Reproducing High Spatiotemporal Resolution Precipitable Water Distributions Using Numerical Prediction Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Used and Target Region
2.2. Method Used to Reproduce Pecipitable Water Distributions from MSM-GPV and DEM Data
2.3. Study of Methods for Improving Elevation Correction
2.4. Study of Methods for Converting Temporal Resolutions to High-Resolution Values
2.5. Reproducibility in Near Real Time
3. Results and Discussion
3.1. Study of Methods for Improving Elevation Correction
3.2. Study of Methods Converting Temporal Resolution Values to High Resolutions
3.3. Possibility of Reproduction in Near Real Time
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, Q.; Zhang, X.; Wu, K.; Liu, Y.; Li, Z.; Shi, Y. Comprehensive precipitable water vapor retrieval and application platform based on various water vapor detection techniques. Remote Sens. 2022, 14, 2507. [Google Scholar] [CrossRef]
- Chen, B.; Liu, Z. Global water vapor variability and trend from the latest 36 year (1979 to 2014) data of ECMWF and NCEP reanalyses, radiosonde, GPS, and microwave satellite. J. Geophys. Res. Atmos. 2016, 121, 11–442. [Google Scholar] [CrossRef]
- Wagner, T.; Beirle, S.; Grzegorski, M.; Platt, U. Global trends (1996–2003) of total column precipitable water observed by global ozone monitoring experiment (GOME) on ERS-2 and their relation to near-surface temperature. J. Geophys. Res. 2006, 111, D12102. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, S.; Kuttippurath, J.; Patel, V.K. Long-term changes in precipitable water vapour over India derived from satellite and reanalysis data for the past four decades (1980–2020). Environ. Sci. 2023, 3, 749–759. [Google Scholar] [CrossRef]
- Dai, A. Recent climatology, variability, and trends in global surface humidity. J. Clim. 2006, 19, 3589–3606. [Google Scholar] [CrossRef] [Green Version]
- Mieruch, S.; Schröder, M.; Noël, S.; Schulz, J. Comparison of decadal global water vapor changes derived from independent satellite time series. J. Geophys. Res. Atmos. 2014, 119, 12–489. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, L.; Gan, B. Modes and mechanisms of global water vapor variability over the twentieth century. J. Clim. 2013, 26, 5578–5593. [Google Scholar] [CrossRef]
- Held, I.M.; Soden, B.J. Robust responses of the hydrological cycle to global warming. J. Clim. 2006, 19, 5686–5699. [Google Scholar] [CrossRef]
- Santer, B.D.; Wigley, T.M.L.; Gleckler, P.J.; Bonfils, C.; Wehner, M.F.; AchutaRao, K.; Barnett, T.P.; Boyle, J.S.; Brüggemann, W.; Fiorino, M.; et al. Forced and unforced ocean temperature changes in Atlantic and pacific tropical cyclogenesis regions. Proc. Natl. Acad. Sci. USA 2006, 103, 13905–13910. [Google Scholar] [CrossRef]
- Shoji, Y.; Sato, K.; Yabuki, M.; Tsuda, T. Comparison of shipborne GNSS-derived precipitable water vapor with radiosonde in the western north pacific and in the seas adjacent to Japan. Earth Planets Space 2017, 69, 153. [Google Scholar] [CrossRef]
- He, W.; Cheng, Y.; Zou, R.; Wang, P.; Chen, H.; Li, J.; Xia, X. Radiative transfer model simulations for ground-based microwave radiometers in North China. Remote Sens. 2021, 13, 5161. [Google Scholar] [CrossRef]
- Sun, W.; Wang, J.; Li, Y.; Meng, J.; Zhao, Y.; Wu, P. New gridded product for the total columnar atmospheric water vapor over ocean surface constructed from microwave radiometer satellite data. Remote Sens. 2021, 13, 2402. [Google Scholar] [CrossRef]
- Lu, C.; Chen, X.; Liu, G.; Dick, G.; Wickert, J.; Jiang, X.; Zheng, K.; Schuh, H. Real-time tropospheric delays retrieved from multi-GNSS observations and IGS real-time product streams. Remote Sens. 2017, 9, 1317. [Google Scholar] [CrossRef] [Green Version]
