The Bibliometric Analysis of Low-Carbon Transition and Public Awareness
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
3. Results
3.1. General Performance of Publications
3.2. High-Productivity Journal Analysis
3.3. Keywords and Hotspot Analysis
3.4. Institution Contribution Analysis
3.5. Countries/Regions Contribution Analysis
4. Discussion
4.1. Research Trends, Development, and Hotspots
4.2. Future Work and Frontier Directions
4.3. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Funk, C.C.; Brown, M.E. Declining global per capita agricultural production and warming oceans threaten food security. Food Secur. 2009, 1, 271–289. [Google Scholar] [CrossRef]
- Gomez-Zavaglia, A.; Mejuto, J.C.; Simal-Gandara, J. Mitigation of emerging implications of climate change on food production systems. Food Res. Int. 2020, 134, 109256. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, S.L.; Montgomery, H.; Benton, T.; Badiane, O.; de la Mata, G.C.; Fanzo, J.; Guinto, R.R.; Soussana, J.-F. Global environmental climate change, COVID-19, and conflict threaten food security and nutrition. BMJ-Brit. Med. J. 2022, 378, e071534. [Google Scholar] [CrossRef]
- Sundstrom, J.F.; Albihn, A.; Boqvist, S.; Ljungvall, K.; Marstorp, H.; Martiin, C.; Nyberg, K.; Vagsholm, I.; Yuen, J.; Magnusson, U. Future threats to agricultural food production posed by environmental degradation, climate change, and animal and plant diseases—A risk analysis in three economic and climate settings. Food Secur. 2014, 6, 201–215. [Google Scholar] [CrossRef] [Green Version]
- Michener, W.K.; Blood, E.R.; Bildstein, K.L.; Brinson, M.M.; Gardner, L.R. Climate change, hurricanes and tropical storms, and rising sea level in coastal wetlands. Ecol. Appl. 1997, 7, 770–801. [Google Scholar] [CrossRef]
- Nerem, R.S.; Beckley, B.D.; Fasullo, J.T.; Hamlington, B.D.; Masters, D.; Mitchum, G.T. Climate-change-driven accelerated sea-level rise detected in the altimeter era. Proc. Natl. Acad. Sci. USA 2018, 115, 2022–2025. [Google Scholar] [CrossRef] [Green Version]
- Hallegatte, S.; Ranger, N.; Mestre, O.; Dumas, P.; Corfee-Morlot, J.; Herweijer, C.; Wood, R.M. Assessing climate change impacts, sea level rise and storm surge risk in port cities: A case study on Copenhagen. Clim. Chang. 2011, 104, 113–137. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.D.; Hutchins, M. The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. J. Hydrol. Reg. Stud. 2017, 12, 345–362. [Google Scholar] [CrossRef] [Green Version]
- Arnell, N.W.; Lloyd-Hughes, B. The global-scale impacts of climate change on water resources and flooding under new climate and socio-economic scenarios. Clim. Chang. 2014, 122, 127–140. [Google Scholar] [CrossRef] [Green Version]
- Huong, H.T.L.; Pathirana, A. Urbanization and climate change impacts on future urban flooding in Can Tho city, Vietnam. Hydrol. Earth Syst. Sci. 2013, 17, 379–394. [Google Scholar] [CrossRef] [Green Version]
- Hanna, E.; Navarro, F.J.; Pattyn, F.; Domingues, C.M.; Fettweis, X.; Ivins, E.R.; Nicholls, R.J.; Ritz, C.; Smith, B.; Tulaczyk, S.; et al. Ice-sheet mass balance and climate change. Nature 2013, 498, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Bliss, A.; Hock, R.; Radic, V. Global response of glacier runoff to twenty-first century climate change. J. Geophys. Res. Earth. Surf. 2014, 119, 717–730. [Google Scholar] [CrossRef]
- Dyurgerov, M.B.; Meier, M.F. Twentieth century climate change: Evidence from small glaciers. Proc. Natl. Acad. Sci. USA 2000, 97, 1406–1411. [Google Scholar] [CrossRef] [Green Version]
- Leng, G.; Tang, Q.; Rayburg, S. Climate change impacts on meteorological, agricultural and hydrological droughts in China. Glob. Planet. Chang. 2015, 126, 23–34. [Google Scholar] [CrossRef]
- UN. Available online: https://www.un.org/en/global-issues/climate-change (accessed on 30 December 2020).
