Optimization of Probability Density Functions Applicable for Hourly Rainfall
Abstract
:1. Introduction
2. Study Area and Datasets
3. Methodology
3.1. Object of Study
3.2. Fitting Method
3.3. Optimal Criteria for Theoretical Density Function
- (1)
- Bayesian information criterion (BIC)
- (2)
- Estimation accuracy of AAR
- (3)
- Estimation accuracy of annual average continuous rainfall
4. Results
4.1. Empirical Function of Three CCPD Classes
4.2. Fitting Plot of Three CCPD Classes
4.3. Fitting Error Analysis of Three CCPD Classes
4.4. Analysis on the Selection of Theoretical Density Function
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Region | GND | GΓD | Weibull | ||||||
---|---|---|---|---|---|---|---|---|---|
Code | Location | b11 | n11 | a12 | b12 | n12 | c13 | b13 | n13 |
I | GuangDong | 4.2757 | 0.2662 | 1.5926 | 1.8499 | 0.3894 | 0.0108 | 0.9657 | 0.5116 |
II | HaiNan | 4.5377 | 0.2444 | 2.4887 | 2.7613 | 0.3036 | 0.0652 | 0.9999 | 0.4814 |
III | JiangXi | 3.5873 | 0.3203 | 2.5255 | 2.9033 | 0.3500 | 0.0051 | 1.0938 | 0.5279 |
IV | GuangXi | 4.5118 | 0.2632 | 3.3774 | 4.0347 | 0.2777 | 0.0099 | 1.1617 | 0.4910 |
V | ZheJiang | 3.2007 | 0.3626 | 2.3770 | 2.7578 | 0.3883 | 0.0027 | 1.1280 | 0.5582 |
VI | FuJian | 3.6819 | 0.3114 | 2.5480 | 2.9276 | 0.3456 | 0.0046 | 1.1089 | 0.5178 |
VII | HuNan | 3.8541 | 0.3199 | 2.4643 | 3.0722 | 0.3540 | 0.0066 | 1.3616 | 0.5220 |
VIII | SiChuan | 4.5108 | 0.2857 | 7.4568 | 9.0707 | 0.2074 | 0.0063 | 1.8997 | 0.4694 |
IX | GuiZhou | 5.3934 | 0.2543 | 6.8078 | 8.7822 | 0.2022 | 0.0128 | 2.0776 | 0.4624 |
X | JiangSu | 3.3306 | 0.3423 | 3.0705 | 3.5003 | 0.3346 | 0.0018 | 1.1071 | 0.5353 |
XI | ChongQing | 3.7542 | 0.3358 | 3.0986 | 3.8978 | 0.3300 | 0.0055 | 1.4681 | 0.5262 |
XII | HuBei | 3.4818 | 0.3300 | 3.1928 | 3.6668 | 0.3222 | 0.0027 | 1.1350 | 0.5257 |
XIII | AnHui | 3.4735 | 0.3308 | 3.4970 | 4.0128 | 0.3096 | 0.0019 | 1.1642 | 0.5210 |
XIV | YunNan | 3.6738 | 0.3343 | 1.4807 | 1.8646 | 0.4430 | 0.0101 | 1.2038 | 0.5493 |
XV | HeNan | 3.4022 | 0.3442 | 2.5497 | 2.9907 | 0.3654 | 0.0048 | 1.1357 | 0.5478 |
Region | GND | GΓD | Weibull | ||||||
---|---|---|---|---|---|---|---|---|---|
Code | Location | b21 | n21 | a22 | b22 | n22 | c23 | b23 | n23 |
I | GuangDong | 2.1622 | 0.3057 | 4.1959 | 2.9496 | 0.2673 | −0.0357 | 0.2275 | 0.5398 |
II | HaiNan | 2.2677 | 0.3029 | 6.0911 | 4.7203 | 0.2205 | −0.0312 | 0.2547 | 0.5347 |
III | JiangXi | 2.1459 | 0.3186 | 4.8208 | 3.6162 | 0.2541 | −0.0314 | 0.2649 | 0.5423 |
Iv | GuangXi | 2.3828 | 0.2991 | 8.8620 | 7.3830 | 0.1844 | −0.0224 | 0.2676 | 0.5202 |
V | ZheJiang | 1.8736 | 0.3523 | 3.9639 | 2.8422 | 0.2962 | −0.0406 | 0.2756 | 0.5604 |
VI | FuJian | 2.2007 | 0.3161 | 8.4726 | 6.9833 | 0.1943 | −0.0265 | 0.2668 | 0.5312 |
VII | HuNan | 2.3085 | 0.3193 | 7.8272 | 6.6216 | 0.2022 | −0.0095 | 0.3010 | 0.5370 |
VIII | SiChuan | 2.7388 | 0.2964 | 8.8259 | 7.9232 | 0.1884 | 0.0120 | 0.3406 | 0.5199 |
IX | GuiZhou | 3.0451 | 0.2891 | 8.5237 | 7.9993 | 0.1915 | 0.0228 | 0.3973 | 0.5132 |
X | JiangSu | 2.2272 | 0.3116 | 8.4893 | 6.9716 | 0.1915 | −0.0313 | 0.2676 | 0.5272 |
XI | ChongQing | 2.1071 | 0.3494 | 7.8589 | 6.7282 | 0.2117 | −0.0113 | 0.3312 | 0.5555 |
XII | HuBei | 2.0793 | 0.3294 | 8.5756 | 7.0602 | 0.1970 | −0.0297 | 0.2693 | 0.5415 |
XIII | AnHui | 2.3178 | 0.3073 | 8.2362 | 6.8292 | 0.1937 | −0.0254 | 0.2791 | 0.5227 |
XIV | YunNan | 1.5961 | 0.4000 | 2.6707 | 1.7348 | 0.3907 | −0.0319 | 0.2785 | 0.6013 |
XV | HeNan | 2.3991 | 0.3025 | 8.3451 | 6.9924 | 0.1918 | −0.0173 | 0.2810 | 0.5213 |
Region | GND | GΓD | Weibull | ||||||
---|---|---|---|---|---|---|---|---|---|
Code | Location | b31 | n31 | a32 | b32 | n32 | c33 | b33 | n33 |
I | GuangDong | 1.3230 | 0.5304 | 2.6339 | 1.9273 | 0.4698 | 0.1329 | 0.4113 | 0.7251 |
II | HaiNan | 1.6270 | 0.4743 | 4.4013 | 3.6180 | 0.3590 | 0.1437 | 0.4564 | 0.6813 |
III | JiangXi | 0.9522 | 0.5787 | 2.0025 | 1.1545 | 0.5426 | 0.1029 | 0.3015 | 0.7627 |
