Impact of Temperature Extremes on Carbon Emissions from Crop Production in Hebei Province, China
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Data Description
2.3. Data Processing
2.3.1. Calculation of Climate Indexes
2.3.2. Calculation of Carbon Emissions
2.4. Research Methods
2.4.1. Fixed Effect Model
2.4.2. Fixed Effect Test
2.4.3. Moderating Effect Model
2.5. Variable Descriptive Statistics
3. Results
3.1. Changes in Extreme Temperature Indexes
3.1.1. Cold Days
3.1.2. Warm Spell Duration Index
3.2. Carbon Emissions from Crop Production
3.3. Agriculture Total Factor Productivity
3.4. Temperature Extremes and Carbon Emissions
3.5. The Moderating Effect of Agriculture TFP
4. Discussion
4.1. Impact of TX10p on Carbon Emissions
4.2. Improvement of Agricultural TFP
4.3. Limitations
5. Conclusions
- (1)
- Hebei Province has experienced extreme temperature changes in the past 20 years. TX10p, WSDI, and SU25 underwent significant changes in most parts of Hebei Province, and the temperature showed a warming trend.
- (2)
- Temperature extremes exerted a substantial influence on CE, and the shorter the duration of extreme cold in winter, the smaller the CE. Every 1% reduction in TX10p reduced CE by 0.237%. However, the relationship between WSDI and CE was not significant.
- (3)
- The agricultural TFP had a notable positive moderating effect: the higher the input efficiency of production factors, the more it positively moderated the impact of temperature extremes on CE.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coumou, D.; Rahmstorf, S. A decade of weather extremes. Nat. Clim. Chang. 2012, 2, 491–496. [Google Scholar] [CrossRef]
- Guo, J. Advances in Impacts of Climate Change on Agricultural Production in China. J. Appl. Meteorolgical Sci. 2015, 26, 1–11. [Google Scholar]
- Yang, T.F.; Huang, X.T.; Wang, Y.; Li, H.J.; Guo, L.L. Dynamic Linkages among Climate Change, Mechanization and Agricultural Carbon Emissions in Rural China. Int. J. Environ. Res. Public Health 2022, 19, 4508. [Google Scholar] [CrossRef] [PubMed]
- Stathers, T.; Lamboll, R.; Mvumi, B.M. Postharvest agriculture in changing climates: Its importance to African smallholder farmers. Food Secur. 2013, 5, 361–392. [Google Scholar] [CrossRef]
- Aryal, J.P.; Sapkota, T.B.; Krupnik, T.J.; Rahut, D.B.; Jat, M.L.; Stirling, C.M. Factors affecting farmers’ use of organic and inorganic fertilizers in South Asia. Environ. Sci. Pollut. Res. 2021, 28, 51480–51496. [Google Scholar] [CrossRef]
- Sun, F.R.; Tan, J. Study on the Mode of Developing Low-carbon Agriculture in China. In Proceedings of the International Conference of Asia-Pacific Low Carbon Economy/9th Northeast Asia Academic Network, Changsha, China, 26–27 November 2010; pp. 485–488. [Google Scholar]
- Anemüller, S.; Monreal, S.; Bals, C. Global Climate Risk Index 2006: Weather Related Loss Events and Their Impacts on Countries in 2004 and in a Long-term Comparison; Germanwatch: Bonn, Germany, 2006. [Google Scholar]
- Jiao, W.; Zhang, B.; Ma, B.; Cui, Y.; Huang, H.; Wang, X. Temporal and spatial changes of extreme temperature and its influencing factors in northern China in recent 58 years. Arid. Land Geogr. 2020, 43, 1220–1230. [Google Scholar]
- Hongchao, J.; Guang, Y.; Xiaomin, L.; Bingrui, J.; Zhenzhu, X.; Yuhui, W. Climate extremes drive the phenology of a dominant species in meadow steppe under gradual warming. Sci. Total Environ. 2023, 869, 161687. [Google Scholar] [CrossRef]
