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Abstract: With the changing climate, the frequency and intensity of extreme precipitation events
are increasing. Climate change is projected to increase both mean and extreme precipitation. Socio-
economic damages can be immense and require a difficult recovery, especially for developing coun-
tries such as Bhutan. Furthermore, changing precipitation patterns affect land productivity and
water availability. The Experts Team on Climate Change Detection Indices (ETCCDI) is used to find
the changes associated with extreme precipitation in Bhutan. The study of extreme precipitation is
important for Bhutan, whose economy is dependent on agriculture and hydropower. Even for a small
country, there were varying patterns of precipitation in different districts. Deothang district received
less frequent and more intense rainfall, while Haa, Bumthang, Trashiyangtse, and Chukha received
weak but persistent rainfall. Mann–Kendall trends revealed a drier climate for two districts, Dagana
and Trashiyangtse, and a wetter climate for the Mongar district. Modeling of the extreme rainfall
with extreme value theory (EVT) revealed that the generalized extreme value (GEV) distribution by
their T = 50-year return value, indicating an increasing value of annual maximums for all stations.
This study is the first of its kind for Bhutan, and the findings can be used for decision support and
the planning of appropriate adaptation strategies for hydro-meteorological disasters, hydropower,
and agriculture sectors in Bhutan.

Keywords: extreme precipitation; ETCCDI; extreme value theorem; return levels; Bhutan

1. Introduction

Extreme climate events and their variability are associated with devastating envi-
ronmental and socio-economic consequences. These impacts are greater in developing
countries, where most of the population depends on climate-sensitive sectors and where
the ability to recover from hazards is relatively low [1]. According to the IPCC’s Fifth As-
sessment Report [2], global land and sea surface temperatures have risen by 0.85 ◦C during
the last century. A changing climate aggravates variability in the spatiotemporal patterns of
weather and climate extremes, potentially resulting in unprecedented extremes [3]. Several
studies have confirmed the impacts of anthropogenic climate change on the intensification
of extreme precipitation [3–7]. Therefore, analyzing historical precipitation extremes is
crucial for climate assessment, water resource management, mitigation strategies, and
sustainable agricultural and developmental practices [8,9].

Numerous studies using both observations and models found global trends to be
increasing, predicting a wetter future. For instance, Alexander et al. [10] reported that
contributions from very wet days to the annual total precipitation had slightly increased,
indicating an increase in the worldwide extreme precipitation. This was further supported
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by [9,11–15], although the trends were spatially heterogeneous. Findings from the South
Asian region also revealed a similar increase [16]. In Pakistan, [17] found a higher inten-
sity and recurring frequency of precipitation events in the more recent period, while [8]
suggested an overall increase in precipitation in the same region, which shifts the center of
maxima and intensity of extreme precipitation events. For Bangladesh, increasing trends
were mostly for the spring and summer monsoon seasons [14,18]. In contrast, studies
in Nepal [19,20] revealed a general prolongation of dry periods, with a decrease in post-
monsoon rainfall but with heterogeneous patterns in the increasing trends of the annual
and high-intensity precipitation. In all these studies, the extreme indices set by the Experts
Team on Climate Change Detection Indices (ETCCDI) were utilized with the Mann–Kendall
test to detect trends in extreme precipitation. Mountainous regions are more vulnerable
to global climate change [1,21]. The IPCC’s report on extreme events and disasters states
that the Hindu Kush Himalayan region is warming at a much higher rate than the global
mean [1,2]. The countries in these regions are highly exposed to the adverse effects of
changing climates due to their topography, seismic activities, land-use patterns, and other
anthropogenic activities [2,19,22]. The capacity to study climate trends in these areas is
constrained by the lack of sufficient length and spatial extent of observed data. Moreover,
high-mountain precipitation patterns are harder to simulate with climate models [23].

Located in the Eastern Himalayas, more than 70% of Bhutan is covered by forest.
Although it is a carbon-negative country, it ranks fourth highest in the region, with 1.7%
of the total population exposed to flood risks [24]. An increasing number of disasters
related to hydro-meteorological hazards are reported in the country [24,25]. For example,
21 people were killed and extensive property was damaged by the glacial lake outburst
flood (GLOF) event of Luggye Tsho in 1994. Thirteen people died in 2009 as a result of
heavy rains brought by Cyclone Aila, with an estimated economic loss of more than USD
15.8 million [24,26]. Most of these hazards are caused by heavy or extreme precipitation
during the monsoon season [19,27–29].

