Trends in Extreme Precipitation Indices over Bhutan
Abstract
:1. Introduction
2. Study Area
3. Data and Methodology
3.1. Data
3.2. Precipitation Indices
3.3. Trend Analysis
3.3.1. Mann–Kendall (MK) Test
3.3.2. Sen’s Slope Estimator
3.4. Return Level
3.4.1. Generalized Extreme Value Distribution
3.4.2. GEV Return Periods and Return Levels
3.4.3. Goodness of Fit/Model Choice
4. Results and Discussion
4.1. Precipitation Climatology in Bhutan
4.2. Spatial Distribution of Extreme Precipitation Indices
4.3. Trends in Extreme Precipitation Indices
4.4. Spatial Distribution of Rx1Day and Rx5Day Trends on a Seasonal Scale
4.5. Modeling Using GEV
4.6. Return Levels
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Definition |
Rx1Day | Monthly maximum 1-day precipitation |
Rx5Day | Monthly maximum consecutive 5-day precipitation |
R95p | Annual total precipitation when RR > 95th percentile |
R99p | Annual total precipitation when RR > 99th percentile |
R10 mm | Annual count of days with RR ≥ 10 mm |
R20 mm | Annual count of days with RR ≥ 20 mm |
CDD | Maximum number of consecutive days with daily precipitation < 1 mm |
CWD | Maximum number of consecutive days with daily precipitation > 1 mm |
SDII | Ratio of annual total wet-day precipitation to the number of wet days |
PRCPTOT | Annual total precipitation in wet days (RR >= 1 mm) |
IPPC | Intergovernmental Panel on Climate Change |
ETCCDI | Experts Team on Climate Change Detection Indices |
M-K Test | Mann–Kendall test |
GLOF | Glacial lake outburst flood |
USD | US dollars |
ENSO | El Nino–Southern Oscillation |
EVT | Extreme value theory |
NCHM | National Centre for Hydrology and Meteorology, Bhutan |
FWS | Flood warning station |
WMO | World Meteorological Organization |
GEV | Generalized extreme value distribution |
MLE | Maximum likelihood estimate |
References
- Tse-ring, K.; Sharma, E.; Chettri, N.; Shrestha, A. (Eds.) Climate Change Vulnerability of Mountain Ecosystems in the Eastern Himalayas; Climate Change Impact and Vulnerability in the Eastern Himalayas—Synthesis Report; ICIMOD: Kathmandu, Nepal, 2010. [Google Scholar]
- IPCC. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Climate Change 2014: Synthesis Report; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Cutter, S.; Osman-Elasha, B.; Campbell, J.; Cheong, S.-M.; McCormick, S.; Pulwarty, R.; Supratid, S.; Ziervogel, G.; Calvo, E.; Mutabazi, K.D.; et al. Managing the Risks from Climate Extremes at the Local Level. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Field, C.B., Barros, V., Stocker, T.F., Dahe, Q., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 291–338. [Google Scholar] [CrossRef]
- Allan, R.P.; Soden, B.J. Atmospheric Warming and the Amplification of Precipitation Extremes. Science 2008, 321, 1481–1484. [Google Scholar] [CrossRef] [Green Version]
- Min, S.-K.; Zhang, X.; Zwiers, F.W.; Hegerl, G.C. Human Contribution to More-Intense Precipitation Extremes. Nature 2011, 470, 378–381. [Google Scholar] [CrossRef] [PubMed]
- Shiu, C.-J.; Liu, S.C.; Fu, C.; Dai, A.; Sun, Y. How Much Do Precipitation Extremes Change in a Warming Climate?: Changes in Precipitation Extremes. Geophys. Res. Lett. 2012, 39, 17707. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Dai, A.; Rasmussen, R.M.; Parsons, D.B. The Changing Character of Precipitation. Bull. Am. Meteorol. Soc. 2003, 84, 1205–1218. [Google Scholar] [CrossRef]
- Bhatti, A.S.; Wang, G.; Ullah, W.; Ullah, S.; Fiifi Tawia Hagan, D.; Kwesi Nooni, I.; Lou, D.; Ullah, I. Trend in Extreme Precipitation Indices Based on Long Term In Situ Precipitation Records over Pakistan. Water 2020, 12, 797. [Google Scholar] [CrossRef] [Green Version]