- Hanson, P.J.; Weltzin, J.F. Drought disturbance from climate change: Response of United States forests. Sci. Total Environ. 2000, 262, 205–220. [Google Scholar] [CrossRef]
- Karim, M.F.; Mimura, N. Impacts of climate change and sea-level rise on cyclonic storm surge floods in Bangladesh. Glob. Environ. Chang. 2008, 18, 490–500. [Google Scholar] [CrossRef]
- Bronstert, A.; Niehoff, D.; Burger, G. Effects of climate and land-use change on storm runoff generation: Present knowledge and modelling capabilities. Hydrol. Process. 2002, 16, 509–529. [Google Scholar] [CrossRef]
- Day, J.W.; Christian, R.R.; Boesch, D.M.; Yanez-Arancibia, A.; Morris, J.; Twilley, R.R.; Naylor, L.; Schaffner, L.; Stevenson, C. Consequences of climate change on the ecogeomorphology of coastal wetlands. Estuaries Coasts 2008, 31, 477–491. [Google Scholar] [CrossRef]
- Hellmann, J.J.; Byers, J.E.; Bierwagen, B.G.; Dukes, J.S. Five potential consequences of climate change for invasive species. Conserv. Biol. 2008, 22, 534–543. [Google Scholar] [CrossRef]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Y.-S.; Lin, Y.-C.; Cui, S.; Li, Y.; Zhai, X. Crucial factors of the built environment for mitigating carbon emissions. Sci. Total Environ. 2022, 806, 150864. [Google Scholar] [CrossRef] [PubMed]
- UNFCCC. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement (accessed on 25 September 2020).
- Ohno, H.; Shigetomi, Y.; Chapman, A.; Fukushima, Y. Detailing the economy-wide carbon emission reduction potential of post-consumer recycling. Resour. Conserv. Recycl. 2021, 166, 105263. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Qin, Y.; Wang, X.; Zheng, Z. Impact of Residential Self-Selection on Low-Carbon Behavior: Evidence from Zhengzhou, China. Sustainability 2019, 11, 6871. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Yang, Z.; Liang, J.; Cai, Y. Spatial Variation and Distribution of Urban Energy Consumptions from Cities in China. Energies 2011, 4, 26–38. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, C.; Steinberger, J.; Gasson, B.; Hansen, Y.; Hillman, T.; Havranek, M.; Pataki, D.; Phdungsilp, A.; Ramaswami, A.; Villalba Mendez, G. Greenhouse Gas Emissions from Global Cities. Environ. Sci. Technol. 2009, 43, 7297–7302. [Google Scholar] [CrossRef]
- Phdungsilp, A. Integrated energy and carbon modeling with a decision support system: Policy scenarios for low-carbon city development in Bangkok. Energy Policy 2010, 38, 4808–4817. [Google Scholar] [CrossRef]
- Lin, J.; Cao, B.; Cui, S.; Wang, W.; Bai, X. Evaluating the effectiveness of urban energy conservation and GHG mitigation measures: The case of Xiamen city, China. Energy Policy 2010, 38, 5123–5132. [Google Scholar] [CrossRef]
- Gurney, K.R.; Kilkis, S.; Seto, K.C.; Lwasa, S.; Moran, D.; Riahi, K.; Keller, M.; Rayner, P.; Luqman, M. Greenhouse gas emissions from global cities under SSP/RCP scenarios, 1990 to 2100. Glob. Environ. Chang. 2022, 73, 102478. [Google Scholar] [CrossRef]
- Barthelmie, R.J.; Morris, S.D.; Schechter, P. Carbon neutral Biggar: Calculating the community carbon footprint and renewable energy options for footprint reduction. Sustain. Sci. 2008, 3, 267–282. [Google Scholar] [CrossRef]
- Birge, D.; Berger, A.M. Transitioning to low-carbon suburbs in hot-arid regions: A case-study of Emirati villas in Abu Dhabi. Build. Environ. 2019, 147, 77–96. [Google Scholar] [CrossRef]
- Liang, S.; Zhang, T. What is driving CO2 emissions in a typical manufacturing center of South China? The case of Jiangsu Province. Energy Policy 2011, 39, 7078–7083. [Google Scholar] [CrossRef]
- UN. Available online: https://www.un.org/en/academic-impact/how-mitigate-climate-change-key-facts-uns-2014-report (accessed on 28 April 2014).