- Lobell, D.B.; Burke, M.B. Why are agricultural impacts of climate change so uncertain? The importance of temperature relative to precipitation. Environ. Res. Lett. 2008, 3, 034007. [Google Scholar] [CrossRef]
- Wu, X.Y.; Hao, Z.C.; Hao, F.H.; Zhang, X. Variations of compound precipitation and temperature extremes in China during 1961–2014. Sci. Total Environ. 2019, 663, 731–737. [Google Scholar] [CrossRef]
- Li, L.; Zha, Y. Mapping relative humidity, average and extreme temperature in hot summer over China. Sci. Total Environ. 2018, 615, 875–881. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Gao, Z.Q.; Pan, Z.T.; Li, D.; Huang, X.H. Spatiotemporal variability of extreme temperature frequency and amplitude in China. Atmos. Res. 2017, 185, 131–141. [Google Scholar] [CrossRef]
- Wang, J.; Xin, L. Spatial-temporal variations of cultivated land and grain production in China based on GlobeLand30. Trans. Chin. Soc. Agric. Eng. 2017, 33, 1–8. [Google Scholar]
- Wen, S.B.; Hu, Y.X.; Liu, H.M. Measurement and Spatial-Temporal Characteristics of Agricultural Carbon Emission in China: An Internal Structural Perspective. Agriculture 2022, 12, 1749. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Salvatore, M.; Rossi, S.; Ferrara, A.; Fitton, N.; Smith, P. The FAOSTAT database of greenhouse gas emissions from agriculture. Environ. Res. Lett. 2013, 8, 015009. [Google Scholar] [CrossRef]
- Moucheng, L.; Lun, Y. Spatial pattern of China’s agricultural carbon emission performance. Ecol. Indic. 2021, 133, 108345. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, J.; He, Y. Research on spatial-temporal characteristics and driving factor of agricultural carbon emissions in China. J. Integr. Agric. 2014, 13, 1393–1403. [Google Scholar] [CrossRef] [Green Version]
- Peter, C.; Helming, K.; Nendel, C. Do greenhouse gas emission calculations from energy crop cultivation reflect actual agricultural management practices?–A review of carbon footprint calculators. Renew. Sustain. Energy Rev. 2017, 67, 461–476. [Google Scholar] [CrossRef] [Green Version]
- Yue, D.; Zhang, J.; Sun, G.; Han, S. Simulation of Potential Vegetation Distribution and Carbon Cycle in Northeast China from 1997 to 2010 by LPJ-WHyMe Model. Clim. Environ. Res. 2019, 24, 678–692. [Google Scholar]
- Engelbrecht, D.; Biswas, W.K.; Ahmad, W. An evaluation of integrated spatial technology framework for greenhouse gas mitigation in grain production in Western Australia. J. Clean. Prod. 2013, 57, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.B.; Chen, J.; Mao, S.C.; Han, Y.C.; Chen, F.; Zhang, L.F.; Li, Y.B.; Li, C.D. Comparison of greenhouse gas emissions of chemical fertilizer types in China’s crop production. J. Clean. Prod. 2017, 141, 1267–1274. [Google Scholar] [CrossRef]
- Tian, P.P.; Li, D.; Lu, H.W.; Feng, S.S.; Nie, Q.W. Trends, distribution, and impact factors of carbon footprints of main grains production in China. J. Clean. Prod. 2021, 278, 123347. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, X. Carbon reduction effect of agricultural green production technology: A new evidence from China. Sci. Total Environ. 2023, 874, 162483. [Google Scholar] [CrossRef] [PubMed]
- Pang, L. Empirical study of regional carbon emissions of agriculture in China. J. Arid. Land Resour. Environ. 2014, 28, 1–7. [Google Scholar]
- Yasmeen, R.; Tao, R.; Shah, W.U.; Padda, I.U.; Tang, C.H. The nexuses between carbon emissions, agriculture production efficiency, research and development, and government effectiveness: Evidence from major agriculture-producing countries. Environ. Sci. Pollut. Res. 2022, 29, 52133–52146. [Google Scholar] [CrossRef] [PubMed]