Previous studies on rainfall trends in Bhutan revealed a general decreasing trend,
but future projections show an increase with a substantial change in the spatial pattern of
winter and summer monsoon precipitation [1,26,30]. Sharma et al. [31] revealed that rainfall
patterns in the south of the country are negatively influenced by the El Nino–Southern
Oscillation (ENSO) cycle, while the majority of the country remains unaffected. All these
studies confirmed the sporadic nature of rainfall patterns over Bhutan owing to its orog-
raphy. However, a detailed study to understand the patterns of extreme precipitation in
Bhutan is missing. Given the presence of numerous microclimates in the country, there is
a high demand for localized information for better planning, resource management, and
disaster prevention.

Therefore, this study has been conducted to analyze spatiotemporal patterns of ex-
treme precipitation in terms of its frequency, amount, and duration over Bhutan. While
the Mann–Kendall approach has been used in previous studies, this study is unique in
terms of its use of the extreme indices from the Experts Team on Climate Change Detection
(ETCCDI), which provide a thorough outlook on rainfall patterns. Furthermore, the 50- and
100-year rainfall return values calculated with the extreme value theory (EVT) provide
further information on future extremes.

The findings from this study can provide essential information to decision-makers
and policymakers. The remaining parts of this paper are arranged as follows. Section two
describes the physical and climatic characteristics of the study domain, while Section three
covers data and methods. Section four summarizes the results and discussions, and Section
five concludes the study.

2. Study Area

Bhutan is located in the Eastern Himalayas at [27.5142◦ N, 90.4336◦ E] and is land-
locked between India and China (Figure 1). It has an area of approximately 38,000 square
kilometers and is characterized by non-uniform and rugged topography ranging from less
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than 100 m in the southern plains to more than 7000 m in the high mountains of the north.
It has three distinct climate zones: the southern belt, characterized by a subtropical climate,
high humidity, and heavy rainfall; the central belt, characterized by cool winters, hot sum-
mers, and moderate rainfall; and the northern belt, with cold winters and cool summers.
During summer, the southwest monsoon brings rain over Bhutan, with occasional heavy
rainfall brought on by the cyclonic systems over the Bay of Bengal, while the winter season
is affected by Western disturbances originating in the Mediterranean region [26,32].
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Figure 1. (a) Study area showing the location of Bhutan in South Asia (the green box shows the
Eastern Himalayas); (b) topography (unit: meters above sea level (masl)) of the study area and the
locations of the stations.

The majority of the meteorological stations in the country lie below 3000 m. As stations
lying above 3000 m (northern Bhutan) lack long-term meteorological data, they cannot be
included in this study. Therefore, the study area is limited to the central and southern belts
of the country.

3. Data and Methodology
3.1. Data

Daily surface observational data from the National Centre for Hydrology and Meteo-
rology (NCHM) of Bhutan were utilized in this paper. It includes rainfall datasets from
1996–2021 for 20 agro-meteorological stations and 10 flood warning stations (FWS). The
spatial locations of the stations are shown in Figure 1b. Table 1 shows the stations with
their altitude and annual maximum rainfall. Data were examined for missing values and
outliers, and stations with more than 3% of their observations missing were discarded. The
initial 30 stations were then reduced to 25.
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Table 1. Selected stations, their altitudes, and the annual maximum 1-day precipitation.

Station Altitude (Masl) Annual Max Prcp (cm)

Haa 2720 111.9
Chamkhar 2470 90

Paro 2406 107.4
Simtokha 2310 89
Kanglung 1930 129.4
Zhemgang 1905 152.8

Trashi Yangtse 1830 81
Pema Gatshel 1618 194.8

Monger 1600 145.8
Damphu 1520 191.8
Dagana 1460 172

Chukha FWS 1376 243.6
Pangzam FWS/Thrimshing 1350 180.8

Wangdue FWS 1211 99
Punakha 1236 104
Wangdue 1180 98.8

Tendru FWS 1000 296.4
Mangdichu FWS 700 301

Chazam FWS 685 100
Dorokha FWS 560 430.5

Sipsu 550 445.2
Kurizampa FWS 540 104.8

Bhur 375 430
Sunkosh FWS 324 219.2

Deothang 300 391.4

3.2. Precipitation Indices

Ten extreme indices (Table 2) were selected based on the ETCCDI [33] of the World
Meteorological Organization (WMO). These were chosen to access and quantify extreme
precipitation in Bhutan in terms of intensity, frequency, and duration. Indices established by
the ETCCDI have been extensively used to study extremes in precipitation and temperature
at regional and global scales [8,10,18–20].