Iv | GuangXi | 1.6492 | 0.4620 | 2.5451 | 1.9299 | 0.4421 | 0.1166 | 0.4620 | 0.6551 |
V | ZheJiang | 0.8511 | 0.6029 | 1.9242 | 1.0406 | 0.5648 | 0.0936 | 0.2851 | 0.7763 |
VI | FuJian | 1.1248 | 0.5475 | 2.7135 | 1.8305 | 0.4638 | 0.1260 | 0.3376 | 0.7413 |
VII | HuNan | 0.9120 | 0.5919 | 2.2055 | 1.2912 | 0.5277 | 0.0955 | 0.3030 | 0.7663 |
VIII | SiChuan | 0.6296 | 0.7073 | 1.1838 | 0.4840 | 0.7634 | 0.0533 | 0.2915 | 0.8321 |
IX | GuiZhou | 1.0557 | 0.5828 | 2.4910 | 1.6528 | 0.5028 | 0.0865 | 0.3773 | 0.7482 |
X | JiangSu | 0.8835 | 0.5934 | 1.5018 | 0.7552 | 0.6240 | 0.0929 | 0.2887 | 0.7727 |
XI | ChongQing | 0.7400 | 0.6576 | 1.4637 | 0.7019 | 0.6682 | 0.0812 | 0.2957 | 0.8096 |
XII | HuBei | 0.7786 | 0.6390 | 1.4989 | 0.7332 | 0.6513 | 0.0920 | 0.2923 | 0.8018 |
XIII | AnHui | 0.9603 | 0.5734 | 1.4864 | 0.7770 | 0.6137 | 0.0942 | 0.3008 | 0.7560 |
XIV | YunNan | 1.5623 | 0.5045 | 2.4727 | 1.9426 | 0.4756 | 0.1529 | 0.4720 | 0.7119 |
XV | HeNan | 0.7608 | 0.6432 | 1.1315 | 0.4828 | 0.7371 | 0.0868 | 0.2894 | 0.8004 |
Region | GND | GΓD | Weibull | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Code | Location | Obj | Er0 (%) | Er1 (%) | R2 | Rln2 | Obj | Er0 (%) | Er1 (%) | R2 | Rln2 | Obj | Er0 (%) | Er1 (%) | R2 | Rln2 |
I | GuangDong | 2.89 | 1.72 | 0.94 | 0.995 | 0.997 | 2.86 | 1.60 | 1.02 | 0.995 | 0.996 | 4.73 | 3.12 | 1.85 | 0.983 | 0.987 |
II | HaiNan | 3.79 | 2.24 | 1.42 | 0.991 | 0.992 | 3.72 | 1.96 | 1.69 | 0.993 | 0.988 | 5.31 | 3.60 | 1.82 | 0.978 | 0.986 |
III | JiangXi | 4.30 | 2.81 | 1.17 | 0.987 | 0.994 | 4.25 | 2.59 | 1.32 | 0.989 | 0.992 | 5.80 | 4.17 | 1.74 | 0.971 | 0.987 |
Iv | GuangXi | 4.83 | 3.52 | 1.30 | 0.981 | 0.994 | 3.99 | 2.60 | 1.17 | 0.990 | 0.995 | 7.69 | 5.78 | 2.23 | 0.948 | 0.982 |
V | ZheJiang | 4.66 | 3.38 | 0.97 | 0.983 | 0.996 | 4.59 | 3.15 | 1.06 | 0.985 | 0.995 | 6.40 | 4.91 | 1.69 | 0.965 | 0.987 |
VI | FuJian | 4.55 | 3.47 | 1.09 | 0.982 | 0.996 | 3.62 | 2.40 | 1.13 | 0.991 | 0.996 | 7.75 | 5.92 | 1.98 | 0.947 | 0.988 |
VII | HuNan | 3.92 | 2.66 | 1.14 | 0.988 | 0.995 | 3.47 | 2.02 | 1.21 | 0.993 | 0.994 | 6.58 | 5.07 | 1.67 | 0.957 | 0.989 |
VIII | SiChuan | 3.56 | 2.24 | 1.37 | 0.990 | 0.993 | 2.46 | 1.24 | 1.09 | 0.997 | 0.996 | 6.85 | 5.12 | 1.98 | 0.949 | 0.986 |
IX | GuiZhou | 4.23 | 2.43 | 1.76 | 0.989 | 0.987 | 3.24 | 1.41 | 1.67 | 0.996 | 0.989 | 6.89 | 5.34 | 1.66 | 0.945 | 0.989 |
X | JiangSu | 5.13 | 3.93 | 1.19 | 0.977 | 0.995 | 4.44 | 3.08 | 1.08 | 0.986 | 0.996 | 7.78 | 5.98 | 2.17 | 0.948 | 0.983 |
XI | ChongQing | 4.38 | 2.77 | 1.49 | 0.988 | 0.990 | 3.54 | 1.81 | 1.45 | 0.995 | 0.991 | 7.28 | 5.55 | 1.86 | 0.951 | 0.984 |
XII | HuBei | 5.03 | 3.68 | 1.36 | 0.980 | 0.993 | 3.83 | 2.44 | 1.19 | 0.991 | 0.995 | 8.30 | 6.28 | 2.28 | 0.943 | 0.981 |
XIII | AnHui | 5.85 | 4.46 | 1.35 | 0.972 | 0.994 | 5.26 | 3.67 | 1.52 | 0.981 | 0.992 | 8.23 | 6.49 | 1.83 | 0.940 | 0.989 |
XIV | YunNan | 2.55 | 1.65 | 0.81 | 0.996 | 0.998 | 2.48 | 1.55 | 0.84 | 0.996 | 0.997 | 5.39 | 4.16 | 1.33 | 0.972 | 0.993 |
XV | HeNan | 5.48 | 4.24 | 1.15 | 0.972 | 0.996 | 4.97 | 3.55 | 1.25 | 0.980 | 0.995 | 7.97 | 6.31 | 1.78 | 0.938 | 0.989 |
Maximum/Minimum | 5.85 | 4.46 | 1.76 | 0.972 | 0.987 | 5.26 | 3.67 | 1.69 | 0.980 | 0.988 | 8.30 | 6.49 | 2.28 | 0.938 | 0.981 | |
average | 4.34 | 3.01 | 1.23 | 0.985 | 0.994 | 3.78 | 2.34 | 1.25 | 0.991 | 0.994 | 6.87 | 5.18 | 1.86 | 0.956 | 0.987 |
Region | GND | GΓD | Weibull | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Code | Location | Obj | Er0 (%) | Er1 (%) | R2 | Rln2 | Obj | Er0 (%) | Er1 (%) | R2 | Rln2 | Obj | Er0 (%) | Er1 (%) | R2 | Rln2 |
I | GuangDong | 3.81 | 0.86 | 3.28 | 0.998 | 0.981 | 3.24 | 0.32 | 3.30 | 1.000 | 0.981 | 3.94 | 0.77 | 3.39 | 0.998 | 0.980 |
II | HaiNan | 4.16 | 1.43 | 2.32 | 0.993 | 0.989 | 3.18 | 0.44 | 2.45 | 0.999 | 0.988 | 4.10 | 1.15 | 2.73 | 0.996 | 0.985 |
III | JiangXi | 3.07 | 0.33 | 2.81 | 1.000 | 0.989 | 3.00 | 0.27 | 2.84 | 1.000 | 0.988 | 3.39 | 0.48 | 2.89 | 0.999 | 0.988 |
