Analysis of the Observation Results for Preferentially Oriented Particles in High-Level Clouds According to the EARLINET Lidar Network and MODIS Data
Abstract
:1. Introduction
2. Materials
3. Method
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lynch, D.K. Cirrus clouds: Their role in climate and global change. Acta Astronaut. 1996, 38, 859–863. [Google Scholar] [CrossRef]
- Wang, M.; Penner, J.E. Cirrus clouds in a global climate model with a statistical cirrus cloud scheme. Atmos. Chem. Phys. 2010, 10, 5449–5474. [Google Scholar] [CrossRef] [Green Version]
- Bony, S.; Stevens, B.; Frierson, D.M.W.; Jakob, C.; Kageyama, M.; Pincus, R.; Shepherd, T.G.; Sherwood, S.C.; Siebesma, A.P.; Sobel, A.H.; et al. Clouds, circulation and climate sensitivity. Nat. Geosci. 2015, 8, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Barja, B.; Antuña-Marrero, J.C. The effect of optically thin cirrus clouds on solar radiation in Camagüey, Cuba. Atmos. Chem. Phys. 2011, 11, 8625–8634. [Google Scholar] [CrossRef] [Green Version]
- Muri, H.; Kristjánsson, J.E.; Storelvmo, T.; Pfeffer, M.A. The climatic effects of modifying cirrus clouds in a climate engineering framework. J. Geophys. Res. Atmos. 2014, 119, 4174–4191. [Google Scholar] [CrossRef]
- Zhao, F.; Tang, C.; Dai, C.; Wu, X.; Wei, H. The global distribution of cirrus clouds reflectance based on MODIS Level-3 Data. Atmospere 2020, 11, 219. [Google Scholar] [CrossRef] [Green Version]
- Fusina, F.; Spichtinger, P.; Lohmann, U. Impact of ice supersaturated regions and thin cirrus on radiation in the midlatitudes. J. Geophys. Res. 2007, 112, D24S14. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, D.L.; Finnegan, W. Modification of cirrus clouds to reduce global warming. Environ. Res. Lett. 2009, 4, 045102. [Google Scholar] [CrossRef]
- Fauchez, T.; Cornet, C.; Szczap, F.; Dubuisson, P.; Rosambert, T. Impact of cirrus clouds heterogeneities on top-of-atmosphere thermal infrared radiation. Atmos. Chem. Phys. 2014, 14, 5599–5615. [Google Scholar] [CrossRef] [Green Version]
- Matveev, J.L.; Matveev, L.T.; Soldatenko, S.A. Global Cloud Field; Gidrometeoizdat: Leningrad, Russia, 1986; pp. 180–184. [Google Scholar]
- Baum, B.A.; Yang, P.; Heymsfield, A.J.; Bansemer, A.; Cole, B.H.; Merrelli, A.; Schmitt, C.; Wang, C. Ice cloud single-scattering property models with the full phasematrix at wavelengths from 0.2 to 100 μm. J. Quant. Spectrosc. Radiat. Transf. 2014, 146, 123–139. [Google Scholar] [CrossRef]
- Konoshonkin, A.; Borovoi, A.; Kustova, N.; Okamoto, H.; Ishimoto, H.; Grynko, Y.; Förstner, J. Light scattering by ice crystals of cirrus clouds: From exact numerical methods to physical-optics approximation. J. Quant. Spectrosc. Radiat. Transf. 2017, 195, 132–140. [Google Scholar] [CrossRef]
- Stillwell, R.A.; Neely, R.R.; Thayer, J.P.; Walden, V.P.; Shupe, M.D.; Miller, N.B. Radiative influence of horizontally oriented ice crystals over summit, Greenland. J. Geophys. Res. Atmos. 2019, 124, 12141–12156. [Google Scholar] [CrossRef]
- Platt, C.M.R. Some microphysical properties of an ice cloud from lidar observation of horizontally oriented crystals. J. Appl. Meteorol. 1978, 17, 1220–1224. [Google Scholar] [CrossRef]
- Giannakaki, E.; Balis, D.S.; Amiridis, V.; Kazadzis, S. Optical and geometrical characteristics of cirrus clouds over a Southern European lidar station. Atmos. Chem. Phys. 2007, 7, 5519–5530. [Google Scholar] [CrossRef] [Green Version]
- Balin, Y.S.; Kaul, B.V.; Kokhanenko, G.P.; Penner, I.E. Observations of specular reflective particles and layers in crystal clouds. Opt. Express 2011, 19, 6209–6214. [Google Scholar] [CrossRef]