- Zhong, R.; He, Q.; Qi, Y. Digital Economy, Agricultural Technological Progress, and Agricultural Carbon Intensity: Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 6488. [Google Scholar] [CrossRef]
- Zaharia, A.; Antonescu, A.G.; SGEM. Agriculture, greenhouse gas emissions and climate change. In Proceedings of the 14th International Multidisciplinary Scientific Geoconference (SGEM), Albena, Bulgaria, 17–26 June 2014; pp. 17–23. [Google Scholar]
- Ugalde, D.; Brungs, A.; Kaebernick, M.; McGregor, A.; Slattery, B. Implications of climate change for tillage practice in Australia. Soil Tillage Res. 2007, 97, 318–330. [Google Scholar] [CrossRef]
- Wang, M.M.; Wang, S.Q.; Zhao, J.; Ju, W.M.; Hao, Z. Global positive gross primary productivity extremes and climate contributions during 1982–2016. Sci. Total Environ. 2021, 774, 145703. [Google Scholar] [CrossRef]
- Wang, Y.C.; Tao, F.L.; Chen, Y.; Yin, L.C. Interactive impacts of climate change and agricultural management on soil organic carbon sequestration potential of cropland in China over the coming decades. Sci. Total Environ. 2022, 817, 153018. [Google Scholar] [CrossRef]
- Ismael, M.; Srouji, F.; Boutabba, M.A. Agricultural technologies and carbon emissions: Evidence from Jordanian economy. Environ. Sci. Pollut. Res. 2018, 25, 10867–10877. [Google Scholar] [CrossRef]
- O’Dell, D.; Eash, N.S.; Hicks, B.B.; Oetting, J.N.; Sauer, T.J.; Lambert, D.M.; Thierfelder, C.; Muoni, T.; Logan, J.; Zahn, J.A.; et al. Conservation agriculture as a climate change mitigation strategy in Zimbabwe. Int. J. Agric. Sustain. 2020, 18, 250–265. [Google Scholar] [CrossRef]
- Das, S.; Ho, A.; Kim, P.J. Editorial: Role of Microbes in Climate Smart Agriculture. Front. Microbiol. 2019, 10, 2756. [Google Scholar] [CrossRef] [PubMed]
- Ogle, S.M.; Olander, L.; Wollenberg, L.; Rosenstock, T.; Tubiello, F.; Paustian, K.; Buendia, L.; Nihart, A.; Smith, P. Reducing greenhouse gas emissions and adapting agricultural management for climate change in developing countries: Providing the basis for action. Glob. Chang. Biol. 2014, 20, 1–6. [Google Scholar] [CrossRef]
- Mohring, N.; Finger, R.; Dalhaus, T. Extreme heat reduces insecticide use under real field conditions. Sci. Total Environ. 2022, 819, 152043. [Google Scholar] [CrossRef]
- Bai, Y.P.; Deng, X.Z.; Jiang, S.J.; Zhao, Z.; Miao, Y. Relationship between climate change and low-carbon agricultural production: A case study in Hebei Province, China. Ecol. Indic. 2019, 105, 438–447. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Zhang, Y.; Piao, H.L. Does Agricultural Mechanization Improve the Green Total Factor Productivity of China’s Planting Industry? Energies 2022, 15, 940. [Google Scholar] [CrossRef]
- Liu, Y.N.; Su, J.R. Relationship between Climate Change and Agricultural Development Transition. In Proceedings of the 19th International Scientific Conference on Hradec Economic Days, Hradec Kralove, Czech Republic, 25–26 March 2021; pp. 541–554. [Google Scholar]
- Chen, S.; Gong, B.L. Response and adaptation of agriculture to climate change: Evidence from China. J. Dev. Econ. 2021, 148, 102557. [Google Scholar] [CrossRef]
- China Meteorological Data Service Centre. China Meteorological Science Data Sharing Service. Available online: http://data.cma.cn/ (accessed on 19 September 2022).
