Compositions and Sources of Organic Aerosol in PM2.5 in Nanjing in China
Abstract
:1. Introduction
2. Experiments
2.1. Sampling Site and Sample Collection
2.2. Sample Preparation and Chemical Analyses
2.3. Instrumental Conditions
2.4. Source Analysis
3. Results and Discussion
3.1. Validation of HPLC-MS/MS
3.2. Concentrations and Compositions
3.2.1. Nitrated Phenols
3.2.2. Organic Acids
3.2.3. Ketone and Aldehyde
3.3. Source Apportionment
3.3.1. Source Identification
3.3.2. Source Contributions in Different Seasons
3.3.3. Source Contributions to Different Organic Components
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feng, Y.; Ramanathan, V.; Kotamarthi, V.R. Brown carbon: A significant atmospheric absorber of solar radiation. Atmos. Chem. Phys. 2013, 13, 8607–8621. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Lin, Y.H.; Surratt, J.D.; Zotter, P.; Prévôt, A.S.; Weber, R.J. Light-absorbing soluble organic aerosol in Los Angeles and Atlanta: A contrast in secondary organic aerosol. Geophys. Res. Lett. 2011, 38, 21. [Google Scholar] [CrossRef] [Green Version]
- Laskin, A.; Laskin, J.; Nizkorodov, S.A. Chemistry of Atmospheric Brown Carbon. Chem. Rev. 2015, 115, 4335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, R.; Lee, A.K.; Huang, L.; Li, X.; Yang, F.; Abbatt, J.P. Photochemical processing of aqueous atmospheric brown carbon. Atmos. Chem. Phys. 2015, 15, 6087–6100. [Google Scholar] [CrossRef] [Green Version]
- Fine, P.M.; Chakrabarti, B.; Krudysz, M.; Schauer, J.J.; Sioutas, C. Diurnal Variations of Individual Organic Compound Constituents of Ultrafine and Accumulation Mode Particulate Matter in the Los Angeles Basin. Environ. Sci. Technol. 2004, 38, 1296–1304. [Google Scholar] [CrossRef] [PubMed]
- Schauer, J.J.; Fraser, M.P.; Cass, G.R.; Simoneit, B. Source Reconciliation of Atmospheric Gas-Phase and Particle-Phase Pollutants during a Severe Photochemical Smog Episode. Environ. Sci. Technol. 2002, 36, 3806–3814. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Cass, G.R.; Schauer, J.J.; Edgerton, E.S. Source apportionment of PM2.5 in the Southeastern United States using solvent-extractable organic compounds as tracers. Environ. Sci. Technol. 2002, 36, 2361. [Google Scholar] [CrossRef]
- Kanellopoulos, P.G.; Chrysochou, E.; Koukoulakis, K.; Bakeas, E. Secondary organic aerosol markers and related polar organic compounds in summer aerosols from a sub-urban site in Athens: Size distributions, diurnal trends and source apportionment. Atmos. Pollut. Res. 2021, 12, 1–13. [Google Scholar] [CrossRef]
- Simoneit, B.; Medeiros, P.M.; Didyk, B.M. Combustion products of plastics as indicators for refuse burning in the atmosphere. Environ. Sci. Technol. 2005, 39, 6961–6970. [Google Scholar] [CrossRef]
- Blank, L.W. A new type of forest decline in Germany. Nature 1985, 314, 311–314. [Google Scholar] [CrossRef]
- Grosjean, D. Atmospheric fate of toxic aromatic compounds. Sci. Total Environ. 1991, 100, 367–414. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, L.; Han, S. The genotoxicity of substtitued nitrobenzenes and the quanttative structure activity relationship studies. Chemosphere 1995, 30, 915–923. [Google Scholar] [CrossRef] [PubMed]
- Trautner, F.; Hutzinger, O.; Richartz, H.; Reischl, A. Nitrated phenols in fog. Atmos. Environ. Part A Gen. Top. 1990, 24, 3067–3071. [Google Scholar]