- Benhelal, E.; Zahedi, G.; Shamsaei, E.; Bahadori, A. Global strategies and potentials to curb CO2 emissions in cement industry. J. Clean. Prod. 2013, 51, 142–161. [Google Scholar] [CrossRef]
- Akbari, H. Shade trees reduce building energy use and CO2 emissions from power plants. Environ. Pollut. 2002, 116, S119–S126. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Harindintwali, J.D.; Yuan, Z.; Wang, M.; Wang, F.; Li, S.; Yin, Z.; Huang, L.; Fu, Y.; Li, L.; et al. Technologies and perspectives for achieving carbon neutrality. Innovation 2021, 2, 100180. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, A. An overview of CO2 mitigation options for global warming—Emphasizing CO2 sequestration options. J. Chem. Eng. Jpn. 2003, 36, 361–375. [Google Scholar] [CrossRef]
- Brandao, M.; Levasseur, A.; Kirschbaum, M.U.F.; Weidema, B.P.; Cowie, A.L.; Jorgensen, S.V.; Hauschild, M.Z.; Pennington, D.W.; Chomkhamsri, K. Key issues and options in accounting for carbon sequestration and temporary storage in life cycle assessment and carbon footprinting. Int. J. Life Cycle Assess. 2013, 18, 230–240. [Google Scholar] [CrossRef]
- Gattinger, A.; Muller, A.; Haeni, M.; Skinner, C.; Fliessbach, A.; Buchmann, N.; Maeder, P.; Stolze, M.; Smith, P.; Scialabba, N.E.-H.; et al. Enhanced top soil carbon stocks under organic farming. Proc. Natl. Acad. Sci. USA 2012, 109, 18226–18231. [Google Scholar] [CrossRef] [Green Version]
- Ostle, N.J.; Levy, P.E.; Evans, C.D.; Smith, P. UK land use and soil carbon sequestration. Land Use Policy 2009, 26, S274–S283. [Google Scholar] [CrossRef]
- Zou, C.; Xiong, B.; Xue, H.; Zheng, D.; Ge, Z.; Wang, Y.; Jiang, L.; Pan, S.; Wu, S. The role of new energy in carbon neutral. Pet. Explor. Dev. 2021, 48, 480–491. [Google Scholar] [CrossRef]
- Paustian, K.; Six, J.; Elliott, E.T.; Hunt, H.W. Management options for reducing CO2 emissions from agricultural soils. Biogeochemistry 2000, 48, 147–163. [Google Scholar] [CrossRef]
- Lee, C.T.; Hashim, H.; Ho, C.S.; Fan, Y.V.; Klemes, J.J. Sustaining the low-carbon emission development in Asia and beyond: Sustainable energy, water, transportation and low-carbon emission technology. J. Clean. Prod. 2017, 146, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Dietz, T.; Gardner, G.T.; Gilligan, J.; Stern, P.C.; Vandenbergh, M.P. Household actions can provide a behavioral wedge to rapidly reduce US carbon emissions. Proc. Natl. Acad. Sci. USA 2009, 106, 18452–18456. [Google Scholar] [CrossRef] [Green Version]
- Davidson, M.; Karplus, V.J.; Zhang, D.; Zhang, X. Policies and Institutions to Support Carbon Neutrality in China by 2060. Econ. Energy Environ. Policy 2021, 10, 7–24. [Google Scholar] [CrossRef]
- Williams, J.H.; Jones, R.A.; Haley, B.; Kwok, G.; Hargreaves, J.; Farbes, J.; Torn, M.S. Carbon-Neutral Pathways for the United States. AGU Adv. 2021, 2, e2020AV000284. [Google Scholar] [CrossRef]
- Becker, S.; Bouzdine-Chameeva, T.; Jaegler, A. The carbon neutrality principle: A case study in the French spirits sector. J. Clean. Prod. 2020, 274, 122739. [Google Scholar] [CrossRef] [PubMed]
- Perissi, I.; Jones, A. Investigating European Union Decarbonization Strategies: Evaluating the Pathway to Carbon Neutrality by 2050. Sustainability 2022, 14, 4728. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, X.; Chen, B.; Shang, Y.; Song, M. Challenges toward carbon neutrality in China: Strategies and countermeasures. Resour. Conserv. Recycl. 2022, 176, 105959. [Google Scholar] [CrossRef]
- Li, J.; Ho, M.S.; Xie, C.; Stern, N. China’s flexibility challenge in achieving carbon neutrality by 2060. Renew. Sustain. Energy Rev. 2022, 158, 112112. [Google Scholar] [CrossRef]
- Owen, A.; Barrett, J. Reducing inequality resulting from UK low-carbon policy. Clim. Policy 2020, 20, 1193–1208. [Google Scholar] [CrossRef]