- Scoccimarro, E.; Gualdi, S.; Bellucci, A.; Zampieri, M.; Navarra, A. Heavy Precipitation Events in a Warmer Climate: Results from CMIP5 Models. J. Clim. 2013, 26, 7902–7911. [Google Scholar] [CrossRef]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global Observed Changes in Daily Climate Extremes of Temperature and Precipitation. J. Geophys. Res. 2006, 111, D05109. [Google Scholar] [CrossRef] [Green Version]
- Asadieh, B.; Krakauer, N.Y. Global Trends in Extreme Precipitation: Climate Models versus Observations. Hydrol. Earth Syst. Sci. 2015, 19, 877–891. [Google Scholar] [CrossRef] [Green Version]
- Donat, M.G.; Alexander, L.V.; Yang, H.; Durre, I.; Vose, R.; Dunn, R.J.H.; Willett, K.M.; Aguilar, E.; Brunet, M.; Caesar, J.; et al. Updated Analyses of Temperature and Precipitation Extreme Indices since the Beginning of the Twentieth Century: The HadEX2 Dataset: HADEX2-Global Gridded Climate Extremes. J. Geophys. Res. Atmos. 2013, 118, 2098–2118. [Google Scholar] [CrossRef] [Green Version]
- Huo, R.; Li, L.; Chen, H.; Xu, C.-Y.; Chen, J.; Guo, S. Extreme Precipitation Changes in Europe from the Last Millennium to the End of the Twenty-First Century. J. Clim. 2021, 34, 567–588. [Google Scholar] [CrossRef]
- Gao, T.; Xie, L. Spatiotemporal Changes in Precipitation Extremes over Yangtze River Basin, China, Considering the Rainfall Shift in the Late 1970s. Glob. Planet. Chang. 2016, 147, 106–124. [Google Scholar] [CrossRef]
- Mukherjee, S.; Aadhar, S.; Stone, D.; Mishra, V. Increase in Extreme Precipitation Events under Anthropogenic Warming in India. Weather Clim. Extrem. 2018, 20, 45–53. [Google Scholar] [CrossRef]
- Sheikh, M.M.; Manzoor, N.; Ashraf, J.; Adnan, M.; Collins, D.; Hameed, S.; Manton, M.J.; Ahmed, A.U.; Baidya, S.K.; Borgaonkar, H.P.; et al. Trends in extreme daily rainfall and temperature indices over South Asia. Int. J. Climatol. 2015, 35, 1625–1637. [Google Scholar] [CrossRef]
- Abbas, S.; Waseem, M.; Yaseen, M.; Latif, Y.; Leta, M.K.; Khan, T.H.; Muhammad, S. Spatial-Temporal Seasonal Variability of Extreme Precipitation under Warming Climate in Pakistan. Atmosphere 2023, 14, 210. [Google Scholar] [CrossRef]
- Ezaz, G.T.; Zhang, K.; Li, X.; Shalehy, M.H.; Hossain, M.A.; Liu, L. Spatiotemporal Changes of Precipitation Extremes in Bangladesh during 1987–2017 and Their Connections with Climate Changes, Climate Oscillations, and Monsoon Dynamics. Glob. Planet. Chang. 2022, 208, 103712. [Google Scholar] [CrossRef]
- Karki, R.; Hasson, S.U.; Schickhoff, U.; Scholten, T.; Böhner, J. Rising Precipitation Extremes across Nepal. Climate 2017, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Panthi, J.; Dahal, P.; Shrestha, M.; Aryal, S.; Krakauer, N.; Pradhanang, S.; Lakhankar, T.; Jha, A.; Sharma, M.; Karki, R. Spatial and Temporal Variability of Rainfall in the Gandaki River Basin of Nepal Himalaya. Climate 2015, 3, 210–226. [Google Scholar] [CrossRef] [Green Version]
- Rangwala, I.; Miller, J.R. Climate Change in Mountains: A Review of Elevation-Dependent Warming and Its Possible Causes. Clim. Chang. 2012, 114, 527–547. [Google Scholar] [CrossRef]
- Singh, S.P.; Bassignana-Khadka, I.; Karky, B.S.; Sharma, E. Climate Change in the Hindu Kush-Himalayas: The State of Current Knowledge; ICIMOD: Kathmandu, Nepal, 2011. [Google Scholar]
- Ménégoz, M.; Gallée, H.; Jacobi, H.W. Precipitation and Snow Cover in the Himalaya: From Reanalysis to Regional Climate Simulations. Hydrol. Earth Syst. Sci. 2013, 17, 3921–3936. [Google Scholar] [CrossRef] [Green Version]
- United Nations Development Program (UNDP). Royal Government of Bhutan. Addressing the Risks of Climate Induced Disasters through Enhanced National and Local Capacity for Effective Actions. Project Document. 2014. Available online: https://info.undp.org/docs/pdc/Documents/BTN/Bhutan%20NAPA2%20ProDoc%20signed_18th%20April%202014.pdf (accessed on 1 March 2021).