The chosen indices in this study were calculated from the daily precipitation data
using RClimdex (a package in the statistical programming language R) [34].

Table 2. Precipitation indices used.

Index Class Name ID Definition Unit

Intensity indices Max 1-day precipitation amount Rx1Day Monthly maximum 1-day precipitation mm

Max 5-day precipitation amount Rx5Day Monthly maximum consecutive 5-day
precipitation mm

Very wet days R95p Annual total precipitation when RR > 95th
percentile mm

Extremely wet days R99p Annual total precipitation when RR > 99th
percentile mm

Frequency indices Number of heavy precipitation days R10 mm Annual count of days with RR ≥ 10 mm days
Number of very heavy

precipitation days R20 mm Annual count of days with RR ≥ 20 mm days

Duration indices Consecutive dry days CDD Maximum number of consecutive days with
daily precipitation < 1 mm days

Consecutive wet days CWD Maximum number of consecutive days with
daily precipitation > 1 mm days

Other indices
Simple daily intensity index SDII The ratio of annual total wet-day

precipitation to the number of wet days mm/day

Annual total wet-day precipitation PRCPTOT Annual total precipitation in wet days
(RR >= 1 mm) mm
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3.3. Trend Analysis
3.3.1. Mann–Kendall (MK) Test

The M–K test [35,36] is a nonparametric statistical test widely used to detect monotonic
trends in climatological and hydrological time series data. It does not require data to be
normally distributed, nor does it depend on the magnitude of missing data values, and
it is also less sensitive to outliers [37]. In this test, the null hypothesis (Ho), that there is
no trend, is tested against the alternative hypothesis (H1), that there is an increasing or
decreasing monotonic trend.

The standardized Mann–Kendall Test statistic S is given as

S = ∑m−1
k=1 ∑m

l=k+1 sig(x1 − x2), sig(x1 − x2) =


1 x1 > xk
0 x1 = xk
1 x1 < xk

, (1)

where x1 and xk are the data points of the time series, and m is the data length of the
time series.

The variance of S is given as

Var S =
m(m− 1)(2m + 5)

18
. (2)

The normalized test statistic Z is a measure of the significance of the trend. If Z > 0
(Z < 0), the trend is increasing (decreasing). In this paper, α = 0.05 level of significance was
used. At α = 0.05, the trend is significant if |Z| > Z1 − α/2, where Z1 − α/2 is tabulated
from the standard normal distribution Tables and is calculated as

Z =


S−1√
Var S

if S > 0
0 if S = 0

S+1√
Var S

if S < 0
. (3)

3.3.2. Sen’s Slope Estimator

The magnitude of a trend is determined by the nonparametric Sen’s slope estimator
test. It assumes that the trend is linear. Sen’s slope Q is given as

Q =
xj − xk

j− k
, (4)

where j > k.

3.4. Return Level
3.4.1. Generalized Extreme Value Distribution

The extreme value theory (EVT) is a statistical methodology used to infer the proba-
bility of rare or extreme events. It assumes extreme events to be stationary and involves
fitting data into a probability distribution(s) based on the Fisher–Tippett–Gnedenko theo-
rem [38]. Of the two distributions used in EVT, the generalized Pareto distribution (GPD)
uses exceedances over a threshold, while the generalized extreme value (GEV) distribution
takes the block maxima approach (annual maximum rainfall). The latter has been chosen
for this study as there are no well-defined rainfall thresholds for Bhutan that effectively
capture all the microclimates at present.