Iv | GuangXi | 3.35 | 1.28 | 2.13 | 0.995 | 0.993 | 2.96 | 0.90 | 2.18 | 0.997 | 0.992 | 4.04 | 1.36 | 2.76 | 0.994 | 0.988 |
V | ZheJiang | 2.67 | 0.42 | 2.46 | 0.999 | 0.992 | 2.60 | 0.34 | 2.49 | 1.000 | 0.991 | 3.02 | 0.73 | 2.46 | 0.998 | 0.992 |
VI | FuJian | 3.15 | 0.70 | 2.34 | 0.999 | 0.991 | 2.68 | 0.18 | 2.38 | 1.000 | 0.990 | 3.24 | 0.86 | 2.36 | 0.998 | 0.991 |
VII | HuNan | 2.81 | 0.41 | 2.66 | 1.000 | 0.990 | 2.55 | 0.22 | 2.57 | 1.000 | 0.991 | 3.47 | 0.69 | 3.07 | 0.999 | 0.987 |
VIII | SiChuan | 3.99 | 0.83 | 3.40 | 0.998 | 0.983 | 3.91 | 0.74 | 3.42 | 0.998 | 0.983 | 3.70 | 0.44 | 3.54 | 0.999 | 0.981 |
IX | GuiZhou | 3.79 | 0.55 | 3.30 | 0.999 | 0.986 | 3.45 | 0.39 | 3.12 | 1.000 | 0.988 | 4.71 | 0.62 | 4.14 | 0.999 | 0.978 |
X | JiangSu | 3.45 | 0.51 | 3.36 | 0.999 | 0.981 | 3.42 | 0.50 | 3.33 | 0.999 | 0.982 | 3.18 | 0.36 | 3.24 | 1.000 | 0.983 |
XI | ChongQing | 3.19 | 0.47 | 2.89 | 0.999 | 0.990 | 3.17 | 0.45 | 2.90 | 0.999 | 0.990 | 3.24 | 0.26 | 3.18 | 1.000 | 0.988 |
XII | HuBei | 3.45 | 0.37 | 2.76 | 1.000 | 0.986 | 3.45 | 0.37 | 2.78 | 1.000 | 0.986 | 3.42 | 0.37 | 2.94 | 1.000 | 0.985 |
XIII | AnHui | 4.09 | 0.61 | 3.49 | 0.999 | 0.985 | 4.02 | 0.57 | 3.41 | 0.999 | 0.985 | 3.52 | 0.32 | 3.14 | 1.000 | 0.988 |
XIV | YunNan | 5.31 | 1.16 | 2.92 | 0.995 | 0.976 | 4.85 | 0.69 | 3.10 | 0.998 | 0.973 | 5.11 | 0.76 | 3.50 | 0.998 | 0.966 |
XV | HeNan | 5.84 | 1.00 | 5.22 | 0.997 | 0.965 | 5.69 | 0.98 | 5.05 | 0.997 | 0.967 | 5.40 | 0.99 | 4.74 | 0.997 | 0.971 |
Maximum/Minimum | 5.84 | 1.43 | 5.22 | 0.993 | 0.965 | 5.69 | 0.98 | 5.05 | 0.997 | 0.967 | 5.40 | 1.36 | 4.74 | 0.994 | 0.966 | |
average | 3.74 | 0.73 | 3.02 | 0.998 | 0.985 | 3.48 | 0.49 | 3.02 | 0.999 | 0.985 | 3.83 | 0.68 | 3.21 | 0.998 | 0.983 |
Class | Win Rate | Function | I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII | XIII | XIV | XV |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0/15 | GΓD | 0.0 | 1.7 | −2.9 | 1.4 | −0.1 | −2.4 | −1.3 | −1.6 | 0.8 | −0.6 | 0.2 | −1.4 | −1.7 | −0.2 | 0.6 | |
CCPD1 | 12/15 | GND | 1.4 | 0.0 | −3.4 | 0.4 | −2.0 | −2.2 | −2.8 | −3.1 | −1.0 | −2.7 | −1.8 | −3.3 | −3.7 | −1.6 | −1.3 |
3/15 | Weibull | −1.5 | −0.7 | −1.5 | 2.4 | 1.1 | −2.4 | 4.1 | 5.6 | 6.6 | 1.1 | 5.4 | 0.0 | 0.1 | 3.1 | 1.8 | |
0/15 | GΓD | 1.4 | 2.2 | 3.0 | 0.9 | 2.9 | −0.3 | 2.3 | 1.1 | 2.6 | 1.2 | 3.7 | 1.4 | 1.1 | 1.0 | 0.7 | |
CCPD2 | 15/15 | GND | −1.0 | −0.7 | 0.4 | −2.0 | 0.4 | −3.8 | −0.9 | −1.7 | 0.1 | −1.8 | 0.6 | −1.7 | −2.1 | −0.9 | −2.5 |
0/15 | Weibull | 13.6 | 13.1 | 13.1 | 12.5 | 13.5 | 12.9 | 12.6 | 11.6 | 10.7 | 12.7 | 12.7 | 13.1 | 12.4 | 14.7 | 12.4 | |
0/15 | GΓD | −0.4 | −1.4 | −1.8 | −2.7 | −2.6 | −1.7 | −3.0 | −0.2 | −0.8 | −0.7 | −1.6 | −0.3 | −2.3 | 2.3 | 1.9 | |
CCPD3 | 15/15 | GND | −2.5 | −3.7 | −3.8 | −4.8 | −4.7 | −4.0 | −4.9 | −2.2 | −2.6 | −2.7 | −3.6 | −2.3 | −4.1 | 0.3 | 0.0 |
0/15 | Weibull | 14.5 | 13.1 | 16.9 | 12.6 | 17.4 | 15.8 | 16.9 | 18.4 | 15.8 | 17.2 | 17.9 | 17.8 | 16.7 | 13.5 | 17.7 |
References
- Pendergrass, A.G.; Hartmann, D.L. Changes in the Distribution of Rain Frequency and Intensity in Response to Global Warming. J. Clim. 2014, 27, 8372–8383. [Google Scholar] [CrossRef] [Green Version]
- Pendergrass, A.G.; Knutti, R. The uneven nature of daily precipitation and its change. Geophys. Res. Lett. 2018, 45, 11980–11988. [Google Scholar] [CrossRef]
- Dai, A.; Rasmussen, R.M.; Liu, C.; Ikeda, K.; Prein, A.F. A new mechanism for warm-season precipitation response to global warming based on convection-permitting simulations. Clim. Dyn. 2020, 55, 343–368. [Google Scholar] [CrossRef]
- Mei, C.; Liu, J.H.; Wang, H.; Xiang, C.; Zhou, J. Review on Urban Design Rainstorm. Chin. Sci. Bull. 2017, 62, 3873–3884. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhou, H.; Lu, C.H.; Gao, C. A Review on Recent Advances of Urban Rainfall Intensity-Duration-Frequency Relationships. Adv. Water Sci. 2018, 29, 898–910. [Google Scholar]
