Development and Application of a Novel Snow Peak Sighting Forecast System over Chengdu
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Models and Data
2.3. Terrain Occlusion Judgment
2.4. Threshold Method for Determining Snow Peak Sighting
2.5. Snow Peak Sighting Probability Calculation
3. Results
3.1. Base Model Evaluation
3.2. Terrain Occlusion Results
3.3. Threshold Values Acquired by Monte-Carlo Simulation
3.4. Snow Peak Sighting Probability
3.5. Comparison with Social Media Posts
4. Summary and Conclusions
- A logical formula considering meteorological and environmental was proposed as the core of the snow peak sighting forecast system.
- The spatial and temporal distribution of snow peak sighting probabilities were analyzed in this paper, showing that the best regions for snow peak sighting in Chengdu were in the plain between Longquan and Longmen Mountains, and the best periods for snow peak sighting were between May to September.
- Estimations showed that the accuracy of the system was 78.9%, while the precision was 24.4%, and a lack of dependable observations caused difficulty in determining the cause of false positives.
5. Patent
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Watson, B. The Selected Poems of Du Fu; Columbia University Press: New York, NY, USA, 2003; p. 107. [Google Scholar]
- Zhang, F.; Wang, Y.; Peng, J.; Chen, L.; Sun, Y.; Duan, L.; Zhang, R. An unexpected catalyst dominates formation and radiative forcing of regional haze. Proc. Natl. Acad. Sci. USA 2020, 117, 3960–3966. [Google Scholar] [CrossRef] [Green Version]
- Pope, C.A., 3rd; Dockery, D.W. Health Effects of Fine Particulate Air Pollution: Lines that Connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Tan, Q.; Jiang, X.; Yang, F.; Jiang, W. Effects of relative humidity and PM2.5 chemical compositions on visibility impairment in Chengdu, China. J. Environ. Sci. 2019, 86, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.W. The effects of PM2.5 concentrations and relative humidity on atmospheric visibility in Beijing. J. Geophys. Res.-Atmos. 2019, 124, 2235–2259. [Google Scholar] [CrossRef]
- Zhou, Y.A.; Yw, B.; Xhx, A.; Jy, C.; Cqo, A. Quantifying and characterizing the impacts of PM2.5 and humidity on atmospheric visibility in 182 Chinese cities: A nationwide time-series study. J. Clean. Prod. 2022, 368, 133182. [Google Scholar] [CrossRef]
- Liu, S.; Luo, Q.; Feng, M.; Zhou, L.; Qiu, Y.; Li, C.; Song, D.; Tan, Q.; Yang, F. Enhanced nitrate contribution to light extinction during haze pollution in Chengdu: Insights based on an improved multiple linear regression model. Environ. Pollut. 2023, 323, 121309. [Google Scholar] [CrossRef]
- Ding, S.; Duan, W.; Zhu, Y.; Li, G. Forecasting of Ha’ni cloud sea landscape in Yuanjiang county of Yunnan province based on multiple models. J. Meteorol. Environ. 2022, 36, 106–112. [Google Scholar] [CrossRef]
- Tao, L.; Yuan, Y.; Liang, J. Cloud Sea Landscape Forecast Technology and Cloud Characteristics Research. Technol. Innov. Appl. 2019, 30, 124–125. [Google Scholar]
- Deng, H.; Pepin, N.C.; Chen, Y. Changes of snow fall under warming in the Tibetan Plateau. J. Geophys. Res. Atmos. 2017, 122, 7232–7341. [Google Scholar] [CrossRef] [Green Version]
- National Mapping and Remotely Sensed Data: Digital Elevation Models (DEMs). Available online: http://edcwww.cr.usgs.gov/nsdi/gendem.htm (accessed on 17 March 2020).