- Dikshit, A.; Sarkar, R.; Pradhan, B.; Acharya, S.; Dorji, K. Estimating Rainfall Thresholds for Landslide Occurrence in the Bhutan Himalayas. Water 2019, 11, 1616. [Google Scholar] [CrossRef] [Green Version]
- Dorji, T.; Tamang, T.B. Analysis of Historical Climate and Climate Change Projection; National Centre for Hydrology and Meteorology: Thimphu, Bhutan, 2019. Available online: https://www.nchm.gov.bt/attachment/ckfinder/userfiles/files/Analysis%20of%20Historical%20Climate%20and%20Climate%20Change%20Projection.pdf (accessed on 1 February 2021).
- Joshi, V.; Kumar, K. Extreme Rainfall Events and Associated Natural Hazards in Alaknanda Valley, Indian Himalayan Region. J. Mt. Sci. 2006, 3, 228–236. [Google Scholar] [CrossRef]
- Sarkar, R.; Dorji, K. Determination of the Probabilities of Landslide Events—A Case Study of Bhutan. Hydrology 2019, 6, 52. [Google Scholar] [CrossRef] [Green Version]
- Bookhagen, B. Appearance of Extreme Monsoonal Rainfall Events and Their Impact on Erosion in the Himalaya. Geomat. Nat. Hazards Risk 2010, 1, 37–50. [Google Scholar] [CrossRef]
- Dorji, T.; Ona, B.J.; Raghavan, S.V. Statistical Analyses on the Seasonal Rainfall Trend and Annual Rainfall Variability in Bhutan. SOLA 2021, 17, 202–206. [Google Scholar] [CrossRef]
- Sharma, V.; Adhikari, K. Rainfall and rainy days trend and ENSO phenomena in Himalayan Kingdom of Bhutan. Acta Geophys. 2022, 70, 1855–1869. [Google Scholar] [CrossRef]
- Quadir, D.A.; Hussain, A.; Ahasan, M.N.; Chhophel, K.; Sonam, K. Climatic Characteristics of Temperature and Precipitation of Bhutan. MAUSAM 2007, 58, 9–16. [Google Scholar] [CrossRef]
- WMO. ETCCDI: Climate Change Indices. Available online: http://etccdi.pacificclimate.org/ (accessed on 1 March 2021).
- Zhang, X.; Yang, F. RClimDex 1.0 User Manual; Climate Research Branch Environment Canada: Downsvies, ON, Canada, 2004; Volume 1, p. 22.