- Lin, B.Z.; Lan, P.; Zhang, Y.H.; Lin, Z.C.; Chen, X.Y. Review on estimation of probable maximum precipitation estimation. J. Hydraul. Eng. 2018, 49, 92–102,114. [Google Scholar]
- Clark, C.; Dent, J.L. New Estimates of 24-h Probable Maximum Precipitation (PMP) for the British Isles. J. Geosci. Environ. Prot. 2021, 9, 209–228. [Google Scholar] [CrossRef]
- Liu, L.; Chen, J.; Cheng, L.; Lin, C.; Wu, Z. Study of the ensemble-based forecast of extremely heavy rainfalls in China: Experiments for July 2011 cases. Acta Meteorol. Sin. 2013, 71, 853–866. [Google Scholar] [CrossRef]
- Benkaci, T.; Mezenner, N.; Dechemi, N. Exploration of maximum likelihood method in extreme rainfall forecasting using four probability distributions-The case of northern Algeria. Larhyss J. 2020, 43, 57–72. [Google Scholar]
- Su, X.; Yuan, H.L.; Zhu, Y.J. A comparative study of four objective quantitative precipitation forecast calibration methods. Acta Meteorol. Sin. 2021, 79, 132–149. [Google Scholar] [CrossRef]
- Watterson, I.G.; Dix, M.R. Effective sensitivity and heat capacity in the response of climate models to greenhouse gas and aerosol forcings. Q. J. R. Meteorol. Soc. 2005, 131, 259–279. [Google Scholar] [CrossRef]
- Yoo, C.; Jung, K.S.; Kim, T.W. Rainfall frequency analysis using a mixed Gamma distribution: Evaluation of the global warming effect on daily rainfall. Hydrol. Process. 2005, 19, 3851–3861. [Google Scholar] [CrossRef]
- Falkovich, A.; Lord, S.; Treadon, R. A new methodology of rainfall retrievals from indirect measurements. Meteorol. Atmos. Phys. 2000, 75, 217–232. [Google Scholar] [CrossRef]
- Yu, J.J.; Shen, Y.; Pan, Y.; Zhao, P.; Zhou, Z. Improvement of probabilistic density matching method on satellite precipitation data over China. J. Appl. Meteorol. 2013, 24, 544–553. [Google Scholar]
- Shen, Y.; Pan, Y.; Yu, J.J. Quality evaluation of regional hourly precipitation fusion products in China. J. Atmos. Sci. 2013, 36, 37–46. [Google Scholar]
- Pulkkinen, S.; Koistinen, J.; Kuitunen, T.; Harri, A.-M. Probabilistic radar-gauge merging by multivariate spatiotemporal techniques. J. Hydrol. 2016, 542, 662–678. [Google Scholar] [CrossRef]
- Pan, Y.; Gu, J.X.; Xu, B. Research and application progress of multi-source precipitation data fusion. Adv. Meteorol. Sci. Technol. 2018, 8, 143–152. [Google Scholar]
- Watterson, I.G.; Dix, M.R. Simulated changes due to global warming in daily precipitation means and extremes and their interpretation using the gamma distribution. J. Geophys. Res. 2003, 108, 4379. [Google Scholar] [CrossRef]
- Li, Z.; Brissette, F.; Chen, J. Finding the most appropriate precipitation probability distribution for stochastic weather generation and hydrological modelling in Nordic watersheds. Hydrol. Process. 2013, 27, 3718–3729. [Google Scholar] [CrossRef]
- Yuan, W.; Fu, L.; Gao, Q. Study on extreme precipitation probability distribution-based estimation model of early warning index for mountain torrent disaster. Water Resour. Hydropower Eng. 2019, 50, 17–24. [Google Scholar]
- Zarei, A.R. Evaluation of effect of Markov order on the accuracy of drought forecasting Based on SPEI index using Markov Chain method. Watershed Eng. Manag. 2019, 11, 88–100. [Google Scholar]
- Li, S.; Liu, S.; Zhu, Y.; Zhang, J. Applicability of weather generator based on dry and wet spells (WGDWS) in five climate regions of China. Trans. Chin. Soc. Agric. Eng. 2022, 38, 75–83. Available online: http://www.tcsae.org/10.11975/j.issn.1002-6819.2022.03.009 (accessed on 12 June 2023). [CrossRef]
- Zhou, J.Z.; Wang, Y.R.; Feng, K.X.; Yang, X.; Fang, W.; Jing, Q.F.; Cha, G.; He, Z.Z.; Jia, B.J.; Wu, H. A Hydrological Forecasting Method and System Considering Rainfall Grade. China Patent CN111126699A, 8 May 2020. (In Chinese). [Google Scholar]
- Xiang, X.L.; Sun, W.F.; Tan, C.X.; Hou, C.T.; Ren, H.F.; Liu, M.J. Calculation method of instability probability of rainfall-type landslide. Geol. Bull. China 2020, 37, 176–181. (In Chinese) [Google Scholar]
