A New Progressive EOFs Quality Control Method for Surface Pressure Data Based on the Barometric Height and Biweight Average Correction
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Analysis Method for the Cycle and Amplitude
2.3. Progressive EOFs Method
3. Background Correction
4. Result Analysis of Quality Control
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Power Spectrum Analysis
Appendix A.2. Wavelet Analysis
References
- Zhang, H. The importance of analyzing data from automatic stations for weather Forecasting. Agric. Technol. 2012, 32, 124. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Y.C.; Yao, R.J.; Xiong, X.; Shen, Y.P. Application of PSO-PSR-ELM-based ensemble learning algorithm in quality control of surface temperature observations. Clim. Environ. Res. 2017, 22, 59–70. (In Chinese) [Google Scholar] [CrossRef]
- Xu, H.R. The disadvantage and countermeasure of surface meteorological observation automation. Henan Sci. Technol. 2019, 22, 151–152. (In Chinese) [Google Scholar]
- Xu, Z.F.; Gong, J.D.; Wang, J.J.; Li, Z.C. A study of assimilation of surface observational data in complex terrain part I: Influence of the elevation difference between model surface and observation site. Chin. J. Atmos. Sci. 2007, 31, 222–232. (In Chinese) [Google Scholar]
- Zhang, L.H.; Du, Q.; Chen, J.; Xiao, Y.H. Sensitive experiments of surface observation data in numerical weather precipitation over southwestern China. Meteorol. Mon. 2009, 35, 26–35. (In Chinese) [Google Scholar]
- Xue, J.S. Scientific issues andperspective of assimilation of meteorological satellite data. Acta Meteorol. Sin. 2009, 67, 903–911. (In Chinese) [Google Scholar] [CrossRef]
- Jia, B.X.; Xu, H.M.; An, Y.G. Comparisons of atmospheric specific humidity in reanalysis datasets and homogenized radiosonde dataset in China. Meteorol. Mon. 2014, 40, 1123–1131. (In Chinese) [Google Scholar] [CrossRef]
- Liu, X.N.; Ren, Z.H. Progress in quality control of surface meteorological data. Meteorol. Sci. Technol. 2005, 33, 199–203. (In Chinese) [Google Scholar] [CrossRef]
- Ye, X.L.; Chen, Y.; Yang, S.; Yang, X.; Kan, Y.J. A quality control method of surface temperature observations based on the EEMD-CES algorithm for a single station. Trans. Atmos. Sci. 2019, 42, 390–398. (In Chinese) [Google Scholar] [CrossRef]
- Tao, S.W.; Zhong, J.Q.; Xu, Z.F.; Hao, M. Quality control schemes and its application to automatic surface weather observation system. Plateau Meteorol. 2009, 28, 1202–1209. (In Chinese) [Google Scholar]
- Wang, H.J.; Yan, Q.Q.; Xiang, F.; Meng, P. Algorithm design of quality control for hourly air temperature. Plateau Meteorol 2014, 33, 1722–1729. (In Chinese) [Google Scholar] [CrossRef]
- Shafer, M.A.; Fiebrich, C.A.; Arndt, D.S.; Fredrickson, S.E.; Hughes, T.W. Quality assurance procedures in the oklahoma mesonet work. J. Atmos. Ocean. Technol. 2000, 17, 474–494. [Google Scholar] [CrossRef]
- Reek, T.; Doty, S.R.; Owen, T.W. A deterministic approach to the validation of historical daily temperature and precipitation data from the cooperative network. Bull. Am. Meteorol. Soc. 1992, 73, 753–762. [Google Scholar] [CrossRef]
- Eischeid, J.K.; Baker, C.B.; Karl, T.R.; Diaz, H.F. The quality control of long-term climatological data using objective data analysis. J. Appl. Meteorol. 1995, 34, 2787–2795. [Google Scholar] [CrossRef]
- Xiong, X.; Tang, H.S.; Zhang, Y.C.; Ye, X.L. A spatial consistency quality control method for daily surface temperature observations. J. Trop. Meteorol. 2020, 26, 461–472. [Google Scholar] [CrossRef]
- Dee, D.P.; Rukhovets, L.; Todling, R.; Silva, A.M.; Larson, J.W. An adaptive buddy check for observational quality control. Q. J. R. Meteorol. Soc. 2001, 127, 2451–2471. [Google Scholar] [CrossRef]
- Ren, Z.H.; Xiong, A.Y. Operational system development on three-step quality control of observations from AWS. Meteorol. Mon. 2007, 33, 19–24. (In Chinese) [Google Scholar]
- Hui, W.; Wang, X.L.; Swail, V.R. A Quality Assurance System for Canadian Hourly Pressure Data. J. Appl. Meteorol. 2007, 46, 1804–1817. [Google Scholar] [CrossRef]
- Xu, Z.F.; Chen, X.J.; Chen, Y. Quality control scheme for new-built automatic surface weather observation station’s data. Sci. Meteorol. Sin. 2013, 33, 26–36. (In Chinese) [Google Scholar] [CrossRef]
- Jiang, H.; Xu, W.H.; Yang, S.; Zhu, Y.; Zhou, Z.J.; Liao, J. Development of an integrated global land surface dataset from 1901 to 2018. J. Meteorol. Res. 2021, 35, 789–798. [Google Scholar] [CrossRef]
- Li, L.F.; Wang, H.J.; Liu, J.Y.; Song, S. Surface meteorological data quality control based on blackboard model. Meteorol. Sci. Technol. 2006, 34, 199–204. (In Chinese) [Google Scholar] [CrossRef]