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975; p. 202. [Google Scholar]
- Wang, F.; Shao, W.; Yu, H.; Kan, G.; He, X.; Zhang, D.; Ren, M.; Wang, G. Re-Evaluation of the Power of the Mann-Kendall Test for Detecting Monotonic Trends in Hydrometeorological Time Series. Front. Earth Sci. 2020, 8, 14. [Google Scholar] [CrossRef]
- Fisher, R.A.; Tippett, L.H.C. Limiting Forms of the Frequency Distribution of the Largest or Smallest Member of a Sample. Math. Proc. Camb. Philos. Soc. 1928, 24, 180–190. [Google Scholar] [CrossRef]
- Easterling, D.R.; Kunkel, K.E.; Wehner, M.F.; Sun, L. Detection and Attribution of Climate Extremes in the Observed Record. Weather Clim. Extrem. 2016, 11, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, N.; Kulkarni, B.; Verma, A.; Mandal, B. Extreme rainfall analysis and estimation of Probable Maximum Precipitation (PMP) by statistical methods over the Indus river basin in India. J. Spat. Hydrol. 2008, 8, 22–36. [Google Scholar]
- Albaldawi, T. Extreme Value Analysis of Maximum Rainfall Data in Baghdad City. Math. Stat. J. 2018, 2, 1–8. [Google Scholar]
- Acero, F.; Parey, S.; García, J.; Dacunha-Castelle, D. Return Level Estimation of Extreme Rainfall over the Iberian Peninsula: Comparison of Methods. Water 2018, 10, 179. [Google Scholar] [CrossRef] [Green Version]
- Zaman, M.; Ahmad, I.; Usman, M.; Saifullah, M.; Anjum, M.N.; Khan, M.I.; Uzair Qamar, M. Event-Based Time Distribution Patterns, Return Levels, and Their Trends of Extreme Precipitation across Indus Basin. Water 2020, 12, 3373. [Google Scholar] [CrossRef]
- Emmy, A.; Evelina, N. An Extreme Value Approach to Modeling Risk of Extreme Rainfall in Bangladesh. Bachelor’s Thesis, Lund University, Lund, Sweden, 2018. [Google Scholar]
- Feng, S.; Nadarajah, S.; Hu, Q. Modeling Annual Extreme Precipitation in China Using the Generalized Extreme Value Distribution. J. Meteorol. Soc. Jpn. Ser. II 2007, 85, 599–613. [Google Scholar] [CrossRef] [Green Version]
- Manuela, E.; Tong, M. Extreme Value Modeling of Precipitation in Case Studies for China. Int. J. Sci. Innov. Math. Res. IJSIMR 2014, 2, 23–36. [Google Scholar]
- Triphonia, J.N.; Joachim, R.; Edwin, R.; Shaban, N.; Michel, D.S.M. Modeling of Extreme Maximum Rainfall using Extreme Value Theory for Tanzania. Int. J. Sci. Innov. Math. Res. IJSIMR 2016, 4, 34–45. [Google Scholar]
- Johnson, K.; Smithers, J. Review: Methods for the Estimation of Extreme Rainfall Events. Water SA 2019, 45, 501–512. [Google Scholar] [CrossRef] [Green Version]
- Namitha, M.R. Analysis of Extreme Rainfall Events and Calculation of Return Levels Using Generalised Extreme Value Distribution. Int. J. Pure Appl. Biosci. 2018, 6, 1309–1316. [Google Scholar] [CrossRef]
- NIST/SEMATECH e-Handbook of Statistical Methods, Exploratory Data Analysis. Available online: https://www.itl.nist.gov/div898/handbook/toolaids/pff/E-Handbook.pdf (accessed on 1 February 2021).
- NCHM. Compendium of Climate and Hydrological Extremes in Bhutan since 1968 from Kuensel; National Centre for Hydro Meteorology (NCHM): Thimphu, Bhutan, 2014.
- NCHM. Compendium of Extreme Events; National Centre for Hydro Meteorology (NCHM): Thimphu, Bhutan, 2021; Volume 2.
- Choudhury, B.A.; Saha, S.K.; Konwar, M.; Sujith, K.; Deshamukhya, A. Rapid drying of Northeast India in the last three decades: Climate change or natural variability? J. Geophys. Res. Atmos. 2019, 124, 227–237. [Google Scholar] [CrossRef] [Green Version]
- Gümüs, V.; Avşaroğlu, A.; Şimşek, O.; Dinsever, L.D. Evaluation of meteorological time series trends in Southeastern Anatolia, Turkey. Geofizika 2023, 40, 51–73. [Google Scholar] [CrossRef]