- Corradini, M.; Costantini, V.; Markandya, A.; Paglialunga, E.; Sforna, G. A dynamic assessment of instrument interaction and timing alternatives in the EU low-carbon policy mix design. Energy Policy 2018, 120, 73–84. [Google Scholar] [CrossRef]
- Cheng, B.; Dai, H.; Wang, P.; Xie, Y.; Chen, L.; Zhao, D.; Masui, T. Impacts of low-carbon power policy on carbon mitigation in Guangdong Province, China. Energy Policy 2016, 88, 515–527. [Google Scholar] [CrossRef]
- Yuan, X.; Zuo, J. Transition to low carbon energy policies in China-from the Five-Year Plan perspective. Energy Policy 2011, 39, 3855–3859. [Google Scholar] [CrossRef]
- Yuan, X.; Zuo, J.; Ma, C. Social acceptance of solar energy technologies in China-End users’ perspective. Energy Policy 2011, 39, 1031–1036. [Google Scholar] [CrossRef]
- Jiang, P.; Chen, Y.; Xu, B.; Dong, W.; Kennedy, E. Building low carbon communities in China: The role of individual’s behaviour change and engagement. Energy Policy 2013, 60, 611–620. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, D.; Xu, H. Factors Influencing Consumer Willingness to Pay for Low-Carbon Products: A Simulation Study in China. Bus. Strategy Environ. 2017, 26, 972–984. [Google Scholar] [CrossRef]
- Burch, S. In pursuit of resilient, low carbon communities: An examination of barriers to action in three Canadian cities. Energy Policy 2010, 38, 7575–7585. [Google Scholar] [CrossRef]
- Jia, N.; Li, L.; Ling, S.; Ma, S.; Yao, W. Influence of attitudinal and low-carbon factors on behavioral intention of commuting mode choice—A cross-city study in China. Transp. Res. Part A Policy Pract. 2018, 111, 108–118. [Google Scholar] [CrossRef]
- Whitmarsh, L.; Seyfang, G.; O’Neill, S. Public engagement with carbon and climate change: To what extent is the public ‘carbon capable’? Glob. Environ. Chang. 2011, 21, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Chapman, A.; Okushima, S. Engendering an inclusive low-carbon energy transition in Japan: Considering the perspectives and awareness of the energy poor. Energy Policy 2019, 135, 111017. [Google Scholar] [CrossRef]
- Niamir, L.; Ivanova, O.; Filatova, T.; Voinov, A.; Bressers, H. Demand-side solutions for climate mitigation: Bottom-up drivers of household energy behavior change in the Netherlands and Spain. Energy Res. Soc. Sci. 2020, 62, 1356. [Google Scholar] [CrossRef]
- Peng, W.; Wang, X.; Guo, L. An Exploration of Neighborhood Residents’ Cognition of and Participation in Low-Carbon Behaviors in Wuhan, China. Adv. Civ. Eng. 2018, 2018, 8764801. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Wan, J.; Yu, W. Impact of environmental education on environmental quality under the background of low-carbon economy. Front. Public Health 2023, 11, 1128791. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Wu, N.; Chen, N. Young People’s Behavioral Intentions towards Low-Carbon Travel: Extending the Theory of Planned Behavior. Int. J. Environ. Res. Public Health 2021, 18, 2327. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Li, J. Who are the low-carbon activists? Analysis of the influence mechanism and group characteristics of low-carbon behavior in Tianjin, China. Sci. Total Environ. 2019, 683, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Ren, Q.; Hu, X.; Lin, T.; Xu, L.; Li, X.; Zhang, G.; Shi, L.; Pan, B. Low-carbon behavior approaches for reducing direct carbon emissions: Household energy use in a coastal city. J. Clean. Prod. 2017, 141, 128–136. [Google Scholar] [CrossRef] [Green Version]
- Jiang, P.; Tovey, N.K. Opportunities for low carbon sustainability in large commercial buildings in China. Energy Policy 2009, 37, 4949–4958. [Google Scholar] [CrossRef]
- Juvan, E.; Dolnicar, S. Can tourists easily choose a low carbon footprint vacation? J. Sustain. Tour. 2014, 22, 175–194. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, J.; Chai, Y. Neighborhood-scale urban form, travel behavior, and CO2 emissions in Beijing: Implications for low-carbon urban planning. Urban Geogr. 2017, 38, 381–400. [Google Scholar] [CrossRef]