Moreover, Easterling et al. [39] found that the GEV distribution is a suitable fit to the
tails of the distribution for atmospheric variables. The GEV is a three-parameter distribution
that combines all three extreme value distributions: Gumbel (Type I), Frchet (Type II), and
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the negative Weibull (Type III). The three parameters are location, scale, and shape. The
GEV cumulative distribution function can be given as

F(x) =

e−[1+
σ(x−µ)

α ]
1
σ

, σ 6= 0

e−[e
−( (x−µ)α ) ], σ = 0

, (5)

where −∞ < µ < ∞ is the location parameter, α > 0 is the scale parameter, and −∞ < σ < ∞ is
the shape parameter. The sign of the shape parameter σ defines the type of the distribution.
If σ = 0, it is the two-parameter Gumbel distribution; if σ > 0, it is the Fréchet distribution;
and if σ < 0, it is the upper-bounded Weibull distribution. The maximum likelihood
estimate (MLE), due to its high efficiency [40], is used to estimate the parameters, which
are obtained by maximizing the log-likelihood with its parameter estimates. The GEV
log-likelihood is given as

l(α,σ,µ : X) = −nlnα− (1 + σ)∑n
i=1 xi −∑n

i=1 exi ,

where xi = σ−1ln [1 +
σ(xi − µ)

α
].

(6)

Solving the above equation provides the maximum likelihood estimates (MLE) θ̂ = (α̂, σ̂, µ̂).
Numerous studies have shown EVT to successfully model extreme precipitation [41–49].

3.4.2. GEV Return Periods and Return Levels

Once the data have been fitted to the probability model, the occurrence of the extreme
quantile can be calculated for a given return period. A return period (T), also known as
a recurrence interval or repeat interval, is the average time or an estimated average time
between events such as earthquakes, floods, landslides, or river discharge flows. It is given
as T = 1

p , where ‘p’ is the probability of occurrence of a rainfall of magnitude equal to or
greater than a magnitude having a return period ‘T’ in any given year. The return level (Xp)
is the level exceeded on average once in T years: XT = 1− p.

For GEV, the return level Zp for a return period 1/p can be obtained as follows:

Zp =

{
µ− α

σ [1− (− log(1− p))σ] for σ 6= 0
µ− σlog[1− (− log(1− p))] for σ = 0

. (7)

3.4.3. Goodness of Fit/Model Choice

In order to see if the distribution choice is appropriate for the data, the goodness of fit
of the GEV distribution is checked. Probability and quantile plots are graphical techniques
used to assess if the fitted data originate from a given or known probability distribution, in
this case, the GEV distribution. The data are plotted against a theoretical distribution so
that the points should form an approximately straight line. Departures from this straight
line indicate departures from the specified distribution [50].

4. Results and Discussion
4.1. Precipitation Climatology in Bhutan

Prior to analyzing variations in precipitation extremes, it was necessary to understand
the general characteristics of the precipitation patterns. Figure 2 shows the spatial variability
of the mean annual rainfall and monthly precipitation averaged over all stations. The mean
annual rainfall decreases with increasing latitude, ranging from >5000 mm in the southern
belt to <580 mm in the north (Figure 2a). This pattern can be attributed to the orographic
effect on the southwest monsoon, which deposits most of the rainfall in the southern plains
and decreases as it travels northward. Meanwhile, winter precipitation is relatively weaker
and mainly in the form of snow in northern Bhutan. The summer (JJAS) months contribute
to ~72% of the total rainfall (Figure 2b) [26].
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This season (JJAS) also records the highest frequency of extreme events from 1968
to 2022 [51,52]. Figure 2c shows the time series of the nationally averaged daily rainfall
data for 1996–2021. The spatial pattern of mean monsoon precipitation (Figure 3) shows
a similar latitudinal variation as the mean annual rainfall. It can also be seen that the
pre-monsoon season received more rainfall compared to the post-monsoon months. The
winter months recorded the least rainfall throughout the country.
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Table 3 summarizes the trend in annual and wet seasonal (monsoon) rainfall based
on the nonparametric MK test conducted at a 95% confidence level. The results reveal an
insignificant downward trend for the annual rainfall as well as the summer rainfall.

Table 3. Summary of MK results for annual and monsoonal rainfall over Bhutan during 1996–2021.