- Morville, S.; Scheyer, A.; Mirabel, P.; Millet, M. Spatial and Geographical Variations of Urban, Suburban and Rural Atmospheric Concentrations of Phenols and Nitrophenols (7 pp). Environ. Sci. Pollut. Res. 2006, 13, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Belloli, R.; Barletta, B.; Bolzacchini, E.; Meinardi, S.; Orlandi, M.; Rindone, B. Determination of toxic nitrophenols in the atmosphere by high-performance liquid chromatography. J. Chromatogr. A 1999, 846, 277–281. [Google Scholar] [CrossRef]
- Mohr, C.; Lopez-Hilfiker, F.D.; Zotter, P.; Prevot, A.S.; Xu, L.; Ng, N.L.; Herndon, S.C.; Williams, L.R.; Franklin, J.P.; Zahniser, M.S.; et al. Contribution of nitrated phenols to wood burning brown carbon light absorption in Detling, United Kingdom during winter time. Environ. Sci. Technol. 2013, 47, 6316–6324. [Google Scholar] [CrossRef]
- Sophie, T. One-year study of polycyclic aromatic compounds at an urban site in Grenoble (France): Seasonal variations, gas/particle partitioning and cancer risk estimation. Sci. Total Environ. 2016, 565, 1071–1083. [Google Scholar]
- Iinuma, Y.; Boge, O.; Graefe, R.; Herrmann, H. Methyl-Nitrocatechols: Atmospheric Tracer Compounds for Biomass Burning Secondary Organic Aerosols. Environ. Sci. Technol. 2010, 44, 8453. [Google Scholar] [CrossRef]
- Nojima, K.; Fukaya, K.; Fukui, S.; Kanno, S. Studies on photochemistry of aromatic hydrocarbons II: The formation of nitrophenols and nitrobenzene by the photochemical reaction of benzene in the presence of nitrogen monoxide. Chemosphere 1975, 4, 77–82. [Google Scholar] [CrossRef]
- Harrison, M.; Barra, S.; Borghesi, D.; Vione, D.; Arsene, C.; Olariu, R.I. Nitrated phenols in the atmosphere: A review. Atmos. Environ. 2005, 39, 231–248. [Google Scholar] [CrossRef]
- Desyaterik, Y.; Sun, Y.; Shen, X.; Lee, T.; Wang, X.; Wang, T.; Collett, J.L. Speciation of “brown” carbon in cloud water impacted by agricultural biomass burning in eastern China. J. Geophys. Res. Atmos. 2013, 118, 7389–7399. [Google Scholar] [CrossRef]
- Yan, L.; Bai, Y.; Zhao, R.; Fan, L.; Xie, K. Correlation between coal structure and release of the two organic compounds during pyrolysis. Fuel 2015, 145, 12–17. [Google Scholar] [CrossRef]
- Tremp, J.; Mattrel, P.; Fingler, S.; Giger, W. Phenols and nitrophenols as tropospheric pollutants: Emissions from automobile exhausts and phase transfer in the atmosphere. Water Air Soil Pollut. 1993, 68, 113–123. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Gu, R.; Wang, H.; Yao, L.; Wen, L.; Zhu, F.; Wang, W.; Xue, L.; Yang, L.; et al. Observations of fine particulate nitrated phenols in four sites in northern China: Concentrations, source apportionment, and secondary formation. Atmos. Chem. Phys. 2018, 18, 4349–4359. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.; Chen, J.; Qin, W.; Cheng, S.; Zhang, Y.; Ahmad, M.; Ouyang, W. Characteristics and secondary formation of water-soluble organic acids in PM1, PM2.5 and PM10 in Beijing during haze episodes. Sci. Total Environ. 2019, 669, 175–184. [Google Scholar] [CrossRef]
- Hyder, M.; Genberg, J.; Sandahl, M.; Swietlicki, E.; Joensson, J.A. Yearly trend of dicarboxylic acids in organic aerosols from south of Sweden and source attribution. Atmos. Environ. 2012, 57, 197–204. [Google Scholar] [CrossRef]