- Shugar, D.H.; Jacquemart, M.; Shean, D.; Bhushan, S.; Upadhyay, K.; Sattar, A.; Schwanghart, W.; McBride, S.; de Vries, M.V.W.; Mergili, M.; et al. A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science 2021, 373, 300–306. [Google Scholar] [CrossRef]
- Tsai, Y.-L.S.; Dietz, A.; Oppelt, N.; Kuenzer, C. Remote Sensing of Snow Cover Using Spaceborne SAR: A Review. Remote Sens. 2019, 11, 1456. [Google Scholar] [CrossRef] [Green Version]
- Kostadinov, T.S.; Schumer, R.; Hausner, M.; Bormann, K.J.; Gaffney, R.; McGwire, K.; Painter, T.H.; Tyler, S.; Harpold, A.A. Watershed-scale mapping of fractional snow cover under conifer forest canopy using lidar. Remote Sens. Environ. 2019, 222, 34–49. [Google Scholar] [CrossRef]
- Gascoin, S.; Barrou Dumont, Z.; Deschamps-Berger, C.; Marti, F.; Salgues, G.; López-Moreno, J.I.; Revuelto, J.; Michon, T.; Schattan, P.; Hagolle, O. Estimating Fractional Snow Cover in Open Terrain from Sentinel-2 Using the Normalized Difference Snow Index. Remote Sens. 2020, 12, 2904. [Google Scholar] [CrossRef]
- Muhuri, A.; Gascoin, S.; Menzel, L.; Kostadinov, T.S.; Harpold, A.A.; Sanmiguel-Vallelado, A.; Lopez-Moreno, J.I. Performance Assessment of Optical Satellite Based Operational Snow Cover Monitoring Algorithms in Forested Landscapes. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7159–7178. [Google Scholar] [CrossRef]
- Wickham, H. Reshaping Data with the reshape Package. J. Stat. Softw. 2007, 21, 1–20. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis, 2nd ed.; Springer International Publishing: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Bivand, R.S.; Pebesma, E.J.; Gómez-Rubio, V.; Pebesma, E.J. Applied Spatial Data Analysis with R, 2nd ed.; Springer: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Geosphere: Spherical Trigonometry. R Package Version 1.5-14. Available online: https://CRAN.R-project.org/package=geosphere (accessed on 17 March 2020).
- raster: Geographic Data Analysis and Modeling. R Package Version 3.4-10. Available online: https://CRAN.R-project.org/package=raster (accessed on 17 March 2020).
- RNetCDF: Interface to ‘NetCDF’ Datasets. R Package Version 2.4-2. Available online: https://CRAN.R-project.org/package=RNetCDF (accessed on 17 March 2020).
- Inlmisc—Miscellaneous Functions for the U.S. Geological Survey Idaho National Laboratory Project Office: U.S. Geological Survey Software Release. Available online: https://github.com/USGS-R/inlmisc (accessed on 17 March 2020).
- metR: Tools for Easier Analysis of Meteorological Fields. Available online: https://github.com/eliocamp/metR (accessed on 17 March 2020).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 3 January 2020).
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A description of the Advanced Research WRF Version 3. NCAR Tech. Note 2008, 475, 113. [Google Scholar]
- US EPA Office of Research and Development. CMAQv5.0.2 (5.0.2). Zenodo. Available online: https://zenodo.org/record/1079898 (accessed on 13 June 2017).
- Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Clinton, N.; Ji, L.; Li, W.; Bai, Y.; et al. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar] [CrossRef]
- Zhou, Z.H.; Tan, Q.W.; Deng, Y.; Song, D.L.; Wu, K.Y.; Zhou, X.L.; Huang, F.X.; Zeng, W.H.; Lu, C.W. Compilation of emission inventory and source profile database for volatile organic compounds: A case study for Sichuan, China. Atmos. Pollut. Res. 2020, 11, 105–116. [Google Scholar] [CrossRef]
- Zhou, Z.H.; Tan, Q.W.; Deng, Y.; Wu, K.Y.; Yang, X.Y.; Zhou, X.L. Emission inventory of anthropogenic air pollutant sources and characteristics of VOCs species in Sichuan Province, China. J. Atmos. Chem. 2019, 76, 21–58. [Google Scholar] [CrossRef]
- Lu, C.W.; Zhou, Z.H.; Liu, H.F.; Tan, Q.W.; Deng, Y.; Song, D.L.; Kang, X. Emission of biogenic volatile organic compounds in Sichuan Basin using a dynamic model. Environ. Chem. 2018, 37, 836–842. [Google Scholar]
- SimpleBIO. Available online: https://github.com/airmonster/SimpleBIO (accessed on 9 May 2017).
- MEIC2CMAQ. Available online: https://github.com/airmonster/MEIC2CMAQ (accessed on 28 May 2022).
- Sarwar, G.; Simon, H.; Bhave, P.; Yarwood, G. Examining the impact of heterogeneous nitryl chloride production on air quality across the United States. Atmos. Chem. Phys. 2012, 12, 6455–6473. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Liu, H.; Geng, G.; Hong, C.; Liu, F.; Song, Y.; Tong, D.; Zheng, B.; Cui, H.; Man, H.; et al. Anthropogenic emission inventories in China: A review. Natl. Sci. Rev. 2017, 4, 834–866. [Google Scholar] [CrossRef]
- Zheng, B.; Tong, D.; Li, M.; Liu, F.; Hong, C.; Geng, G.; Li, H.; Li, X.; Peng, L.; Qi, J.; et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 2018, 18, 14095–14111. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zhang, Q.; Streets, D.G.; He, K.B.; Cheng, Y.F.; Emmons, L.K.; Huo, H.; Kang, S.C.; Lu, Z.; Shao, M.; et al. Mapping Asian anthropogenic emissions of non-methane volatile organic compounds to multiple chemical mechanisms. Atmos. Chem. Phys. 2014, 14, 5617–5638. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zhang, Q.; Zheng, B.; Tong, D.; Lei, Y.; Liu, F.; Hong, C.; Kang, S.; Yan, L.; Zhang, Y.; et al. Persistent growth of anthropogenic non-methane volatile organic compound (NMVOC) emissions in China during 1990–2017: Drivers, speciation and ozone formation potential. Atmos. Chem. Phys. 2019, 19, 8897–8913. [Google Scholar] [CrossRef] [Green Version]
- TOChecker. Available online: https://github.com/Chengwei1017/SnowPeakSighting (accessed on 28 May 2022).
- doParallel: Foreach Parallel Adaptor for the ‘parallel’ Package. R Package Version 1.0.17. Available online: https://CRAN.R-project.org/package=doParallel (accessed on 28 May 2022).