- van Dijk, A.; Meesters, A.; Schellekens, J.; Bruijnzeel, L. A two-parameter exponential rainfall depth-intensity distribution applied to runoff and erosion modelling. J. Hydrol. 2004, 300, 155–171. [Google Scholar] [CrossRef]
- Michelangeli, P.A.; Vrac, M.; Loukos, H. Probabilistic downscaling approaches: Application to wind cumulative distribution functions. Geophys. Res. Lett. 2009, 36, 163–182. [Google Scholar] [CrossRef]
- Zhou, L.; Jiang, Z.H. Future changes in precipitation over Hunan Province based on CMIP5 simulations using the statistical downscaling method of transform cumulative distribution function. Acta Meteorol. Sin. 2017, 75, 223–235. [Google Scholar] [CrossRef]
- Chen, J.; Chen, H.; Guo, S. Multi-site precipitation downscaling using a stochastic weather generator. Clim. Dyn. 2018, 50, 1975–1992. [Google Scholar] [CrossRef]
- Wu, W.; Liang, Z.; Liu, X. Projection of the daily precipitation using CDF-T method at meteorological observation site scale. Plateau Meteorol. 2018, 37, 796–805. [Google Scholar]
- Teegaravapu, R.S.V. Statistical corrections of spatially interpolated missing precipitation data estimates. Hydrol. Process 2014, 28, 3789–3808. [Google Scholar] [CrossRef]
- Mohammad, T.S.; Ali Rezazadeh, J.; Andrew, K. Assessment of different methods for estimation of missing data in precipitation studies. Hydrol. Res. 2016, 48, 1032–1044. [Google Scholar] [CrossRef]
- Deng, P.D. One’s again on problems in urban storm statistics. Water Wastewater Eng. 1998, 24, 15–19. [Google Scholar] [CrossRef]
- Su, B.D.; Jiang, T. Distribution characteristics of precipitation extreme time series in the Yangtze River Basin. Lake Sci. 2008, 20, 125–130. [Google Scholar]
- Zhang, Y.H.; Wang, S.X.; Liu, K.L.; Chen, Q.H. Applicability Analysis of Rainfall Extremes with Different Probability Distribution Functions. Sci. Geogr. Sin. 2015, 35, 1460–1467. [Google Scholar]
- Ghanmi, H.; Bargaoui, Z.; Mallet, C. Estimation of intensity-duration-frequency relationships according to the property of scale invariance and regionalization analysis in a Mediterranean coastal area. J. Hydrol. 2016, 541, 38–49. [Google Scholar] [CrossRef]
- Song, X.M.; Zhang, J.Y.; Kong, F.Z. Probability Distribution of Extreme Precipitation in Beijing Based on Extreme Value Theory. Sci. China Sci. Technol. 2018, 48, 639–650. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, X.R.; Cheng, B.Y.; Sun, J.; Liao, D.Q. Application of generalized extreme value distribution model to short-duration extreme precipitation in Chongqing. Meteor. Mon. 2019, 45, 820–830. [Google Scholar] [CrossRef]
- Progênio, M.F.; Blanco, C. Cumulative distribution function of daily rainfall in the Tocantins–Araguaia hydrographic region, Amazon, Brazil. Nat. Resour. Model. 2020, 38, e12264. [Google Scholar] [CrossRef]
- Papalexiou, S.M.; Koutsoyiannis, D. A global survey on the seasonal variation of the marginal distribution of daily precipitation. Adv. Water Resour. 2016, 94, 131–145. [Google Scholar] [CrossRef]
- Gu, X.Z.; Ye, L.; Zhao, T.T.G.; Aoyang, W.Y.; Zhang, C. Probability distribution of daily precipitation in China. J. Hydraul. Eng. 2021, 52, 1248–1262, (In Chinese with English Abstract). [Google Scholar]
- Wang, X.Y.; Jiang, W.G.; Deng, Y.; Jiang, Z.J. Characteristic Analysis and Fatalness of Disaster-inducing Factors Assessment of Hourly Extreme Rainfall in Different Return Periods of Beijing-Tianjin-Hebei Region. Geogr. Res. 2020, 39, 2581–2592. [Google Scholar]
- Wang, L.; Chen, R.S.; Song, Y.X. Study of statistical characteristics of wet season hourly rainfall at Hulu watershed with Γ function in Qilian Mountains. Adv. Earth Sci. 2016, 31, 840–848. [Google Scholar]
- Wang, B.Y.; Zhao, L.N.; Xu, H.; Liu, Y. Probability Distribution and Partition of Hourly Rainfall During the Rainy Season over Sichuan Province. Torrential Rain Disasters 2018, 37, 115–123. [Google Scholar]