- Impoinvil, D.; Tom, S.; William, S.W.; Ajit, R.; Padarath, B.R.; Geeta, S.; Cyril, C.; Matthew, B.; Cowling, B.J. The Spatial Heterogeneity between Japanese Encephalitis Incidence Distribution and Environmental Variables in Nepal. PLoS ONE 2011, 6, e022192. [Google Scholar] [CrossRef] [Green Version]
- Simoneit, B. Biomass burning-a review of organic tracers for smoke from incomplete combustion. Appl. Geochem. 2002, 17, 129–162. [Google Scholar] [CrossRef]
- Zakzeski, J.; Bruijnincx, P.C.; Jongerius, A.L.; Weckhuysen, B.M. The Catalytic Valorization of Lignin for the Production of Renewable Chemicals. Chem. Rev. 2010, 110, 3552–3599. [Google Scholar] [CrossRef]
- Zangrando, R.; Barbaro, E.; Zennaro, P.; Rossi, S.; Kehrwald, N.M.; Gabrieli, J.; Barbante, C.; Gambaro, A. Molecular markers of biomass burning in arctic aerosols. Environ. Sci. Technol. 2013, 47, 8565–8574. [Google Scholar] [CrossRef]
- Oros, D.R.; Simoneit, B. Identification and emission factors of molecular tracers in organic aerosols from biomass burning Part 1 Temperate climate conifers. Appl. Geochem. 2001, 16, 1544. [Google Scholar] [CrossRef]
- Simoneit, B. A review of biomarker compounds as source indicators and tracers for air pollution. Environ. Sci. Pollut. Res. 1999, 6, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, J.; Qi, L.; Yu, W.; Nie, D.; Shi, S.; Gu, C.; Ge, X.; Chen, M. Molecular characterization of biomass burning tracer compounds in fine particles in Nanjing, China. Atmos. Environ. 2020, 240, 117837. [Google Scholar] [CrossRef]
- Paatero, P.; Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Yuan, B. Secondary formation of nitrated phenols: Insights from observations during the Uintah Basin Winter Ozone Study (UBWOS) 2014. Atmos. Chem. Physic 2016, 16, 2139–2153. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Hu, M.; Wang, Y.; Zheng, J.; Yu, J.Z. The formation of nitro-aromatic compounds under high NO x and anthropogenic VOC conditions in urban Beijing, China. Atmos. Chem. Phys. 2019, 19, 7649–7665. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Wang, X.; Lu, C.; Li, R.; Zhang, J.; Dong, S.; Yang, L.; Xue, L.; Chen, J.; Wang, W. Nitrated phenols and the phenolic precursors in the atmosphere in urban Jinan, China. Sci. Total Environ. 2020, 714, 136760. [Google Scholar] [CrossRef]
- Olariu, R.I.; Klotz, B.; Barnes, I.; Becker, K.H.; Mocanu, R. FT-IR study of the ring-retaining products from the reaction of OH radicals with phenol, o-, m-, and p-cresol. Atmos. Environ. 2002, 36, 3685–3697. [Google Scholar] [CrossRef]
- Kahnt, A.; Behrouzi, S.; Vermeylen, R.; Shalamzari, M.S.; Vercauteren, J.; Roekens, E.; Claeys, M.; Maenhaut, W. One-year study of nitro-organic compounds and their relation to wood burning in PM10 aerosol from a rural site in Belgium. Atmos. Environ. 2013, 81, 561–568. [Google Scholar] [CrossRef]
- Chow, K.S.; Huang, X.H.H.; Yu, J.Z. Quantification of nitroaromatic compounds in atmospheric fine particulate matter in Hong Kong over 3 years: Field measurement evidence for secondary formation derived from biomass burning emissions. Environ. Chem. 2016, 13, 665–673. [Google Scholar] [CrossRef] [Green Version]