Station | Altitude (Masl) | Annual Max Prcp (cm) |
---|---|---|
Haa | 2720 | 111.9 |
Chamkhar | 2470 | 90 |
Paro | 2406 | 107.4 |
Simtokha | 2310 | 89 |
Kanglung | 1930 | 129.4 |
Zhemgang | 1905 | 152.8 |
Trashi Yangtse | 1830 | 81 |
Pema Gatshel | 1618 | 194.8 |
Monger | 1600 | 145.8 |
Damphu | 1520 | 191.8 |
Dagana | 1460 | 172 |
Chukha FWS | 1376 | 243.6 |
Pangzam FWS/Thrimshing | 1350 | 180.8 |
Wangdue FWS | 1211 | 99 |
Punakha | 1236 | 104 |
Wangdue | 1180 | 98.8 |
Tendru FWS | 1000 | 296.4 |
Mangdichu FWS | 700 | 301 |
Chazam FWS | 685 | 100 |
Dorokha FWS | 560 | 430.5 |
Sipsu | 550 | 445.2 |
Kurizampa FWS | 540 | 104.8 |
Bhur | 375 | 430 |
Sunkosh FWS | 324 | 219.2 |
Deothang | 300 | 391.4 |
Index Class | Name | ID | Definition | Unit |
---|---|---|---|---|
Intensity indices | Max 1-day precipitation amount | Rx1Day | Monthly maximum 1-day precipitation | mm |
Max 5-day precipitation amount | Rx5Day | Monthly maximum consecutive 5-day precipitation | mm | |
Very wet days | R95p | Annual total precipitation when RR > 95th percentile | mm | |
Extremely wet days | R99p | Annual total precipitation when RR > 99th percentile | mm | |
Frequency indices | Number of heavy precipitation days | R10 mm | Annual count of days with RR ≥ 10 mm | days |
Number of very heavy precipitation days | R20 mm | Annual count of days with RR ≥ 20 mm | days | |
Duration indices | Consecutive dry days | CDD | Maximum number of consecutive days with daily precipitation < 1 mm | days |
Consecutive wet days | CWD | Maximum number of consecutive days with daily precipitation > 1 mm | days | |
Other indices | Simple daily intensity index | SDII | The ratio of annual total wet-day precipitation to the number of wet days | mm/day |
Annual total wet-day precipitation | PRCPTOT | Annual total precipitation in wet days (RR >= 1 mm) | mm |
Trend Analysis | MK Rainfall (mm) | |
---|---|---|
Annual Rainfall | Monsoonal Rainfall | |
S Trend | −79.0 | −55.0 |
Z | −1.7 | −1.1902 |
Kendall’s Tau | −0.2 | −0.169 |
p-value | 0.09 | 0.234 |
α | 0.05 | 0.05 |
Significance | Insignificant Decreasing Trend | Insignificant Decreasing Trend |
Station | Rx1Day | |
---|---|---|
50 Years | 100 Years | |
Deothang | 356 | 383 |
Sunkosh FWS | 210 | 224 |
Bhur | 413 | 445 |
Kurizampa FWS | 104 | 106 |
Sipsu | 444 | 492 |
Dorokha FWS | 437 | 510 |
Chazam FWS | 104 | 113 |
Mangdichu FWS | 258 | 303 |
Tendru FWS | 335 | 363 |
Wangdue | 115 | 142 |
Punakha | 106 | 129 |
Wangdue FWS | 106 | 121 |
Pangzam FWS/Thrimshing | 199 | 230 |
Chukha FWS | 228 | 272 |
Dagana | 179 | 190 |
Damphu | 195 | 200 |
Monger | 135 | 144 |
Pema Gatshel | 207 | 222 |
Trashi Yangtse | 77 | 82 |
Zhemgang | 155 | 170 |
Kanglung | 132 | 142 |
Simtokha | 87 | 99 |
Paro | 103 | 121 |
Chamkhar | 85 | 101 |
Haa | 132 | 167 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lhamo, T.; Chen, G.; Dorji, S.; Tamang, T.B.; Wang, X.; Zhang, P. Trends in Extreme Precipitation Indices over Bhutan. Atmosphere 2023, 14, 1154. https://doi.org/10.3390/atmos14071154
Lhamo T, Chen G, Dorji S, Tamang TB, Wang X, Zhang P. Trends in Extreme Precipitation Indices over Bhutan. Atmosphere. 2023; 14(7):1154. https://doi.org/10.3390/atmos14071154
Chicago/Turabian StyleLhamo, Tshering, Gang Chen, Singay Dorji, Tayba Buddha Tamang, Xiaofeng Wang, and Pingnan Zhang. 2023. "Trends in Extreme Precipitation Indices over Bhutan" Atmosphere 14, no. 7: 1154. https://doi.org/10.3390/atmos14071154
APA StyleLhamo, T., Chen, G., Dorji, S., Tamang, T. B., Wang, X., & Zhang, P. (2023). Trends in Extreme Precipitation Indices over Bhutan. Atmosphere, 14(7), 1154. https://doi.org/10.3390/atmos14071154