- Singh, V.P.; Guo, H. Parameter Estimations for 3-parameter Generalized Pareto Distribution by the Principle of Maximum Entropy (POME). Hydrol. Sci. J. 1995, 40, 165–181. [Google Scholar] [CrossRef] [Green Version]
- Krylov, V.A.; Moser, G.; Serpico, S.B.; Zerubia, J. On the Method of Logarithmic Cumulants for Parametric Probability Density Function Estimation. IEEE Trans. Image Process. 2013, 22, 3791–3806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.C.; Liu, C.A. Multitexture Model of Multilook Polarimetric SAR Data Based on Generalized Gamma Distribution. In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, Beijing, China, 10–15 July 2016; pp. 174–177. [Google Scholar]
- Qin, X.X.; Gao, G.; Zhou, S.L.; Zou, H.X. Method on Parameters Estimation of Generalized Gamma Distribution Based on SISE (scale-independent-shape-estimation) Equation. J. Electron. Inf. Technol. 2012, 34, 1860–1865. [Google Scholar] [CrossRef]
- Song, K.S. Asymptotic Relative Efficiency and Exact Variance Stabilizing Transformation for the Generalized Gaussian Distribution. IEEE Trans. Inf. Theory 2013, 59, 4389–4396. [Google Scholar] [CrossRef]
- Zhang, S.S.; Dong, Y.Y.; Qiao, Y.X. A Novel Target Detection Algorithm with Generalized Gamma Distribution in SAR Images. J. Nav. Aeronaut. Astronaut. Univ. 2020, 35, 167–175. [Google Scholar]
- Zhang, Y.; Ding, Y. A General Gamma probability model for Precipitation in various periods. Acta Meteorol. Sin. 1991, 49, 80–84. [Google Scholar] [CrossRef]
- Vlček, O.; HuthIs, R. Daily precipitation Gamma-distributed?: Adverse effects of an incorrect use of the Kolmogorov–Smirnov test. Atmos. Res. 2009, 93, 759–766. [Google Scholar] [CrossRef]
- Ye, L.; Hanson, L.S.; Ding, P.; Wang, D.; Vogel, R.M. The probability distribution of daily precipitation at the point and catchment scales in the United States. Hydrol. Earth Syst. Sci. 2018, 22, 6519–6531. [Google Scholar] [CrossRef] [Green Version]
- Shoji, T.; Kitaura, H. Statistical and geostatistical analysis of rainfall in central Japan. Comput. Geosci. 2006, 32, 1007–1024. [Google Scholar] [CrossRef]
- Li, C.; Singh, V.P.; Mishra, A.K. Simulation of the entire range of daily precipitation using a hybrid probability distribution. Water Resour. Res. 2012, 48, W03521. [Google Scholar] [CrossRef]
- Li, Z.; Brissette, F.; Chen, J. Assessing the applicability of six precipitation probability distribution models on the Loess Plateau of China. Int. J. Climatol. 2014, 34, 462–471. [Google Scholar] [CrossRef]
- Yuan, Z.; Yan, D.H.; Yang, Z.Y.; Yin, J.; Yuan, Y. Research on temporal and spatial change of 400 mm and 800 mm rainfall contours of China in 1961–2000. Adv. Water Sci. 2014, 25, 494–502. [Google Scholar] [CrossRef]
- Shen, T.Y.; Liu, J.; Xiang, Y.H.; Qi, H.X.; Ying, Z.Y.; Wang, J.C. Partition Comparison and Fitting Function of Class Conditional Probability Density of Hourly Rainfall. Torrential Rain Disasters 2021, 40, 664–674. [Google Scholar] [CrossRef]
- Shen, T.; Xiang, Y.; Liao, Y.; Qi, H.; Wang, J.; Yu, D. Function applicability to class conditional probability density of hourly rainfall. J. Lake Sci. 2023, 35, 743–754. [Google Scholar] [CrossRef]
- Steinskog, D.J.; Tjøstheim, D.B.; Kvamstø, N.G. A Cautionary Note on the Use of the Kolmogorov–Smirnov Test for Normality. Mon. Weather. Rev. 2007, 135, 1151–1157. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Xiong, A.Y.; Zhao, F.; Wang, Y.; Zhang, X.; Feng, G.; Li, D.; Tan, X.; Qiang, M. Design and implementation of national integrated meteorological information sharing system. J. Appl. Meteorol. 2015, 26, 500–512. [Google Scholar]
- Fang, Z.; Anyuan, X.; Xiaoying, Z.; Li, D.; Ying, W.; Qiang, M.; Xin, Y.; Xiaohua, T.; Feng, G. Technical characteristics of architecture design of national integrated meteorological information sharing platform. J. Appl. Meteorol. 2017, 28, 750–758. [Google Scholar]
- GB/T 40153-2021; Classification and Coding of Meteorological Data. The State Administration for Market Regulation. Standardization Administration of the State: Beijing, China, 2021.
