Using Deep Learning to Identify Circulation Patterns of Intense Rainfall in the Beijing–Tianjing–Hebei Region
Abstract
:1. Introduction
2. Data and Methods
2.1. Information Notes
2.2. Selection of Intense Rainfall Events in the Beijing–Tianjin–Hebei Region and Classification of Corresponding Circulation Patterns
2.3. Objective Classification Methods
2.3.1. Method Screening
2.3.2. Principle and Network Structure of FConvNeXt
2.3.3. Introduction to the ConvNeXt Module
2.3.4. Introduction to the Cross-Fusion Feature Extraction Module
2.4. Experimental Design and Dataset Partitioning
2.5. Introduction to Evaluation Indicators
3. Results
3.1. Comparison of Multiple Objective Classification Methods
3.2. Circulation Pattern Classification by FConvNeXt
3.3. Performance of FConvNeXt in 2021 Test Set
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
WSF | Weak Synoptic Forcing Type |
LVT | Low Vortex Type |
SPT | Subtropical-high Periphery Type |
UTP | Upper-level Trough Type |
TPT | Typhoon Type |
References
- Yang, R.; Xing, P.; Du, W.; Dang, B.; Xuan, C.; Xiong, F. Climatic characteristics of precipitation in North China from 1961 to 2017. Sci. Geogr. Sin. 2020, 40, 1573–1583. [Google Scholar]
- Caracciolo, C.; Porcù, F.; Prodi, F. Precipitation classification at mid-latitudes in terms of drop size distribution parameters. Adv. Geosci. 2008, 16, 11–17. [Google Scholar] [CrossRef]
- Cai, J.; Tan, G.; Niu, R. Circulation pattern classification of persistent heavy rainfall in jianghuai region based on the transfer learning cnn model. J. Appl. Meteorol. Sci. 2021, 32, 233–244. [Google Scholar]
- Huth, R.; Beck, C.; Philipp, A.; Demuzere, M.; Ustrnul, Z.; Cahynová, M.; Kyselỳ, J.; Tveito, O.E. Classifications of atmospheric circulation patterns: Recent advances and applications. Ann. N. Y. Acad. Sci. 2008, 1146, 105–152. [Google Scholar] [CrossRef] [PubMed]
- Tveito, O.E. An assessment of circulation type classifications for precipitation distribution in Norway. Phys. Chem. Earth Parts A B C 2010, 35, 395–402. [Google Scholar] [CrossRef]
- Jia, L.; Li, W.; Chen, D.; An, X. A monthly atmospheric circulation classification and its relationship with climate in Harbin. Acta Meteorol. Sin. 2006, 64, 236–245. [Google Scholar]
- Bartoszek, K.; Skiba, D. Circulation types classification for hourly precipitation events in Lublin (East Poland). Open Geosci. 2016, 8, 214–230. [Google Scholar] [CrossRef]
- Deligiorgi, D.; Philippopoulos, K.; Kouroupetroglou, G. An Assessment of Self-Organizing Maps and k-Means Clustering Approaches for Atmospheric Circulation Classification. Recent Advances in Environmental Science and Geoscience. 17. 2014. Available online: https://www.inase.org/library/2014/venice/bypaper/ENVIR/ENVIR-01.pdf (accessed on 23 April 2023).
