build. Mater. 2016, 105, 423–434. [Google Scholar] [CrossRef]
- Akhtar, A.; Sarmah, A.K. Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective. J. Clean. Prod. 2018, 186, 262–281. [Google Scholar] [CrossRef]
- Milad, A.A.; Ali, A.S.B.; Yusoff, N.I.M. A review of the utilisation of recycled waste material as an alternative modifier in asphalt mixtures. Civ. Eng. J. 2020, 6, 42–60. [Google Scholar] [CrossRef]
- Rahman, M.J.; Setiawan, A.; Ihsan, M. Examining polyethylene terephthalate (pet) as artificial coarse aggregates in concrete. Civ. Eng. J. 2020, 6, 2416–2424. [Google Scholar]
- Aldakshe, A.; Çağlar, H.; Çağlar, A.; Avan, Ç. The investigation of use as aggregate in lightweight concrete production of boron wastes. Civ. Eng. J. 2020, 6, 1328–1335. [Google Scholar] [CrossRef]
Type of Replacement Materials Used | The Percentage Replacement | Percentage of Energy Reduction | Percentage of GHGs (NOx, SO2, CO2) Reduction or Increment | References |
---|---|---|---|---|
Oil-Based Mud; Metakaolin; and Fly Ash + Glass waste + Bio-fuel | ||||
Oil-based mud | OBM: 1–5% | Not stated | OBM: 1% to 6% | [48] |
Metakaolin (kaolinitic residue) | OPC: 45% & 60% PCC: 45% & 60% | OPC 45%: 28% to 33%. OPC 60%: 37% to 44% PCC 45% & 60%: 10% to 25% | OPC 45%: 35% to 37% OPC 60%: 47% to 50% PCC 45%: 20% to 22% PCC 60%: 35% to 38% | [50] |
Fly-ash, glass waste powder, and wood waste (biofuel) | PFC: 20% Eco-GC-2: 20% Biofuel: 10–50% | PFC: 16% Eco-GC-2: 16% OPC: 5.81% to 28.98% | PFC: 18% Eco-GC-2: 17% OPC: 2.76% to 13.57% | [49] |
Rice Husk + Solid Waste; Solid Recovered Fuel from Landfills; and Pozzolan + Calcium Hydroxide | ||||
Rice husk, Solid waste from refuse, such as plastic waste, garden waste, wood, tissues, cardboard, and paper. | AFs: 0–5% | AFs: 13% | Not stated | [51] |
Solid recycled fuel containing about 60% of plastic and about 40% of fibrous mixture of materials. | Not stated | SRF: 5.5% (early scenario); 6.2% (near-term scenario); 6.3% (future scenario) | CO2: 1.6% (early scenario); 1.5% (near-term scenario); 1.4% (future scenario). SO2: 21% (early scenario); 19% (near-term scenario); 44% (future scenario). NOx: 20% increment (early scenario); 24% increment (near-term scenario); 16% increment (future scenario). | [52] |
Pozzolan and calcium hydroxide | 15%, 20%, and 25% | 15% | 31% | [53] |
Use of Recycled Cement | ||||
Hardened waste cement | RC–complete replacement | 30–40% | 80% | [54] |
Waste or recycled cement | RC–complete replacement | Not stated | RC–450 °C: 94% RC–800 °C: 76% | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akintayo, B.D.; Akintayo, D.C.; Olanrewaju, O.A. Material Substitution Strategies for Energy Reduction and Greenhouse Gas Emission in Cement Manufacturing. Atmosphere 2023, 14, 1200. https://doi.org/10.3390/atmos14081200
Akintayo BD, Akintayo DC, Olanrewaju OA. Material Substitution Strategies for Energy Reduction and Greenhouse Gas Emission in Cement Manufacturing. Atmosphere. 2023; 14(8):1200. https://doi.org/10.3390/atmos14081200
Chicago/Turabian StyleAkintayo, Busola Dorcas, Damilola Caleb Akintayo, and Oludolapo Akanni Olanrewaju. 2023. "Material Substitution Strategies for Energy Reduction and Greenhouse Gas Emission in Cement Manufacturing" Atmosphere 14, no. 8: 1200. https://doi.org/10.3390/atmos14081200
APA StyleAkintayo, B. D., Akintayo, D. C., & Olanrewaju, O. A. (2023). Material Substitution Strategies for Energy Reduction and Greenhouse Gas Emission in Cement Manufacturing. Atmosphere, 14(8), 1200. https://doi.org/10.3390/atmos14081200