- Yang, P.; Liou, K.N.; Bi, L.; Liu, C.; Yi, B.; Baum, B.A. On the radiative properties of ice clouds: Light scattering, remote sensing, and radiation parameterization. Adv. Atmos. Sci. 2015, 32, 32–63. [Google Scholar] [CrossRef]
- Kaul, B.V.; Samokhvalov, I.V. Orientation of particles of Ci crystalline clouds. Part 1. Orientation at gravitational sedimentation. Opt. Atmos. I Okeana 2005, 25, 963–967. [Google Scholar]
- Sassen, K. The polarization lidar technique for cloud research: A review and current assessment. Bull. Am. Meteorol. Soc. 1991, 72, 1848–1866. [Google Scholar] [CrossRef]
- Liu, Z.; Sugimoto, N.; Murayama, T. Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar. Appl. Opt. 2002, 41, 2760–2767. [Google Scholar] [CrossRef] [Green Version]
- Neely, R.R.; Hayman, M.; Stillwell, R.A.; Thayer, J.P.; Hardesty, R.M.; O’Neill, M.; Shupe, M.D.; Alvarez, C. Polarization lidar at summit, Greenland for the detection of cloud phase and particle orientation. J. Atmos. Ocean. Technol. 2013, 30, 1635–1655. [Google Scholar] [CrossRef] [Green Version]
- Ji, C.; Tao, Z.; Hu, S.; Zhang, X.; Liu, D.; Wang, Z.; Zhong, Z.; Xie, X.; Ke’e, Y.; Cao, K.; et al. Effective lidar ratio of cirrus cloud measured by three-wavelength lidar. Chin. J. Lasers 2016, 43, 0810003. [Google Scholar]
- Brown, A.J.; Videen, G.; Zubko, E.; Heavens, N.; Schlegel, N.J.; Beccera, P.; Meyer, C.; Harrison, T.; Hayne, P.; Obbard, R.; et al. The Case for a Multi-Channel Polarization Sensitive LIDAR for Investigation of Insolation-Driven Ices and Atmospheres. Planetary Science Decadal Survey White Paper; ESS Open Archive. 2020. Available online: https://essopenarchive.org/doi/full/10.1002/essoar.10503720.1 (accessed on 17 March 2023).
- Kokhanenko, G.P.; Balin, Y.S.; Klemasheva, M.G.; Nasonov, S.V.; Novoselov, M.M.; Penner, I.E.; Samoilova, S.V. Scanning polarization lidar LOSA-M3: Opportunity for research of crystalline particle orientation in the clouds of upper layers. Atmos. Meas. Tech. 2020, 13, 1113–1127. [Google Scholar] [CrossRef] [Green Version]
- Barlakas, V.; Geer, A.J.; Eriksson, P. Cloud Particle Orientation and Polarisation for Cross-Track Microwave Sensors in RTTOV; EUMETSAT Press: Darmstadt, Germany, 2022; pp. 1–20. [Google Scholar]
- Skorokhodov, A.V.; Nasonov, S.V.; Konoshonkin, A.V. Comparison of passive satellite data with ground-based lidar observations of specularly reflecting layers in high-level clouds. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Iz Kosm. 2019, 16, 263–271. [Google Scholar] [CrossRef]
- Gao, B.-C.; Yang, P.; Han, W.; Li, R.-R.; Wiscombe, W.J. An algorithm using visible and 1.38-μm channels to retrieve cirrus cloud reflectances from aircraft and satellite data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1659–1668. [Google Scholar]
- Heidinger, A.; Li, Y.; Baum, B.; Holz, R.; Platnick, S.; Yang, P. Retrieval of cirrus cloud optical depth under day and night conditions from MODIS collection 6 cloud property data. Remote Sens. 2015, 7, 7257–7271. [Google Scholar] [CrossRef] [Green Version]
- Skorokhodov, A.V.; Konoshonkin, A.V. Comparison of satellite active and passive observations of specularly reflecting layers in the high-level clouds. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Iz Kosm. 2021, 18, 279–287. [Google Scholar] [CrossRef]
- Bösenberg, J.; Matthias, V. EARLINET: A European Aerosol Research Lidar Network to Establish an Aerosol Climatology; MPI-Report 348; Max Planck Institute Press: Hamburg, Germany, 2003; pp. 1–200. [Google Scholar]
- EARLINET. Lidar Stations. Available online: https://www.earlinet.org/index.php?id=105 (accessed on 17 March 2023).