Trend Analysis
MK Rainfall (mm)

Annual Rainfall Monsoonal Rainfall

S Trend −79.0 −55.0
Z −1.7 −1.1902

Kendall’s Tau −0.2 −0.169
p-value 0.09 0.234

α 0.05 0.05

Significance Insignificant Decreasing Trend Insignificant Decreasing Trend

4.2. Spatial Distribution of Extreme Precipitation Indices

Zhang et al. [34] categorize the indices Rx1Day, Rx5Day, R95p, and R99p as intensity
indicators; R10 mm and R20 mm as frequency indicators; CDD and CWD as duration
indicators; and SDII and PRCPTOT as extra indicators (Table 2). The spatial distribution
of the rainfall indices is given in Figure 4a. According to this figure, the indices show
a similar latitudinal variation as the annual rainfall distribution of the country. Results
from Figure 4a are compared to the mean annual number of rainy days (Figure 4b). All
intensity, frequency, and duration indices were high at stations in the southern region.
These stations also had the highest mean number of annual rainy days between 1996 and
2021. As most of the rain is deposited in this region during the southwest monsoon, the
result is consistent with the annual rainfall distribution. However, for Deothang station,
located in the southeast region, the high-intensity values were recorded on fewer rainy
days (<130 Days).
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The lowest values of the indices were concentrated in the western, central, and eastern
regions. Contrary to the expected low number of rainy days for these stations, Haa,
Bumthang, and Trashiyangtse stations had a higher number of rainy days. Haa, Bumthang,
and Trashi Yangtse are located in west, central, and eastern Bhutan, respectively. Nearly
as many rainy days were recorded at these stations as at Deothang. In addition, Chukha
FWS, with lower intensity values, had a higher number of rainy days than Deothang. Such
high values of the intensity indices associated with fewer rainy days indicate less frequent
but more intense rainfall events, while the reverse indicates weaker but more persistent
rainfall [19]. With the exception of Bumthang, the remaining stations in the central region
had moderate values of the indices.

Figure 5 shows the hydro-meteorological hazards recorded from media coverage for
1996–2021. As media coverage is usually limited to events with significant damage to
infrastructure and lives, the figure only provides a rough picture of the frequency of such
events. While stations in regions of high annual precipitation had a higher number of
extreme events, it was interesting to note that Kanglung and Trashi Yangtse stations also
recorded a high number despite having relatively lower values for the rainfall indices.
Similarly, Gasa station, located in northern Bhutan, also experienced a high number of
hazards. This indicates that statistically insignificant values of rainfall can trigger hazards
that can have a disastrous socio-economic impact on the region or the country. For example,
in Lhuentse in 2022, weak but persistent rainfall triggered a flash flood, which led to the loss
of five lives and the destruction of several households and their properties. It is therefore
crucial to have localized information for better planning, managing natural resources, and
disaster prevention.
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Figure 5. Number of hydro-meteorological hazards between 1996 and 2021 collected from me-
dia records.

4.3. Trends in Extreme Precipitation Indices

The spatial distribution of the station-wise trends in extreme precipitation indices is
given in Figure 6. Out of the four intensity indicators, three (Rx1Day, Rx5Day, and R95p)
showed a downward trend for 56% of the total stations, although they are not uniformly
distributed. For these three indices, the downward trend is dominant over the western
and eastern parts of the country. Dagana station showed a significant downward trend
for all three indicators (Rx1Day: 1.7 mm, Rx5Day: 4.9 mm, and R95p: 20.5 mm), while the
significant downward trend for Trashi Yangtse is only for R95p (4.8 mm). Over central
Bhutan, including the south-central region, the rainfall intensity is increasing, although not
significantly. Given the complex nature of Bhutan’s terrain, the Rx1Day events are capable
of causing hazards of significant magnitude. For the total annual rainfall above the 99th
percentile, 76% of the stations showed no trends, while a small number in the south-central
region showed a non-significant increasing trend.
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(b) RX5Day (c) very wet days (R95p), (d) extremely wet days (R99p), (e) R10 ≥ 10 mm,
(f) R20 ≥ 20 mm, (g) consecutive wet days (CWD), (h) consecutive dry days (CDD), (i) SDII, and
(j) PRCPTOT.

The number of days with rainfall amounts greater than 10 mm had decreasing trends
at 88% of the stations. These trends were significant over Trashi Yangtse (0.25 days),
Bumthang (0.4 days), Dagana (1.8 days), and Damphu (0.85 days). Likewise, for R20 mm,
the decreasing trend was dominant, with significant values for Trashi Yangtse (0.37 Days),
Dagana (1.2 Days), and Damphu (0.55 days). A decreasing frequency of rainfall is a concern
for agriculture and hydropower, the two major economy generating sectors of Bhutan. The
trend for consecutive wet days (CWD) is significantly negative over Damphu (0.5 days),
Bumthang (0.4 Days), Wangdue FWS (0.2 days), and Thrimshing FWS (0.25 days). A
noteworthy observation is the increasing trend of consecutive dry days across 72% of
the stations. Karki et al. [19] pointed to a similar increasing CDD trend across Nepal,
Bangladesh, and China, given its association with large-scale weather systems rather than
localized systems.