- Casado, M.; Pastor, M.; Doblas-Reyes, F. Links between circulation types and precipitation over Spain. Phys. Chem. Earth Parts A B C 2010, 35, 437–447. [Google Scholar] [CrossRef]
- Casado, M.; Pastor, M. Circulation types and winter precipitation in Spain. Int. J. Climatol. 2016, 36, 2727–2742. [Google Scholar] [CrossRef]
- Liu, R.; Sun, J.; Wei, J.; Fu, S. Classification of persistent heavy rainfall events over South China and associated moisture source analysis. J. Meteorol. Res. 2016, 30, 678–693. [Google Scholar] [CrossRef]
- Huth, R. Disaggregating climatic trends by classification of circulation patterns. Int. J. Climatol. J. R. Meteorol. Soc. 2001, 21, 135–153. [Google Scholar] [CrossRef]
- Bardossy, A.; Duckstein, L.; Bogardi, I. Fuzzy rule-based classification of atmospheric circulation patterns. Int. J. Climatol. 1995, 15, 1087–1097. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Zhang, Q.H.; Du, Y.; Jiang, M.; Zhang, J.P. Objective analysis of the extreme of circulation patterns during the 21 July 2012 torrential rain event in Beijing. Acta Meteorol. Sin. 2013, 71, 817–824. [Google Scholar]
- Hu, Y.; Ding, Y.; Liao, F. A classification of the precipitation patterns during the Yangtze-Huaihe meiyu period for the recent 52 years. Acta Meteorol. Sin. 2010, 68, 235–247. [Google Scholar]
- Lin, Y. Precipitation Regionalization Based on Fuzzy Clustering Algorithm. Meteorol. Sci. Technol. 2011, 39, 582–586. [Google Scholar]
- Zhou, X.; Sun, J.; Zhang, L.; Chen, G.; Cao, J.; Jie, B. Classification characteristics of continuous extreme rainfall events in North China. Acta Meteorol. Sin. 2020, 78, 761–777. [Google Scholar]
- Deng, A.; Tao, S.; Chen, L. The EOF analysis of rainfall in China during monsoon season. Chin. J. Atmos. Sci. 1989, 13, 289–295. [Google Scholar]
- Gao, S.H.; Cheng, M.M.; Zhao, K.; Zhang, X.Y.; Yang, M.H.; Torr, P. Res2net: A new multi-scale backbone architecture. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 652–662. [Google Scholar] [CrossRef]
- Feng, S.; Xiao, W. An Improved DBSCAN Clustering Algorithm. J. China Univ. Min. Technol. 2008, 37, 105–111. [Google Scholar]
- Dikbas, F.; Firat, M.; Koc, A.C.; Gungor, M. Classification of precipitation series using fuzzy cluster method. Int. J. Climatol. 2012, 32, 1596–1603. [Google Scholar] [CrossRef]
- Zhong, Q.; Sun, Z.; Chen, H.; Li, J.; Shen, L. Multi model forecast biases of the diurnal variations of intense rainfall in the Beijing–Tianjin–Hebei region. Sci. China Earth Sci. 2022, 65, 1490–1509. [Google Scholar] [CrossRef]
- Zhinian, Q.; Xueyuan, K.; Lihua, Z. Probe into the Forecast Based on Precipitation Types in After-flood Season of Guangxi. J. Guangxi Meteorol. 2002, 23, 9–11. [Google Scholar]
- Xinping, W.; Qing, Y.; Zhihui, L.; Hong, L.; Ligna, G. Fuzzy C-Means Clustering Method for Climatic Regionalization about Precipitation in Xinjiang. Desert Oasis Meteo 2013, 7, 30–35. [Google Scholar]
- Yang, L.; Deng, M. Based on k-means and fuzzy k-means algorithm classification of Precipitation. In Proceedings of the 2010 International Symposium on Computational Intelligence and Design, Hangzhou, China, 29–31 October 2010; Volume 1, pp. 218–221. [Google Scholar]
- Sun, J.; Liu, L.; Zhao, L. Clustering Algorithms Research. J. Softw. 2008, 19, 48–61. [Google Scholar] [CrossRef]
- Ostrovsky, Y.; Yanovsky, F. Use of neural network for turbulence and precipitation classification procedure. In Proceedings of the 2006 International Conference on Mathematical Methods in Electromagnetic Theory, Kharkiv, Ukraine, 26–29 June 2006; pp. 161–163. [Google Scholar]
- Liu, Z.; Mao, H.; Wu, C.Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A convnet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 11976–11986. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Pressure Levels from 1979 to Present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS); European Union: Brussels, Belgium, 2018. [Google Scholar]