- Ren, Z.H.; Zhang, Z.F.; Sun, C.; Liu, Y.M.; Li, J.; Ju, X.H.; Zhao, Y.F.; Li, Z.P.; Zhang, W.; Li, H.K.; et al. Development of Three-Step Quality Control System of Real-Time Observation Data from AWS in China. Meteorol. Mon. 2015, 41, 1268–1277. [Google Scholar] [CrossRef]
Regional Code | Location * | Center Coordinates and Radius (0E)/(0N)/(0) | Number of Station | Data Lost Ratio (%) | AAR (mm) | AACR (mm) |
---|---|---|---|---|---|---|
I | GuangDong | 114.0/23.5/1.0 | 17 | 0.21 | 1930 | 1689 |
II | HaiNan | 109.5/19.0/1.2 | 21 | 0.11 | 1825 | 1501 |
III | JiangXi | 116.0/27.5/0.9 | 13 | 0.31 | 1775 | 1662 |
IV | GuangXi | 109.0/22.5/1.2 | 17 | 0.08 | 1673 | 1412 |
V | ZheJiang | 120.0/29.0/0.8 | 13 | 0.32 | 1565 | 1500 |
VI | FuJian | 119.0/26.0/1.0 | 13 | 0.01 | 1543 | 1453 |
VII | HuNan | 112.0/28.0/0.9 | 15 | 0.51 | 1402 | 1347 |
VIII | SiChuan | 103.0/30.0/0.6 | 10 | 2.35 | 1394 | 1350 |
IX | GuiZhou | 107.0/26.5/1.0 | 18 | 0.68 | 1213 | 1110 |
X | JiangSu | 120.0/32.5/0.7 | 16 | 0.30 | 1180 | 1123 |
XI | ChongQing | 108.0/30.0/1.0 | 13 | 1.51 | 1140 | 1095 |
XII | HuBei | 113.0/30.5/1.0 | 14 | 3.91 | 1078 | 1011 |
XIII | AnHui | 117.0/32.0/0.9 | 13 | 1.49 | 996 | 945 |
XIV | YunNan | 101.5/24.5/1.2 | 17 | 0.03 | 841 | 770 |
XV | HeNan | 114.0/34.0/1.0 | 13 | 3.73 | 667 | 642 |
CCPD1 | CCPD1 | CCPD2 | CCPD2 | CCPD3 | CCPD3 | |
---|---|---|---|---|---|---|
Num. ix | Median of Bins (mm) | Width of Bins (mm) | Median of Bins (mm) | Width of Bins (mm) | Bin Boundary (h) | Width of Bins (h) |
1 | 0.05 | 0.1 | 0.15 | 0.1 | 2~3 | 1 |
2~23 | 0.15~(0.1ix − 0.05) | 0.1 | 0.25~(0.1ix − 0.05) | 0.1 | ix + 1~ix + 2 | 1 |
24 | 2.45 | 0.1 | 2.55 | 0.2 | 25~26 | 1 |
25 | 2.55 | 0.2 | 2.80 | 0.3 | 26~27 | 1 |
26 | 2.80 | 0.3 | 3.20 | 0.5 | 27~28 | 1 |
27 | 3.20 | 0.5 | 3.80 | 0.7 | 28~29 | 1 |
28 | 3.80 | 0.7 | 4.60 | 0.9 | 29~30 | 1 |
29 | 4.60 | 0.9 | 5.55 | 1.0 | 30~31 | 1 |
30 | 5.55 | 1.0 | 7.05 | 2.0 | 31~32 | 1 |
31 | 7.05 | 2.0 | 9.05 | 2.0 | 32~33 | 1 |
32 | 9.05 | 2.0 | 11.3 | 2.5 | 33~34 | 1 |
33 | 11.3 | 2.5 | 13.8 | 2.5 | 34~35 | 1 |
34 | 13.8 | 2.5 | 17.55 | 5.0 | 35~36 | 1 |
35 | 17.55 | 5.0 | 22.55 | 5.0 | 36~37 | 1 |
36 | 22.55 | 5.0 | 30.05 | 10.0 | 37~38 | 1 |
37 | 30.05 | 10.0 | 42.55 | 15.0 | 38~39 | 1 |
38 | 42.55 | 15.0 | 60.05 | 20.0 | 39~40 | 1 |
39 | 60.05 | 20.0 | 85.05 | 30.0 | 40~41 | 1 |
40 | 85.05 | 30.0 | 125.05 | 50.0 | 41~42 | 1 |
41 | 125.05 | 50.0 | 200.05 | 100.0 | 42~43 | 1 |
42 | / | / | 250.05 | 200.0 | 43~44 | 1 |
Region | GND | GΓD | Weibull | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Code | Location | Obj | Er0 (%) | Er1 (%) | R2 | Rln2 | Obj | Er0_ (%) | Er1 (%) | R2 | Rln2 | Obj | Er0 (%) | Er1_ (%) | R2 | Rln2 |
I | GuangDong | 2.56 | 0.57 | 3.24 | 0.999 | 0.949 | 1.43 | 0.20 | 1.57 | 1.000 | 0.988 | 1.46 | 0.52 | 1.13 | 0.999 | 0.994 |
II | HaiNan | 1.98 | 1.14 | 1.15 | 0.996 | 0.992 | 1.51 | 0.40 | 1.50 | 1.000 | 0.987 | 2.25 | 1.34 | 0.94 | 0.994 | 0.995 |
III | JiangXi | 1.50 | 0.57 | 1.16 | 0.999 | 0.994 | 0.96 | 0.20 | 0.68 | 1.000 | 0.998 | 1.86 | 1.27 | 0.87 | 0.995 | 0.997 |
IV | GuangXi | 2.48 | 0.74 | 2.58 | 0.998 | 0.967 | 2.35 | 0.87 | 2.07 | 0.998 | 0.979 | 2.65 | 1.66 | 1.47 | 0.991 | 0.989 |
V | ZheJiang | 1.36 | 0.35 | 1.16 | 1.000 | 0.994 | 1.22 | 0.27 | 0.99 | 1.000 | 0.996 | 2.56 | 1.78 | 1.21 | 0.991 | 0.993 |
VI | FuJian | 1.49 | 0.39 | 1.51 | 1.000 | 0.990 | 1.19 | 0.31 | 1.00 | 1.000 | 0.996 | 2.06 | 1.48 | 0.84 | 0.993 | 0.997 |