- China Statistics Press. Hebei Rural Statistical Yearbook; China Statistics Press: Hebei, China, 2021. [Google Scholar]
- ETCCDI. 10 Expert Team on Climate Change Detection and Indices. Available online: http://etccdi.pacificclimate.org/ (accessed on 19 September 2022).
- Jiang, H.L.; Xu, X. Impact of extreme climates on vegetation from multiple scales and perspectives in the Agro-pastural Transitional Zone of Northern China in the past three decades. J. Clean. Prod. 2022, 372, 133459. [Google Scholar] [CrossRef]
- Kim, Y.H.; Min, S.K.; Zhang, X.B.; Sillmann, J.; Sandstad, M. Evaluation of the CMIP6 multi-model ensemble for climate extreme indices. Weather. Clim. Extrem. 2020, 29, 100269. [Google Scholar] [CrossRef]
- Chervenkov, H.; Slavov, K. ETCCDI climate indices for assessment of the recent climate over southeast Europe. In Proceedings of the Advances in High Performance Computing: Results of the International Conference on “High Performance Computing”, Borovets, Bulgaria; 2021; pp. 398–412. [Google Scholar]
- Ma, S.L.; Li, J.F.; Wei, W.T. The carbon emission reduction effect of digital agriculture in China. Environ. Sci. Pollut. Res. 2022, 1–18. [Google Scholar] [CrossRef]
- Li, J.J.; Li, S.W.; Liu, Q.; Ding, J.L. Agricultural carbon emission efficiency evaluation and influencing factors in Zhejiang province, China. Front. Environ. Sci. 2022, 10, 2208. [Google Scholar] [CrossRef]
- Duan, H.; Zhang, Y.; Zhao, J.; Bian, X. Carbon footprint analysis of farmland ecosystem in China. J. Soil Water Conserv. 2011, 25, 203–208. [Google Scholar]
- Dong, F.; Zhu, J.; Li, Y.F.; Chen, Y.H.; Gao, Y.J.; Hu, M.Y.; Qin, C.; Sun, J.J. How green technology innovation affects carbon emission efficiency: Evidence from developed countries proposing carbon neutrality targets. Environ. Sci. Pollut. Res. 2022, 29, 35780–35799. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Sun, Z.C.; Zhou, J.; Sow, Y.; Cui, X.F.; Chen, H.P.; Shen, Q.L. The Impact of the Digital Economy on Carbon Emissions from Cultivated Land Use. Land 2023, 12, 665. [Google Scholar] [CrossRef]
- Kaya, Y. Impact of carbon dioxide emission on GNP growth: Interpretation of proposed scenarios. In Response Strategies Working Group; IPCC: Geneva, Switzerland, 1989. [Google Scholar]
- He, J.J.; Jiang, Y.H.; Zhang, H.; IOP. Research on Characteristics and Effecting Factors of Crop Farming Carbon Emission in Henan Province, China. In Proceedings of the 4th International Conference on Environmental Science and Material Application (ESMA), Xi’an, China, 15–16 December 2018. [Google Scholar]
- Yifan, Z.; Bin, L.; Runqing, Z. Spatiotemporal evolution and influencing factors of agricultural carbon emissions in Hebei Province at the county scale. Chin. J. Ecol. Agric. (Chin. Engl.) 2022, 30, 570–581. [Google Scholar]
- Ana, Y.; Siyuan, D.; Qingqing, H. Technology selection in the development of low-carbon industry in Hebei province. In Proceedings of the 2013 6th International Conference on Information Management, Innovation Management and Industrial Engineering, Xi’an, China, 23–24 November 2013; pp. 598–600. [Google Scholar]