- Teich, M.; van Pinxteren, D.; Wang, M.; Kecorius, S.; Wang, Z.; Müller, T.; Mocnik, G.; Herrmann, H. Contributions of nitrated aromatic compounds to the light absorption of water-soluble and particulate brown carbon in different atmospheric environments in Germany and China 2017. Atmos. Chem. Phys. 2017, 17, 1653–1672. [Google Scholar] [CrossRef] [Green Version]
- Delhomme, O.; Morville, S.; Millet, M. Seasonal and diurnal variations of atmospheric concentrations of phenols and nitrophenols measured in the Strasbourg area, France. Atmos. Pollut. Res. 2010, 1, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Ho, K.F.; Ho, S.S.H.; Lee, S.C.; Kawamura, K.; Zou, S.C.; Cao, J.J.; Xu, H.M. Summer and winter variations of dicarboxylic acids, fatty acids and benzoic acid in PM2.5 in Pearl Delta River Region, China. Atmos. Chem. Phys. 2011, 11, 2197–2208. [Google Scholar] [CrossRef] [Green Version]
- Hansen, A.; Kristensen, K.; Nguyen, Q.T.; Zare, A.; Glasius, M. Organosulfates and organic acids in Arctic aerosols: Speciation, annual variation and concentration levels. Atmos. Chem. Phys. 2014, 14, 7807–7823. [Google Scholar] [CrossRef] [Green Version]
- Kawamura, K.; Yasui, O. Diurnal changes in the distribution of dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban Tokyo atmosphere. Atmos. Environ. 2005, 39, 1945–1960. [Google Scholar] [CrossRef]
- Bari, M.A.; Baumbach, G.; Kuch, B.; Scheffknecht, G. Temporal variation and impact of wood smoke pollution on a residential area in southern Germany. Atmos. Environ. 2010, 44, 3823–3832. [Google Scholar] [CrossRef]
- Kawamura, K.; Kasukabe, H.; Barrie, L.A. Source and reaction pathways of dicarboxylic acids, ketoacids and dicarbonyls in arctic aerosols: One year of observations. Atmos. Environ. 1996, 30, 1722. [Google Scholar] [CrossRef]
- Kawamura, K.; Ikushima, K. Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environ. Sci. Technol 1993, 27, 2227–2235. [Google Scholar] [CrossRef]
- Li, J.; Wang, G.; Ren, Y.; Wang, J.; Wu, C.; Han, Y.; Zhang, L.; Cheng, C.; Meng, J. Identification of chemical compositions and sources of atmospheric aerosols in Xi’an, inland China during two types of haze events. Sci. Total Environ. 2016, 566–567, 230–237. [Google Scholar] [CrossRef]
- Soja, A.J. Intercomparison of near-real-time biomass burning emissions estimates constrained by satellite fire data. J. Appl. Remote Sens. 2008, 2, 142–154. [Google Scholar]
- Oros, D.R.; Simoneit, B. Identification and emission factors of molecular tracers in organic aerosols from biomass burning Part 2. Deciduous trees. Appl. Geochem. 2001, 16, 1545–1565. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Guo, S.; Xu, Z.; Wang, X.; Wang, A.; Chen, M. Compositions and Sources of Organic Aerosol in PM2.5 in Nanjing in China. Atmosphere 2023, 14, 971. https://doi.org/10.3390/atmos14060971
Li W, Guo S, Xu Z, Wang X, Wang A, Chen M. Compositions and Sources of Organic Aerosol in PM2.5 in Nanjing in China. Atmosphere. 2023; 14(6):971. https://doi.org/10.3390/atmos14060971
Chicago/Turabian StyleLi, Wenjing, Shuang Guo, Zhiqi Xu, Xinfeng Wang, Anting Wang, and Mindong Chen. 2023. "Compositions and Sources of Organic Aerosol in PM2.5 in Nanjing in China" Atmosphere 14, no. 6: 971. https://doi.org/10.3390/atmos14060971
APA StyleLi, W., Guo, S., Xu, Z., Wang, X., Wang, A., & Chen, M. (2023). Compositions and Sources of Organic Aerosol in PM2.5 in Nanjing in China. Atmosphere, 14(6), 971. https://doi.org/10.3390/atmos14060971