- Van Malderen, R.; Pottiaux, E.; Stankunavicius, G.; Beirle, S.; Wagner, T.; Brenot, H.; Bruyninx, C.; Jones, J. Global spatiotemporal variability of integrated water vapor derived from GPS, GOME/Sciamachy and ERA-interim: Annual cycle, frequency distribution and linear trends. Remote Sens. 2022, 14, 1050. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, Y.; Liu, Y.; Wang, J.; He, X.; Xu, W.; Ge, M.; Schuh, H. Validating HY-2A CMR precipitable water vapor using ground-based and shipborne GNSS observations. Atmos. Meas. Tech. 2020, 13, 4963–4972. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Gao, B.-C. Remote sensing of water vapor in the near IR from EOS/MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 871–884. [Google Scholar] [CrossRef]
- Li, X.; Tan, H.; Li, X.; Dick, G.; Wickert, J.; Schuh, H. Real-time sensing of precipitable water vapor from BeiDou observations: Hong Kong and CMONOC networks. J. Geophys. Res. Atmos. 2018, 123, 7897–7909. [Google Scholar] [CrossRef] [Green Version]
- Nelson, R.R.; Crisp, D.; Ott, L.E.; O’Dell, C.W. High-accuracy measurements of total column water vapor from the orbiting carbon observatory-2. Geophys. Res. Lett. 2016, 43, 12–261. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Z.; Sun, X.; Sang, J.; Wei, X. Modify the accuracy of MODIS PWV in China: A performance comparison using random forest, generalized regression neural network and back-propagation neural network. Remote Sens. 2021, 13, 2215. [Google Scholar] [CrossRef]
- Song, Y.; Han, L.; Huang, X.; Wang, G. Analysis and evaluation of the layered precipitable water vapor data from the FENGYUN-4A/AGRI over the southeastern Tibetan Plateau. Atmosphere 2023, 14, 277. [Google Scholar] [CrossRef]
- Zhao, Q.; Yao, W.; Yao, Y.; Li, X. An improved GNSS tropospheric tomography method with the GPT2w model. GPS Solut. 2020, 24, 60. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Choy, S.; Wu, S.; Jiang, C.; Zhang, J.; Qiu, C.; Li, L.; Zhang, K. A new cumulative anomaly-based model for the detection of heavy precipitation using GNSS-derived tropospheric products. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–18. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, H.; Liang, H.; Lou, Y.; Cai, Y.; Cao, Y.; Zhou, Y.; Liu, W. On the suitability of ERA5 in hourly GPS precipitable water vapor retrieval over China. J. Geod. 2019, 93, 1897–1909. [Google Scholar] [CrossRef]
- Steinke, S.; Eikenberg, S.; Löhnert, U.; Dick, G.; Klocke, D.; Di Girolamo, P.; Crewell, S. Assessment of small-scale integrated water vapour variability during HOPE. Atmos. Chem. Phys. 2015, 15, 2675–2692. [Google Scholar] [CrossRef] [Green Version]
- Vogelmann, H.; Sussmann, R.; Trickl, T.; Reichert, A. spatiotemporal variability of water vapor investigated using lidar and FTIR vertical soundings above the Zugspitze. Atmos. Chem. Phys. 2015, 15, 3135–3148. [Google Scholar] [CrossRef] [Green Version]
- Fersch, B.; Wagner, A.; Kamm, B.; Shehaj, E.; Schenk, A.; Yuan, P.; Geiger, A.; Moeller, G.; Heck, B.; Hinz, S.; et al. Tropospheric water vapor: A comprehensive high-resolution data collection for the transnational upper rhine graben region. Earth Syst. Sci. Data 2022, 14, 5287–5307. [Google Scholar] [CrossRef]
- Akatsuka, S.; Susaki, J.; Takagi, M. Estimation of precipitable water using numerical prediction data. Eng. J. 2018, 22, 257–268. [Google Scholar] [CrossRef]
- Akatsuka, S. Improved method for estimating precipitable water distribution using numerical prediction data. Internet J. Soc. Manag. Syst. 2020, 12, sms19-5790. [Google Scholar]
- Research Institute for Sustainable Humanosphere, Kyoto University. Data Form Japan Meteorological Agency. 2017. Available online: http://database.rish.kyoto-u.ac.jp/arch/jmadata/ (accessed on 8 May 2023).