- Xyu, L.; Liu, J. Climate change and issues of Chinese agricultural development. Acta Agric. Zhejiangensis 2013, 25, 192–199. [Google Scholar]
- Li, C.; Du, Y.; Zheng, N.; Li, B. Characteristics of minimum temperature variation in Hebei Province during 1965–2005. J. Arid. Land Resour. Environ. 2010, 24, 129–134. [Google Scholar]
- Zhu, T.T.; De Lima, C.F.F.; De Smet, I. The heat is on: How crop growth, development, and yield respond to high temperature. J. Exp. Bot. 2021, 72, 7359–7373. [Google Scholar] [CrossRef]
- Zhai, Z.; Yan, C.; Zhang, J. Study on adaptive capacity of agricultural technology to climate change. J. China Agric. Univ. 2015, 20, 185–194. [Google Scholar]
- Li, Q.; Li, G.; Yin, C.; Liu, F. Spatial characteristics of agricultural green total factor productivity at county level in Hebei Province. J. Ecol. Rural. Environ. 2019, 35, 845–852. [Google Scholar]
- Chen, P.-C.; Yu, M.-M.; Chang, C.-C.; Hsu, S.-H. Total factor productivity growth in China’s agricultural sector. China Econ. Rev. 2008, 19, 580–593. [Google Scholar] [CrossRef]
- Zhang, D.; Zong, J.; Ma, J.; Yang, X.; Hu, X.; Xu, S. Effects of Wheat-Maize Rotation System Tillage Method and Enhanced Organic Fertilizer on Soil Organic Carbon Pool and Greenhouse Gas Emission in Maize Soil. Ecol. Environ. Sci. 2019, 28, 1927–1935. [Google Scholar]
- Togni, P.H.B.; Venzon, M.; Lagoa, A.C.G.; Sujii, E.R. Brazilian Legislation Leaning Towards Fast Registration of Biological Control Agents to Benefit Organic Agriculture. Neotrop. Entomol. 2019, 48, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Miao, H.; Wang, F.; Gu, B.; Li, Y. Discussion of Agricultural Water-saving Technique and Mode Adapting to Climate Change in Hebei Province. South-North Water Transf. Water Sci. Technol. 2013, 11, 157–162. [Google Scholar]
- Liu, Y.; Tang, H.Y.; Muhammad, A.; Huang, G.Q. Emission mechanism and reduction countermeasures of agricultural greenhouse gases—A review. Greenh. Gases-Sci. Technol. 2019, 9, 160–174. [Google Scholar] [CrossRef]
Classification | Name | Id | Definition | Unit |
---|---|---|---|---|
Relative threshold | Cold Days | TX10p | Percentage of days when TX < 10th percentile | Days |
Cold Nights | TN10p | Percentage of days when TN < 10th percentile | Days | |
Warm Days | TX90p | Percentage of days when TX > 90th percentile | Days | |
Warm Nights | TN90p | Percentage of days when TN > 90th percentile | Days | |
Warm Spell Duration Index | WSDI | Number of days when TX > 90th percentile for at least 6 consecutive days | Days | |
Cold Spell Duration Index | CSDI | Number of days when TN < 10th percentile for at least 6 consecutive days | Days | |
Absolute threshold | Frost Days | FD0 | Annual count when TN < 0 °C | Days |
Summer Days | SU25 | Annual count when TX > 25 °C | Days | |
Extreme value | Max TX | TXx | Monthly maximum value of daily TX | °C |
Max TN | TNx | Monthly maximum value of daily TN | °C | |
Min TX | TXn | Monthly minimum value of daily TX | °C | |
Min TN | TNn | Monthly minimum value of daily TN | °C |
Factors | Coefficients | Sources |