The downward trend for Dagana station is significant for the three intensity indices
(Rx1Day, Rx5Day, and R95p), both frequency indices (R10 mm and R20 mm), and other
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indicators (SDII and PRCPTOT). The duration indicators point to a decreasing trend for wet
spells (CWD) while dry spells (CDD) are increasing, although the trends are insignificant.
These results indicate Dagana is becoming drier over time. A similar pattern can be seen for
Trashi Yangtse station. Significant downward trends can be noted for the intensity indicator
R95p, for both frequency indicators, for SDII, and for total precipitation (PRCPTOT).
However, dry and wet spells both seem to be increasing, although insignificantly. The
reverse can be seen for Monger. Intensity, frequency, and duration indices, including
total precipitation, are increasing while consecutive dry days are significantly decreasing
(1.9 days). The large heterogeneity in the spatial patterns is in line with previous trend
studies in Bhutan.

4.4. Spatial Distribution of Rx1Day and Rx5Day Trends on a Seasonal Scale

The spatial distribution of Rx1Day and RX5Day trends on a seasonal scale is shown
in Figures 7 and 8. For the pre-monsoon season, all stations in the central belt show
an increasing trend, while stations in the southern belt show decreasing values. This
season is prone to impacts from cyclones in the Bay of Bengal, which can sometimes cause
devastating socio-economic impacts. For the monsoon season, 84% of the stations showed
decreasing trends, with only one significant value in Dagana. The increasing values were
detected for Punakha, Wangdue, Trongsa, and Sarpang stations. Both the post-monsoon
and winter seasons showed longitudinal variation in the trends, but with contrasting west–
east variation, while stations in the eastern region can expect an increase in Rx1Day during
the winter season.

Similarly, the spatial patterns of Rx5Day trends are shown in Figure 8. No consistent
patterns can be seen in any of the seasons. Regardless, significant downward trends
were detected for Thimphu, Dagana, and Deothang during the monsoon period. Similar to
Rx1Day, parts of eastern Bhutan can expect an increase in Rx5Day during the winter season.

As mentioned in Section 4.1, the monsoon season contributes the most to the annual
rainfall, thus enriching the hydropower and water sectors. However, rainfall patterns in
the pre-monsoon and post-monsoon are more variable. Therefore, knowledge of rainfall
variability in the pre-monsoon, post-monsoon, and winter seasons might be of interest to
the rain-dependent sectors.
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4.5. Modeling Using GEV

The model diagnostics for Rx1Day are given in Figure 9. For both the probability and
quantile plots, the points are very close to the linear line, indicating that the GEV is a good
fit. Similarly, the return level and the density plot also show that the GEV distribution can
model the data correctly. The plots for the individual stations also showed a good fit, with
only a few points diverging from the straight lines. However, individual plots have not
been included in this study for brevity.
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4.6. Return Levels

Table 4 provides return levels of the one-day maximum (Rx1Day) for the return
periods of 50 and 100 years. These 50- and 100-year return levels are the maximum possible
precipitation during a precipitation event within a 50- or 100-year period [43]. The return
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level increased with the increase in the return period. For Sipsu station, the one-day
maximum rainfall (445.2 mm), which triggered floods in the area, was exceeded by both the
T = 50-year and T = 100-year return values. This means that similar flooding events might
occur once every 50 or 100 years in Sipsu. The annual maximums of 88% of the stations
are exceeded by their T = 50-year return value. The estimated return levels for the next
100 years indicate an increasing rainfall intensity for all stations and predict higher rainfall
amounts than those recorded for these indices. Stations along the southern belt had the
highest return values for all indices.

Table 4. Return levels of the one-day maximum rainfall for 50 and 100 years.