- LAADS DAAC. Level-1 and Atmosphere Archive & Distribution System Distributed Active Archive Center. Available online: https://ladsweb.modaps.eosdis.nasa.gov (accessed on 17 March 2023).
- Platnick, S.K.; Meyer, G.; King, M.D.; Wind, G.; Amarasinghe, N.; Marchant, B.; Arnold, G.T.; Zhang, Z.; Hubanks, P.A.; Holz, R.E.; et al. The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua. IEEE Trans. Geosci. Remote Sens. 2017, 55, 502–525. [Google Scholar] [CrossRef] [Green Version]
- Maddux, B.C.; Ackerman, S.A. Viewing geometry dependencies in MODIS cloud products. J. Atmos. Ocean. Technol. 2010, 27, 1519–1528. [Google Scholar] [CrossRef]
- Grossvenor, D.P.; Wood, R. The effect of solar zenith angle on MODIS cloud optical and microphysical retrievals within marine liquid water clouds. Atmos. Chem. Phys. 2014, 14, 7291–7321. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Wang, Z.; Kollias, P.; Vogelmann, A.M.; Yang, K.; Luo, T. Ice particle production in mid-level stratiform mixed-phase clouds observed with collocated A-Train measurements. Atmos. Chem. Phys. 2018, 18, 4317–4327. [Google Scholar] [CrossRef] [Green Version]
- Sassen, K.; Benson, S. A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing: II. Microphysical properties derived from lidar depolarization. J. Atmos. Sci. 2001, 58, 2103–2112. [Google Scholar] [CrossRef]
Type of Particle Orientation | <ρ> | <ε> | <τ> | <reff>, μm | <P>, g/m2 | <hCT>, m |
---|---|---|---|---|---|---|
Barcelona | ||||||
P | 0.12 | 0.45 | 1.6 | 33 | 30 | 9800 |
R | 0.09 | 0.43 | 1.7 | 32 | 32 | 9300 |
Leipzig | ||||||
P | 0.14 | 0.49 | 2.0 | 29 | 35 | 10,400 |
R | 0.10 | 0.38 | 1.8 | 30 | 29 | 10,100 |
Lille | ||||||
P | 0.12 | 0.44 | 2.1 | 27 | 27 | 10,400 |
R | 0.11 | 0.40 | 1.8 | 22 | 22 | 10,900 |
Limassol | ||||||
P | 0.11 | 0.44 | 1.5 | 32 | 29 | 10,200 |
R | 0.10 | 0.42 | 1.5 | 34 | 30 | 9900 |
Évora | ||||||
P | 0.13 | 0.50 | 1.6 | 30 | 26 | 10,000 |
R | 0.09 | 0.48 | 1.1 | 37 | 26 | 8900 |
All stations | ||||||
P | 0.13 | 0.49 | 1.8 | 30 | 31 | 10,100 |
R | 0.10 | 0.43 | 1.7 | 31 | 28 | 9900 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skorokhodov, A.; Konoshonkin, A. Analysis of the Observation Results for Preferentially Oriented Particles in High-Level Clouds According to the EARLINET Lidar Network and MODIS Data. Atmosphere 2023, 14, 1018. https://doi.org/10.3390/atmos14061018
Skorokhodov A, Konoshonkin A. Analysis of the Observation Results for Preferentially Oriented Particles in High-Level Clouds According to the EARLINET Lidar Network and MODIS Data. Atmosphere. 2023; 14(6):1018. https://doi.org/10.3390/atmos14061018
Chicago/Turabian StyleSkorokhodov, Alexey, and Alexander Konoshonkin. 2023. "Analysis of the Observation Results for Preferentially Oriented Particles in High-Level Clouds According to the EARLINET Lidar Network and MODIS Data" Atmosphere 14, no. 6: 1018. https://doi.org/10.3390/atmos14061018
APA StyleSkorokhodov, A., & Konoshonkin, A. (2023). Analysis of the Observation Results for Preferentially Oriented Particles in High-Level Clouds According to the EARLINET Lidar Network and MODIS Data. Atmosphere, 14(6), 1018. https://doi.org/10.3390/atmos14061018