- Zhou, X.T.; Chu, X.; Yao, Z.P. A dynamic method of quality control for real-time temperature measurements based on k-means clustering algorithm. Meteorol. Mon. 2012, 38, 1295–1300. (In Chinese) [Google Scholar]
- Ye, X.L.; Shi, L.H.; Xiong, X.; Wang, L. Application of AI method to quality control in surface temperature observation data. Clim. Environ Res. 2016, 21, 1–7. (In Chinese) [Google Scholar] [CrossRef]
- Zheng, W.Z.; Wei, H.; Meng, J.; EK, M.; Mitchell, K.; Derber, J.; Zeng, X.B.; Wang, Z. Improvement of land surface skin temperature in NCEP operational NWP Models and its impact on satellite data assimilation. In Proceedings of the 23rd Conference on Weather Analysis and Forecasting/19th Conference on Numerical Weather Prediction, Omaha, NE, USA, 1–5 June 2009. [Google Scholar]
- Han, L.; Chen, M.X.; Chen, K.K.; Chen, H.N.; Zhang, Y.; Lu, B.; Song, L.; Qin, R. A deep learning method for bias correction of ECMWF 24–240 h forecasts. Adv. Atmos. Sci. 2021, 38, 1444–1459. [Google Scholar] [CrossRef]
- Qin, Z.K.; Zou, X.L.; Li, G.; Ma, X.L. Quality control of surface station temperature data with non-Gaussian observation-minus-background distributions. J. Geophys. Res. 2010, 115, D16312. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.F.; Wang, Y.; Fan, G.Z. A two-stage quality control method for 2-m temperature observations using biweight means and a progressive EOF analysis. Mon. Weather Rev. 2013, 141, 798–808. [Google Scholar] [CrossRef]
- Zhao, H.; Qin, Z.K.; Wang, J.C.; Liu, Y. Case studies and applications of the Empirical Orthogonal Function: Quality control in variational data assimilation systems for surface observation data. Acta Meteorol. Sin. 2015, 73, 749–765. (In Chinese) [Google Scholar] [CrossRef]
- Shen, W.B.; Li, X.; Qin, Z.K.; Zhang, B. Restoration method for automatic station temperature observation data based on EOF iteration. J. Atmos. Sci. 2022, 46, 406–418. (In Chinese) [Google Scholar] [CrossRef]
- Shao, Y.H.; Qin, Z.K.; Li, X. Quality control based on EOF for surface temperature observations from high temporal-spatial resolution automatic weather stations. Trans Atmos Sci. 2022, 45, 603–615. (In Chinese) [Google Scholar] [CrossRef]
- Liu, P.T.; Xu, Z.F.; Xu, K.Y.; Wang, J.; Li, Z.C. Study of surface progressive OMB pressure quality control for data assimilation. Meteorol. Mon. 2017, 43, 1138–1151. (In Chinese) [Google Scholar] [CrossRef]
- Box, G.E.; Muller, M.E. A note on the generation of random normal deviates. Ann. Math. Stat. 1958, 2, 610–611. [Google Scholar] [CrossRef]
- Marsaglia, G.; Bray, T.A. A convenient method for generating normal variables. SIAM Rev. 1964, 6, 260–264. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Z.F.; Fan, G.Z. Study of EOF quality control method of 2m temperature. Plateau Meteorol. 2013, 32, 564–574. (In Chinese) [Google Scholar] [CrossRef]
- Wei, F.Y. Modern Climate Statistical Diagnosis and Prediction Technology, 2nd ed.; China Meteorological Press: Beijing, China, 2007; pp. 77–81. (In Chinese) [Google Scholar]
- Tang, J. Periodicity analysis based on power spectrum estimation. J. Shaanxi Univ. Technol. Nat. Sci. Ed. 2013, 29, 74–78. (In Chinese) [Google Scholar]
- Wu, H.B.; Wu, L. Methods for Diagnosing and Forecasting Climate Variability; China Meteorological Press: Beijing, China, 2005; pp. 237–254. (In Chinese) [Google Scholar]
Before and after Correction | MAE (Unit: hPa) | MAE (Number of Observation Stations) | RMSE (Unit: hPa) | RMSE (Number of Observation Stations) |
---|---|---|---|---|
Without Correction | 30 | 554 | 0.8 | 776 |
BAC | 0.1 | 48 | 0.8 | 652 |
BHC | 3 | 475 | 0.8 | 317 |
BHC-BAC | 0.1 | 41 | 0.8 | 317 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, P.; Xu, Z.; Gong, J.; Chen, W. A New Progressive EOFs Quality Control Method for Surface Pressure Data Based on the Barometric Height and Biweight Average Correction. Atmosphere 2023, 14, 1032. https://doi.org/10.3390/atmos14061032
Liu P, Xu Z, Gong J, Chen W. A New Progressive EOFs Quality Control Method for Surface Pressure Data Based on the Barometric Height and Biweight Average Correction. Atmosphere. 2023; 14(6):1032. https://doi.org/10.3390/atmos14061032
Chicago/Turabian StyleLiu, Peiting, Zhifang Xu, Jiandong Gong, and Wei Chen. 2023. "A New Progressive EOFs Quality Control Method for Surface Pressure Data Based on the Barometric Height and Biweight Average Correction" Atmosphere 14, no. 6: 1032. https://doi.org/10.3390/atmos14061032
APA StyleLiu, P., Xu, Z., Gong, J., & Chen, W. (2023). A New Progressive EOFs Quality Control Method for Surface Pressure Data Based on the Barometric Height and Biweight Average Correction. Atmosphere, 14(6), 1032. https://doi.org/10.3390/atmos14061032