Rank | Publications | Number of Publications | IF 2022 | SJR 2022 | JCR 2022 | Categories |
---|---|---|---|---|---|---|
1 | Journal of Cleaner Production | 90 | 11.072 | Q1 | Q1 | Environmental Science (SCIE) |
2 | Sustainability | 74 | 3.889 | Q2 | Q1 | Environmental Science (SSCI) |
3 | Energy Policy | 52 | 7.576 | Q1 | Q1 | Environmental Science (SCIE) |
4 | Energies | 31 | 3.252 | Q2 | Q3 | Energy and Fuels (SCIE) |
5 | Materials Science and Engineering A: Structural Materials: Properties, Microstructure, and Processing | 29 | 6.044 | Q1 | Q1 | Metallurgy and Metallurgical Engineering (SCIE) |
6 | Energy Research and Social Science | 26 | 8.514 | Q1 | Q1 | Environmental Science (SSCI) |
7 | Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science | 25 | 2.726 | Q1 | Q2 | Metallurgy and Metallurgical Engineering (SCIE) |
8 | International Journal of Environmental Research and Public Health | 23 | 4.614 | Q1 | Q1 | Public, Environment, and Occupational Health (SSCI) |
9 | Renewable and Sustainable Energy Reviews | 21 | 16.799 | Q1 | Q1 | Multidisciplinary Sciences (SCIE) |
10 | Applied Energy | 18 | 11.466 | Q1 | Q1 | Energy and Fuels (SCIE) |
Rank | Keywords | Frequency | Rank | Keywords | Frequency |
---|---|---|---|---|---|
1 | Low Carbon | 77 | 11 | Energy Transition | 29 |
2 | Climate Change | 73 | 12 | Sustainable Development | 29 |
3 | Renewable Energy | 62 | 13 | Carbon Emission Reduction | 27 |
4 | Sustainability | 62 | 14 | Climate Change Mitigation | 25 |
5 | Carbon Emissions | 51 | 15 | Environmental | 25 |
6 | Behavior Change | 50 | 16 | Transition | 25 |
7 | China | 43 | 17 | Low-carbon Economy | 24 |
8 | Transport | 43 | 18 | Carbon Footprint | 23 |
9 | Low-carbon Awareness | 39 | 19 | Low-carbon Lifestyle | 23 |
10 | Energy Policy | 34 | 20 | Greenhouse Gas Emissions | 18 |
Rank | Institution | Country | Number of Publications | ||||
---|---|---|---|---|---|---|---|
1900–2005 | 2006–2010 | 2011–2015 | 2016–2022 | Total | |||
1 | Chinese Academy of Sciences | China | 0 | 4 | 6 | 30 | 38 |
2 | University of London | UK | 0 | 0 | 6 | 21 | 27 |
3 | Tianjin University | China | 0 | 0 | 8 | 19 | 27 |
4 | Centre National de la Research Scienfique | Spain | 2 | 3 | 1 | 17 | 23 |
5 | Northeastern University | China | 1 | 2 | 0 | 17 | 20 |
6 | Tsinghua University | China | 0 | 3 | 4 | 14 | 21 |
7 | University College London | UK | 0 | 1 | 4 | 14 | 19 |
8 | United States Department of Energy | USA | 4 | 0 | 5 | 10 | 19 |
9 | Indian Institute of Technology System | India | 0 | 2 | 3 | 13 | 18 |
10 | University of Oxford | UK | 0 | 0 | 4 | 14 | 18 |
Rank | Country | Number of Publications | Starting Year | Number of Publications in 2022 | Per Capita Number of Publications in 2022 (N/Million People) |
---|---|---|---|---|---|
1 | China | 499 | 2005 | 133 | 0.093 |
2 | UK | 195 | 1998 | 25 | 0.369 |
3 | USA | 142 | 1998 | 16 | 0.047 |
4 | Australia | 68 | 2008 | 13 | 0.492 |
5 | Japan | 66 | 1995 | 11 | 0.089 |
6 | Germany | 60 | 1998 | 7 | 0.084 |
7 | Canada | 42 | 2010 | 7 | 0.180 |
8 | Italy | 40 | 2008 | 6 | 0.102 |
9 | France | 38 | 1997 | 7 | 0.180 |
10 | Netherlands | 38 | 2001 | 8 | 0.454 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Shen, Y.-S. The Bibliometric Analysis of Low-Carbon Transition and Public Awareness. Atmosphere 2023, 14, 970. https://doi.org/10.3390/atmos14060970
Wu X, Shen Y-S. The Bibliometric Analysis of Low-Carbon Transition and Public Awareness. Atmosphere. 2023; 14(6):970. https://doi.org/10.3390/atmos14060970
Chicago/Turabian StyleWu, Xialu, and Yu-Sheng Shen. 2023. "The Bibliometric Analysis of Low-Carbon Transition and Public Awareness" Atmosphere 14, no. 6: 970. https://doi.org/10.3390/atmos14060970
APA StyleWu, X., & Shen, Y. -S. (2023). The Bibliometric Analysis of Low-Carbon Transition and Public Awareness. Atmosphere, 14(6), 970. https://doi.org/10.3390/atmos14060970