- Jet Propulsion Laboratory, NASA. ASTER Global Digital Elevation Map Announcement. 2017. Available online: https://asterweb.jpl.nasa.gov/gdem.asp (accessed on 8 May 2023).
- Means, J.D. GPS precipitable water as a diagnostic of the North American monsoon in California and Nevada. J. Clim. 2013, 26, 1432–1444. [Google Scholar] [CrossRef]
- Shangguan, M.; Heise, S.; Bender, M.; Dick, G.; Ramatschi, M.; Wickert, J. Validation of GPS atmospheric water vapor with WVR data in satellite tracking mode. Ann. Geophys. 2015, 33, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Vey, S.; Dietrich, R.; Rülke, A.; Fritsche, M.; Steigenberger, P.; Rothacher, M. Validation of precipitable water vapor within the NCEP/DOE reanalysis using global GPS observations from one decade. J. Clim. 2010, 23, 1675–1695. [Google Scholar] [CrossRef]
- Geospatial Information Authority of Japan. GNSS Data Provided Service. Available online: https://terras.gsi.go.jp (accessed on 8 May 2023).
- Japan Meteorological Agency Homepage. Historical Meteorological Data. Available online: https://www.data.jma.go.jp/obd/stats/etrn/ (accessed on 8 May 2023).
- Kondo, J. Atmospheric Science Near the Ground Surface; The University of Tokyo Press: Tokyo, Japan, 2000. [Google Scholar]
- Sakai, T.; Koremura, K.; Niimi, K. Height measurement error of barometric altimeter and its correction. Electron. Navig. Res. Inst. Pap. 2005, 114, 1–13. [Google Scholar]
- Ross, R.J.; Elliott, W.P. Tropospheric water vapor climatology and trends over North America: 1973-93. J. Clim. 1996, 9, 3561–3574. [Google Scholar] [CrossRef]
- Jin, S.; Li, Z.; Cho, J. Integrated water vapor field and multiscale variations over China from GPS measurements. J. Appl. Meteorol. Climatol. 2008, 47, 3008–3015. [Google Scholar] [CrossRef]
- Wang, H.; Wei, M.; Li, G.; Zhou, S.; Zeng, Q. Analysis of precipitable water vapor from GPS measurements in Chengdu region: Distribution and evolution characteristics in autumn. Adv. Space Res. 2013, 52, 656–667. [Google Scholar] [CrossRef] [Green Version]
- Bock, O.; Keil, C.; Richard, E.; Flamant, C.; Bouin, M. Validation of precipitable water from ECMWF model analyses with GPS and radiosonde data during the MAP SOP. QJR Meteorol. Soc. 2005, 131, 3013–3036. [Google Scholar] [CrossRef]
- Anjomshoaa, A.; Salmanzadeh, M. Filling missing meteorological data in heating and cooling seasons separately. Int. J. Climatol. 2019, 39, 701–710. [Google Scholar] [CrossRef]
- Claridge, D.E.; Chen, H. Missing data estimation for 1-6 h gaps in energy use and weather data using different statistical methods. Int. J. Energy Res. 2006, 30, 1075–1091. [Google Scholar] [CrossRef]
- Liu, D.; Sun, T.; Han, Y.; Yan, X. The influence of calculation error of hourly marine meteorological parameter on building energy consumption calculation. Front. Archit. Res. 2022, 11, 981–991. [Google Scholar] [CrossRef]