---|---|---|
Fertilizer | 0.8956 kg C/kg | Oak Ridge National Laboratory |
Pesticide | 4.9341 kg C/kg | Oak Ridge National Laboratory |
Agricultural film | 5.1800 kg C/kg | Institute of Resources, Ecosystem and environment of agriculture, Nanjing Agricultural University |
Diesel fuel | 0.5927 kg C/kg | Intergovernmental Panel on Climate Change |
Plowing | 312.60 kg C/hm2 | College of Agronomy and Biotechnology, China Agricultural University |
Irrigation | 266.48 kg C/hm2 | Huaping Duan [49] |
Serial correlation | F = 164.618 | Prob > F = 0.000 | exist |
Heteroscedasticity | chi2 = 136.970 | Prob > chi2 = 0.000 | exist |
Variable | Mean | Max | Min | Std.Dev. |
---|---|---|---|---|
Cit | 109.500 | 14.030 | 254.804 | 59.958 |
TX10pit | 10.062 | 1.100 | 21.740 | 3.440 |
WSDIit | 3.695 | 0.000 | 30.000 | 6.209 |
EIit | 0.582 | 0.131 | 1.615 | 0.290 |
CIit | 0.536 | 0.323 | 0.725 | 0.075 |
SIit | 3.231 | 0.478 | 8.403 | 1.741 |
Labit | 132.869 | 66.693 | 321.106 | 59.560 |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
---|---|---|---|---|---|---|
OLS | LSDV | Robust | PCSE | Random Effect | ||
lnTX10p | 0.193 ** | 0.237 *** | 0.237 *** | 0.237 *** | 0.237 ** | 0.345 ** |
(2.420) | (3.620) | (3.370) | (7.070) | (2.500) | (2.360) | |
lnWSDI | −0.045 | −0.047 | −0.047 | −0.047 | −0.047 * | −0.093 |
(−0.900) | (−1.300) | (−1.100) | (−1.440) | (−1.94) | (−0.84) | |
EI | 0.706 *** | 0.706 *** | 0.706 * | 0.706 *** | 2.822 *** | |
(2.710) | (3.830) | (2.040) | (5.200) | (9.880) | ||
CI | 0.943 ** | 0.943 *** | 0.943 | 0.943 *** | 2.062 *** | |
(2.660) | (3.290) | (1.680) | (4.600) | (5.450) | ||
SI | 0.050 *** | 0.050 ** | 0.050 ** | 0.050 *** | 0.243 *** | |
(2.900) | (2.100) | (2.220) | (3.740) | (7.900) | ||
LAB | 4.09 × 10−6 | 4.09 × 10−6 | 4.09 × 10−6 | 4.09 × 10−6 | 0.006 *** | |
(0.000) | (0.000) | (0.000) | (0.010) | (11.110) | ||
Constant | 2.800 *** | 2.227 *** | 2.227 *** | 2.800 *** | −1.025 * | |
(7.380) | (7.410) | (5.140) | (9.810) | (−1.820) |
lnTX10p | 0.081 * |
(1.670) | |
lnTX10p × lnTFP | 0.318 ** |
(2.580) | |
lnTFP | −0.800 *** |
(−2.790) | |
EI | 0.495 *** |
(6.560) | |
CI | 0.816 *** |
(4.440) | |
SI | 0.022 |
(1.570) | |
LAB | −5.78 × 10−5 |
(−0.080) | |
Constant | 2.860 *** |
(15.650) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, S.; Qiao, H. Impact of Temperature Extremes on Carbon Emissions from Crop Production in Hebei Province, China. Atmosphere 2023, 14, 1179. https://doi.org/10.3390/atmos14071179
Shao S, Qiao H. Impact of Temperature Extremes on Carbon Emissions from Crop Production in Hebei Province, China. Atmosphere. 2023; 14(7):1179. https://doi.org/10.3390/atmos14071179
Chicago/Turabian StyleShao, Shuai, and Hongwu Qiao. 2023. "Impact of Temperature Extremes on Carbon Emissions from Crop Production in Hebei Province, China" Atmosphere 14, no. 7: 1179. https://doi.org/10.3390/atmos14071179
APA StyleShao, S., & Qiao, H. (2023). Impact of Temperature Extremes on Carbon Emissions from Crop Production in Hebei Province, China. Atmosphere, 14(7), 1179. https://doi.org/10.3390/atmos14071179