VII | HuNan | 1.39 | 0.50 | 1.05 | 0.999 | 0.996 | 1.09 | 0.39 | 0.74 | 1.000 | 0.998 | 1.97 | 1.47 | 0.89 | 0.993 | 0.997 |
VIII | SiChuan | 1.63 | 0.61 | 0.90 | 0.999 | 0.996 | 1.50 | 0.41 | 0.89 | 0.999 | 0.996 | 3.07 | 2.24 | 1.27 | 0.984 | 0.992 |
IX | GuiZhou | 2.28 | 1.03 | 1.74 | 0.996 | 0.986 | 2.28 | 1.06 | 1.69 | 0.996 | 0.987 | 2.61 | 2.06 | 0.98 | 0.986 | 0.996 |
X | JiangSu | 1.47 | 0.40 | 1.28 | 1.000 | 0.995 | 1.47 | 0.38 | 1.33 | 1.000 | 0.995 | 3.16 | 2.28 | 1.20 | 0.985 | 0.996 |
XI | ChongQing | 1.23 | 0.38 | 1.09 | 1.000 | 0.996 | 1.23 | 0.39 | 1.08 | 1.000 | 0.996 | 2.61 | 2.02 | 1.33 | 0.987 | 0.994 |
XII | HuBei | 1.32 | 0.38 | 1.05 | 1.000 | 0.995 | 1.31 | 0.40 | 1.01 | 1.000 | 0.996 | 2.68 | 2.05 | 1.00 | 0.987 | 0.996 |
XIII | AnHui | 1.20 | 0.25 | 1.05 | 1.000 | 0.995 | 1.20 | 0.25 | 1.06 | 1.000 | 0.995 | 2.80 | 2.11 | 1.04 | 0.987 | 0.996 |
XIV | YunNan | 2.19 | 1.26 | 1.36 | 0.995 | 0.993 | 1.03 | 0.27 | 0.91 | 1.000 | 0.997 | 1.05 | 0.54 | 0.95 | 0.999 | 0.997 |
XV | HeNan | 1.56 | 0.38 | 1.48 | 1.000 | 0.991 | 1.50 | 0.35 | 1.38 | 1.000 | 0.992 | 2.83 | 1.83 | 1.51 | 0.990 | 0.991 |
Maximum/Minimum | 2.56 | 1.26 | 3.24 | 0.995 | 0.949 | 2.35 | 1.06 | 2.07 | 0.996 | 0.979 | 3.16 | 2.28 | 1.51 | 0.984 | 0.989 | |
average | 1.71 | 0.60 | 1.45 | 0.999 | 0.989 | 1.42 | 0.41 | 1.19 | 0.999 | 0.993 | 2.37 | 1.64 | 1.11 | 0.991 | 0.994 |
Class | Win Rate | Function | I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII | XIII | XIV | XV |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0/15 | GΓD | 5.1 | 6.8 | 2.2 | 6.6 | 5.0 | 2.7 | 3.8 | 3.5 | 6.0 | 4.5 | 5.3 | 3.8 | 3.4 | 5.0 | 5.8 | |
CCPD1 | 14/15 | GND | 4.8 | 3.4 | 0.1 | 3.9 | 1.4 | 1.2 | 0.6 | 0.3 | 2.4 | 0.7 | 1.6 | 0.2 | −0.3 | 1.9 | 2.2 |
1/15 | Weibull | 3.7 | 4.5 | 3.7 | 7.5 | 6.3 | 2.7 | 9.2 | 10.7 | 11.8 | 6.2 | 10.5 | 5.1 | 5.2 | 8.2 | 7.0 | |
0/15 | GΓD | 6.6 | 7.4 | 8.2 | 6.1 | 8.1 | 4.9 | 7.5 | 6.3 | 7.8 | 6.5 | 8.9 | 6.6 | 6.3 | 6.2 | 5.9 | |
CCPD2 | 15/15 | GND | 2.4 | 2.8 | 3.9 | 1.5 | 3.8 | −0.3 | 2.6 | 1.8 | 3.5 | 1.7 | 4.0 | 1.8 | 1.4 | 2.5 | 1.0 |
0/15 | Weibull | 18.8 | 18.3 | 18.4 | 17.7 | 18.8 | 18.1 | 17.8 | 16.8 | 15.9 | 17.9 | 17.9 | 18.4 | 17.6 | 19.9 | 17.6 | |
0/15 | GΓD | 4.8 | 3.8 | 3.4 | 2.5 | 2.6 | 3.5 | 2.2 | 5.0 | 4.4 | 4.5 | 3.6 | 4.9 | 2.9 | 7.6 | 7.1 | |
CCPD3 | 15/15 | GND | 1.0 | −0.2 | −0.3 | −1.3 | −1.2 | −0.5 | −1.4 | 1.2 | 0.9 | 0.8 | −0.2 | 1.2 | −0.7 | 3.8 | 3.5 |
0/15 | Weibull | 19.8 | 18.3 | 22.1 | 17.8 | 22.6 | 21.0 | 22.2 | 23.7 | 21.0 | 22.4 | 23.1 | 23.0 | 21.9 | 18.7 | 22.9 |
Used | Correlation Coefficient | Mean Relative Error (%) | ||
---|---|---|---|---|
Function | AAR | AACR | AAR | AACR |
GΓD | 0.918 | 0.951 | 8.682 | 9.662 |
GND | 0.922 | 0.955 | 8.648 | 13.592 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, T.; Xiang, Y. Optimization of Probability Density Functions Applicable for Hourly Rainfall. Atmosphere 2023, 14, 1100. https://doi.org/10.3390/atmos14071100
Shen T, Xiang Y. Optimization of Probability Density Functions Applicable for Hourly Rainfall. Atmosphere. 2023; 14(7):1100. https://doi.org/10.3390/atmos14071100
Chicago/Turabian StyleShen, Tieyuan, and Yiheng Xiang. 2023. "Optimization of Probability Density Functions Applicable for Hourly Rainfall" Atmosphere 14, no. 7: 1100. https://doi.org/10.3390/atmos14071100
APA StyleShen, T., & Xiang, Y. (2023). Optimization of Probability Density Functions Applicable for Hourly Rainfall. Atmosphere, 14(7), 1100. https://doi.org/10.3390/atmos14071100