Abbreviation | Explanation |
---|---|
AMeDAS | Automated Meteorological Data Acquisition System |
ASTER | Advanced Spaceborne Thermal Emission and Reflection Radiometer |
ASTER GDEM | ASTER Global Digital Elevation Model |
DEM | Digital Elevation Model |
GNSS | Global Navigation Satellite System |
GPV | Grid Point Value |
MSM | Meso-Scale Model |
PW | Precipitable Water |
RH | Relative Humidity |
RISH | Research Institute for Sustainable Humanosphere |
RMSE | Root Mean Square Error |
Variable | Level | Spatial Resolution (km) | Temporal Resolution (h) |
---|---|---|---|
Air temperature (K) | Surface | 5 | 1 |
Relative humidity (%) | Surface | 5 | 1 |
Surface pressure (hPa) | Surface | 5 | 1 |
Sea-level pressure (hPa) | Surface | 5 | 1 |
Air temperature (K) | 16 pressure levels 1 | 10 | 3 |
Relative humidity (%) | 12 pressure levels 2 | 10 | 3 |
Month | Coefficient | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|---|---|---|---|---|
January | 3.92 × 10−3 | 4.26 × 10−3 | 4.57 × 10−3 | 4.12 × 10−3 | 4.11 × 10−3 | 4.16 × 10−3 | 5.06 × 10−3 | 4.04 × 10−3 | 3.14 × 10−3 | |
−1.22 | −1.23 | −1.76 | −1.39 | −1.64 | −1.73 | −1.84 | −1.15 | −0.62 | ||
February | 4.15 × 10−3 | 4.26 × 10−3 | 4.37 × 10−3 | 4.19 × 10−3 | 3.53 × 10−3 | 4.79 × 10−3 | 4.53 × 10−3 | 4.24 × 10−3 | 3.17 × 10−3 | |
−0.97 | −1.05 | −1.57 | −1.20 | −1.45 | −1.65 | −1.67 | −1.14 | −0.54 | ||
March | 5.10 × 10−3 | 5.32 × 10−3 | 5.22 × 10−3 | 4.41 × 10−3 | 5.27 × 10−3 | 5.03 × 10−3 | 5.02 × 10−3 | 5.70 × 10−3 | 5.08 × 10−3 | |
−0.82 | −1.63 | −1.37 | −1.17 | −1.52 | −1.23 | −1.23 | −0.99 | −0.65 | ||
April | 5.90 × 10−3 | 7.69 × 10−3 | 7.11 × 10−3 | 6.84 × 10−3 | 6.63 × 10−3 | 6.30 × 10−3 | 4.92 × 10−3 | 6.06 × 10−3 | 6.81 × 10−3 | |
−1.04 | −1.98 | −1.44 | −1.39 | −1.15 | −0.91 | −0.41 | −1.02 | −1.31 | ||
May | 7.20 × 10−3 | 8.17 × 10−3 | 8.62 × 10−3 | 8.14 × 10−3 | 8.13 × 10−3 | 7.08 × 10−3 | 8.60 × 10−3 | 8.72 × 10−3 | 7.48 × 10−3 | |
−0.98 | −1.79 | −1.42 | −1.58 | −0.63 | −0.91 | −0.43 | −0.90 | −0.48 | ||
June | 1.08 × 10−2 | 1.07 × 10−2 | 1.12 × 10−2 | 9.84 × 10−3 | 1.06 × 10−2 | 1.04 × 10−2 | 1.04 × 10−2 | 1.04 × 10−2 | 1.04 × 10−2 | |
−0.69 | −1.51 | −0.94 | −1.20 | −0.62 | 0.06 | 0.97 | 0.00 | 0.77 | ||
July | 1.26 × 10−2 | 1.30 × 10−2 | 1.34 × 10−2 | 1.36 × 10−2 | 1.33 × 10−2 | 1.22 × 10−2 | 1.28 × 10−2 | 1.25 × 10−2 | 1.27 × 10−2 | |
−0.62 | −1.59 | −1.37 | −1.01 | 0.02 | 0.26 | −0.13 | 0.42 | 1.20 | ||
August | 1.33 × 10−2 | 1.32 × 10−2 | 1.21 × 10−2 | 1.30 × 10−2 | 1.22 × 10−2 | 1.24 × 10−2 | 1.32 × 10−2 | 1.28 × 10−2 | 1.32 × 10−2 | |
−1.07 | −1.75 | 0.14 | −0.19 | 0.12 | 0.50 | 0.06 | 0.75 | 0.96 | ||
September | 1.05 × 10−2 | 1.13 × 10−2 | 1.29 × 10−2 | 1.09 × 10−2 | 1.20 × 10−2 | 1.29 × 10−2 | 1.14 × 10−2 | 1.20 × 10−2 | 1.20 × 10−2 | |
−1.51 | −2.13 | −1.45 | −1.57 | −1.14 | −0.58 | −0.11 | −0.42 | −0.04 | ||