- Shuai, S.; Chunxiang, S.; Yang, P.; Junxia, G.; Lei, B.; Chuancheng, S.; Shuai, H.; Jinsen, S. The lmproved Effects Evaluation of Three-Source Merged of Precipitation Products in China. Hydrology 2020, 15, 100129. [Google Scholar]
- Pan, Y.; Gu, J.; Yu, J.; Shen, Y.; Shi, C.; Zhou, Z. Test of merging methods for multi-source observed precipitation products at high resolution over China. Acta Meteorol. Sin. 2018, 76, 755–766. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Targ, S.; Almeida, D.; Lyman, K. Resnet in resnet: Generalizing residual architectures. arXiv 2016, arXiv:1603.08029. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Liu, P.; Zhang, H.; Zhang, K.; Lin, L.; Zuo, W. Multi-level wavelet-CNN for image restoration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–23 June 2018; pp. 773–782. [Google Scholar]
- Zagoruyko, S.; Komodakis, N. Wide residual networks. arXiv 2016, arXiv:1605.07146. [Google Scholar]
- He, Y.; Zhang, X.; Sun, J. Channel pruning for accelerating very deep neural networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1389–1397. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1026–1034. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Li, J.; Wang, C.; Huang, B.; Zhou, Z. ConvNeXt-backbone HoVerNet for nuclei segmentation and classification. arXiv 2022, arXiv:2202.13560. [Google Scholar]
Test Method | WSF | LVT | SPT | UTP |
---|---|---|---|---|
ResNet-50 | 37.5% | 40% | 28.5% | 13.6% |
ConvNeXt | 62.5% | 25.7% | 64.3% | 14% |
FConvNeXt | 62.5% | 40% | 61% | 14% |
Weather Type | TP | TN | FP | FN | ACC |
---|---|---|---|---|---|
WSF | 25 | 56 | 29 | 15 | 64.8% |
LVT | 14 | 78 | 12 | 21 | 73.6% |
SPT | 17 | 82 | 15 | 11 | 79.2% |
UTP | 3 | 94 | 9 | 19 | 77.6% |
Weather Type | TP | TN | FP | FN | ACC |
---|---|---|---|---|---|
WSF | 25 | 47 | 38 | 15 | 57.6% |
LVT | 9 | 86 | 4 | 26 | 76% |
SPT | 18 | 82 | 15 | 10 | 80% |
UTP | 3 | 92 | 12 | 19 | 76% |
Weather Type | TP | TN | FP | FN | ACC |
---|---|---|---|---|---|
WSF | 15 | 58 | 27 | 25 | 58.4% |
LVT | 14 | 69 | 21 | 21 | 66.4% |
SPT | 8 | 81 | 16 | 20 | 70.4% |
UTP | 3 | 90 | 13 | 19 | 74.4% |
Weather Type | WSF | LVT | SPT | UTP |
---|---|---|---|---|
ResNet | 0.08 km | 0.19 km | 0.21 km | 0.16 km |
ConvNeXt | 0.13 km | 0.17 km | 0.18 km | 0.12 km |
FConvNeXt | 0.15 km | 0.15 km | 0.14 km | 0.19 km |
Random Sample Grouping | WSF | LVT | SPT | UTP |
---|---|---|---|---|
Group 1 | 62.5% | 40% | 61% | 14% |
Group 2 | 52.5% | 49% | 64% | 5% |
Group 3 | 60% | 37.5% | 61% | 14% |
Weather Type | TP | TN | FP | FN | ACC |
---|---|---|---|---|---|
WSF | 2 | 24 | 18 | 1 | 57.8% |
LVT | 9 | 15 | 4 | 17 | 53.3% |
SPT | 2 | 32 | 6 | 5 | 75.6% |
UTP | 1 | 35 | 3 | 6 | 80% |
Weather Type | WSF | LVT | SPT | UTP |
---|---|---|---|---|
FConvNeXt | 0.343 km | 0.102 km | 0.307 km | 0.248 km |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jing, L.; Zhong, Q.; Li, X.; Wang, X.; Shen, L.; Cao, Y. Using Deep Learning to Identify Circulation Patterns of Intense Rainfall in the Beijing–Tianjing–Hebei Region. Atmosphere 2023, 14, 930. https://doi.org/10.3390/atmos14060930
Jing L, Zhong Q, Li X, Wang X, Shen L, Cao Y. Using Deep Learning to Identify Circulation Patterns of Intense Rainfall in the Beijing–Tianjing–Hebei Region. Atmosphere. 2023; 14(6):930. https://doi.org/10.3390/atmos14060930
Chicago/Turabian StyleJing, Linguo, Qi Zhong, Xiaojie Li, Xiuming Wang, Lili Shen, and Yong Cao. 2023. "Using Deep Learning to Identify Circulation Patterns of Intense Rainfall in the Beijing–Tianjing–Hebei Region" Atmosphere 14, no. 6: 930. https://doi.org/10.3390/atmos14060930
APA StyleJing, L., Zhong, Q., Li, X., Wang, X., Shen, L., & Cao, Y. (2023). Using Deep Learning to Identify Circulation Patterns of Intense Rainfall in the Beijing–Tianjing–Hebei Region. Atmosphere, 14(6), 930. https://doi.org/10.3390/atmos14060930