- AkÇay, H.G.; Aksoy, S. Automatic Detection of Geospatial Objects Using Multiple Hierarchical Segmentations. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2097–2111. [Google Scholar] [CrossRef]
- Ozel, G.; Cakmakyapan, S. A new approach to the prediction of PM10 concentrations in Central Anatolia Region, Turkey. Atmos. Pollut. Res. 2015, 6, 735–741. [Google Scholar] [CrossRef]
- Gilewski, P. Application of Global Environmental Multiscale (GEM) Numerical Weather Prediction (NWP) Model for Hydrological Modeling in Mountainous Environment. Atmosphere 2022, 13, 1348. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
Thres. | Var. | Logical Operation | Description |
---|---|---|---|
th_qc_s | QC | ifQC = (QC ≤ th_qc_s) | Cloud water mixing ratio along sight line |
th_cl_p | CFRAC | ifCL = (CFRAC ≤ th_cl_p) | Cloud cover over snow peak |
th_qv_m | QV | ifQVM = (max(QV) ≤ th_qv_m) | Maximum water mixing ratio along sight line |
th_qv_a | QV | ifQVA = (mean(QV) ≤ th_qv_a) | Averaged water mixing ratio along sight line |
th_qv_s | QV | ifQVS = (sum(QV) ≤ th_qv_s) | Sum of water mixing ratio along sight line |
th_pm_l | PM25 | ifPM = (PM25 ≤ th_pm_l) | PM2.5 concentration of observation site |
th_pm_a | PM25 | ifPMA = (mean(PM25) ≤ th_pm_a) | Averaged PM2.5 concentration along sight line |
th_pm_m | PM25 | ifPMM = (max(PM25) ≤ th_pm_m) | Maximum PM2.5 concentration along sight line |
th_rs_p | RS | ifRS = (RS ≥ th_rs_p) | Minimum of ground solar radiation |
Forecasted True | Forecasted False | |
---|---|---|
Posted True | True positive (TP) | False negative (FN) |
Posted False | False positive (FP) | True negative (TN) |
Variable | Modeled | Observed | N | NMB | RMSE | R |
---|---|---|---|---|---|---|
T2 | 17.1 | 16.5 | 35,443 | 3.66% | 2.06 | 0.96 |
PRES | 953.9 | 952.7 | 35,447 | 0.12% | 2.48 | 0.98 |
WS | 1.9 | 1.4 | 34,314 | 41.56% | 1.35 | 0.25 |
RH | 72.8 | 80.5 | 35,442 | −9.60% | 17.26 | 0.57 |
Variable | Modeled | Observed | N | NMB | RMSE | R |
---|---|---|---|---|---|---|
PM2.5 | 30.0 | 40.3 | 2426 | −25.54% | 26.75 | 0.57 |
PM10 | 42.1 | 59.7 | 2426 | −29.49% | 40.68 | 0.50 |
NO2 | 35.0 | 37.0 | 2426 | −5.56% | 22.06 | 0.31 |
O3 | 45.2 | 45.1 | 2426 | 0.32% | 29.66 | 0.70 |
Thres. | Value | Thres. | Value |
---|---|---|---|
th_qc_s | 0.36 | th_pm_l | 95.85 |
th_cl_p | 96.47 | th_pm_a | 10.30 |
th_qv_m | 17.74 | th_pm_m | 72.34 |
th_qv_a | 13.80 | th_rs_p | 235.68 |
th_qv_s | 463.17 |
Forecasted True | Forecasted False | |
---|---|---|
Posted True | 20 | 15 |
Posted False | 62 | 268 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, C.; Chen, T.; Yang, X.; Tan, Q.; Kang, X.; Zhang, T.; Zhou, Z.; Yang, F.; Chen, X.; Wang, Y. Development and Application of a Novel Snow Peak Sighting Forecast System over Chengdu. Atmosphere 2023, 14, 1181. https://doi.org/10.3390/atmos14071181
Lu C, Chen T, Yang X, Tan Q, Kang X, Zhang T, Zhou Z, Yang F, Chen X, Wang Y. Development and Application of a Novel Snow Peak Sighting Forecast System over Chengdu. Atmosphere. 2023; 14(7):1181. https://doi.org/10.3390/atmos14071181
Chicago/Turabian StyleLu, Chengwei, Ting Chen, Xinyue Yang, Qinwen Tan, Xue Kang, Tianyue Zhang, Zihang Zhou, Fumo Yang, Xi Chen, and Yuancheng Wang. 2023. "Development and Application of a Novel Snow Peak Sighting Forecast System over Chengdu" Atmosphere 14, no. 7: 1181. https://doi.org/10.3390/atmos14071181
APA StyleLu, C., Chen, T., Yang, X., Tan, Q., Kang, X., Zhang, T., Zhou, Z., Yang, F., Chen, X., & Wang, Y. (2023). Development and Application of a Novel Snow Peak Sighting Forecast System over Chengdu. Atmosphere, 14(7), 1181. https://doi.org/10.3390/atmos14071181