October | 8.96 × 10−3 | 7.50 × 10−3 | 1.01 × 10−2 | 1.01 × 10−2 | 8.57 × 10−3 | 9.89 × 10−3 | 8.52 × 10−3 | 8.80 × 10−3 | 8.47 × 10−3 | |
−1.59 | −2.16 | −2.45 | −2.78 | −1.55 | −1.31 | −1.49 | −1.04 | −1.23 | ||
November | 6.97 × 10−3 | 8.56 × 10−3 | 7.14 × 10−3 | 6.40 × 10−3 | 6.41 × 10−3 | 6.74 × 10−3 | 6.94 × 10−3 | 6.16 × 10−3 | 6.85 × 10−3 | |
−1.87 | −2.54 | −1.99 | −2.18 | −2.16 | −2.35 | −1.97 | −0.99 | −1.04 | ||
December | 4.35 × 10−3 | 5.74 × 10−3 | 5.40 × 10−3 | 4.03 × 10−3 | 5.48 × 10−3 | 5.31 × 10−3 | 4.52 × 10−3 | 4.41 × 10−3 | 4.03 × 10−3 | |
−1.32 | −1.94 | −1.85 | −1.65 | −2.01 | −1.88 | −1.37 | −0.87 | −0.95 |
Month | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|---|---|---|---|
January | 0.86 | 0.87 | 0.89 | 0.88 | 0.86 | 0.90 | 0.91 | 0.92 | 0.83 |
February | 0.87 | 0.88 | 0.92 | 0.91 | 0.86 | 0.92 | 0.91 | 0.92 | 0.80 |
March | 0.91 | 0.89 | 0.92 | 0.87 | 0.89 | 0.93 | 0.81 | 0.93 | 0.87 |
April | 0.89 | 0.92 | 0.89 | 0.90 | 0.89 | 0.89 | 0.93 | 0.96 | 0.90 |
May | 0.91 | 0.89 | 0.90 | 0.88 | 0.91 | 0.88 | 0.95 | 0.93 | 0.85 |
June | 0.92 | 0.90 | 0.91 | 0.88 | 0.89 | 0.90 | 0.93 | 0.91 | 0.92 |
July | 0.92 | 0.94 | 0.90 | 0.88 | 0.91 | 0.88 | 0.95 | 0.93 | 0.89 |
August | 0.93 | 0.92 | 0.87 | 0.88 | 0.87 | 0.88 | 0.94 | 0.94 | 0.92 |
September | 0.91 | 0.91 | 0.92 | 0.90 | 0.92 | 0.91 | 0.94 | 0.94 | 0.92 |
October | 0.90 | 0.9 | 0.90 | 0.93 | 0.92 | 0.92 | 0.94 | 0.95 | 0.92 |
November | 0.91 | 0.92 | 0.92 | 0.90 | 0.90 | 0.90 | 0.93 | 0.96 | 0.90 |
December | 0.90 | 0.90 | 0.88 | 0.87 | 0.94 | 0.88 | 0.92 | 0.93 | 0.87 |
Month | Mean | |
---|---|---|
Slope | Intercept | |
January | 4.19 × 10−3 | −1.45 |
February | 4.01 × 10−3 | −1.25 |
March | 5.05 × 10−3 | −1.30 |
April | 6.84 × 10−3 | −1.40 |
May | 8.05 × 10−3 | −1.28 |
June | 1.06 × 10−2 | −0.99 |
July | 1.32 × 10−2 | −0.91 |
August | 1.28 × 10−2 | −0.55 |
September | 1.15 × 10−2 | −1.56 |
October | 9.04 × 10−3 | −2.10 |
November | 7.10 × 10−3 | −2.15 |
December | 5.00 × 10−3 | −1.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akatsuka, S. Reproducing High Spatiotemporal Resolution Precipitable Water Distributions Using Numerical Prediction Data. Atmosphere 2023, 14, 1177. https://doi.org/10.3390/atmos14071177
Akatsuka S. Reproducing High Spatiotemporal Resolution Precipitable Water Distributions Using Numerical Prediction Data. Atmosphere. 2023; 14(7):1177. https://doi.org/10.3390/atmos14071177
Chicago/Turabian StyleAkatsuka, Shin. 2023. "Reproducing High Spatiotemporal Resolution Precipitable Water Distributions Using Numerical Prediction Data" Atmosphere 14, no. 7: 1177. https://doi.org/10.3390/atmos14071177
APA StyleAkatsuka, S. (2023). Reproducing High Spatiotemporal Resolution Precipitable Water Distributions Using Numerical Prediction Data. Atmosphere, 14(7), 1177. https://doi.org/10.3390/atmos14071177