Station
Rx1Day

50 Years 100 Years

Deothang 356 383
Sunkosh FWS 210 224

Bhur 413 445
Kurizampa FWS 104 106

Sipsu 444 492
Dorokha FWS 437 510
Chazam FWS 104 113

Mangdichu FWS 258 303
Tendru FWS 335 363

Wangdue 115 142
Punakha 106 129

Wangdue FWS 106 121
Pangzam FWS/Thrimshing 199 230

Chukha FWS 228 272
Dagana 179 190

Damphu 195 200
Monger 135 144

Pema Gatshel 207 222
Trashi Yangtse 77 82

Zhemgang 155 170
Kanglung 132 142
Simtokha 87 99

Paro 103 121
Chamkhar 85 101

Haa 132 167

5. Conclusions

Despite the high vulnerability to the impacts of extreme weather events, studies
on extreme precipitation patterns are currently lacking in Bhutan. Therefore, using the
10 ETCCDI indices and the extreme value theorem (EVT), this paper studied extreme
precipitation patterns across the country. A clear latitudinal pattern was found in the
annual rainfall, with the monsoon season contributing the most. While stations with higher
numbers of rainy days usually had higher values of the extreme indices, Deothang station
had high-intensity rainfall on a fewer number of rainy days, whereas Haa, Bumthang,
Chukha, and Trashi-Yangtse had the reverse. For the trend analysis, a spatially non-uniform
decrease in the rainfall indices was observed. Generally, the high intensity indicators were
decreasing (insignificant trend) in the west and east of Bhutan, while they were increasing
(insignificant trend) in the central and south-central regions. The one-day maximum
rainfall (Rx1Day) was increasing (insignificant trend) in the west, east, and central regions
during the pre-monsoon season, while it was decreasing (insignificant trend) across most
of the country during the summer. The post-monsoon and winter seasons had contrasting
west–east variations in the trend. Significant downward trends in Dagana and Trashi-
Yangtse indicated that these two stations were gradually drying. On the contrary, a non-
significant increasing trend in the total precipitation (PRCPTOT), intensity, and frequency
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indices, with a significant decrease in the consecutive wet days (CDD), suggested a wetter
climate for Mongar. The EVT analysis showed the GEV distribution as a good fit, with an
annual maxima of 88% of the stations being exceeded by their T = 50-year return value.

Choudhury et al. [53] discovered a connection between interannual and interdecal
variability and the abrupt decline in North East Indian (NEI) rainfall. Considering that
Bhutan and the NEI region share borders, these natural variations may also be affecting
the patterns in the country’s rainfall indices. Given the complex topography of Bhutan,
several microclimatic features are prevalent over short distances, due to which the extreme
threshold may differ from station to station. These microclimates are also difficult to
simulate in the weather and climate models. Therefore, taking more data points with the
use of data from Automatic Weather Stations (AWS) is recommended for future studies.

Some limitations of the study include the lack of long-term data with adequate repre-
sentation from all the microclimates in the country. The agrometeorological station data
used in this study are only available from 1996, with most of these stations lying below
3000 m. This excludes the northernmost part of the country from the study. Furthermore,
EVT assumes data stationarity, i.e., changes in the hydrological cycle due to climate change
are not considered. The study also did not consider the serial correlation effect on test
results, which is a common problem when using nonparametric trend methods such as the
MK test, as pointed out in [54].
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Abbreviations

Abbreviation Definition
Rx1Day Monthly maximum 1-day precipitation
Rx5Day Monthly maximum consecutive 5-day precipitation
R95p Annual total precipitation when RR > 95th percentile
R99p Annual total precipitation when RR > 99th percentile
R10 mm Annual count of days with RR ≥ 10 mm
R20 mm Annual count of days with RR ≥ 20 mm
CDD Maximum number of consecutive days with daily precipitation < 1 mm
CWD Maximum number of consecutive days with daily precipitation > 1 mm
SDII Ratio of annual total wet-day precipitation to the number of wet days
PRCPTOT Annual total precipitation in wet days (RR >= 1 mm)
IPPC Intergovernmental Panel on Climate Change
ETCCDI Experts Team on Climate Change Detection Indices
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M-K Test Mann–Kendall test
GLOF Glacial lake outburst flood
USD US dollars
ENSO El Nino–Southern Oscillation
EVT Extreme value theory
NCHM National Centre for Hydrology and Meteorology, Bhutan
FWS Flood warning station
WMO World Meteorological Organization
GEV Generalized extreme value distribution
MLE Maximum likelihood estimate
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