A Comparison of Models for the Forecast of Daily Concentration Thresholds of Airborne Fungal Spores
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Aerobiological and Meteorological Data
2.3. Statistical Methods
2.3.1. Logistic Regression
2.3.2. Regression Trees
2.3.3. Criteria for the Application of Regression to Modeling
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Markey, E.; Clancy, J.H.; Martínez-Bracero, M.; Neeson, F.; Sarda-Estève, R.; Baisnée, D.; McGillicuddy, E.J.; Sewell, G.; O’Connor, D.J. A Modified Spectroscopic Approach for the Real-Time Detection of Pollen and Fungal Spores at a Semi-Urban Site Using the WIBS-4+, Part I. Sensors 2022, 22, 8747. [Google Scholar] [CrossRef] [PubMed]
- Camargo, Y.; Henao, D.M.; Vélez-Pereira, A.M. Emisiones Atmosféricas de Origen Biológico; Primera; Fondo Editorial UniMagdalena: Santa Marta, Colombia, 2011; ISBN 978-958-746-037-7. [Google Scholar]
- Vélez-Pereira, A.M.; De Linares, C.; Belmonte, J. Aerobiological modeling I: A review of predictive models. Sci. Total Environ. 2021, 795, 148783. [Google Scholar] [CrossRef] [PubMed]
- Caicedo, Y.C.; Pérez, H.B.; Fuentes, M.M.; Vergara-Vásquez, E.; Vélez-Pereira, A.M. Assessment of fungal aerosols in a public library with natural ventilation. Aerobiologia 2023, 39, 37–50. [Google Scholar] [CrossRef]
- Anees-Hill, S.; Douglas, P.; Pashley, C.H.; Hansell, A.; Marczylo, E.L. A systematic review of outdoor airborne fungal spore seasonality across Europe and the implications for health. Sci. Total Environ. 2022, 818, 151716. [Google Scholar] [CrossRef] [PubMed]
- Vélez-Pereira, A.M.; De Linares, C.; Belmonte, J. Aerobiological modelling II: A review of long-range transport models. Sci. Total Environ. 2022, 845, 157351. [Google Scholar] [CrossRef]
- Sánchez, P.; Vélez-del-Burgo, A.; Suñén, E.; Martínez, J.; Postigo, I. Fungal Allergen and Mold Allergy Diagnosis: Role and Relevance of Alternaria alternata Alt a 1 Protein Family. J. Fungi 2022, 8, 277. [Google Scholar] [CrossRef]
- Jazuli, N.A.; Kamu, A.; Chong, K.P.; Gabda, D.; Hassan, A.; Abu Seman, I.; Ho, C.M. A Review of Factors Affecting Ganoderma Basal Stem Rot Disease Progress in Oil Palm. Plants 2022, 11, 2462. [Google Scholar] [CrossRef]
- Martinez-Bracero, M.; Markey, E.; Clancy, J.H.; McGillicuddy, E.J.; Sewell, G.; O’Connor, D.J. Airborne Fungal Spore Review, New Advances and Automatisation. Atmosphere 2022, 13, 308. [Google Scholar] [CrossRef]
- Komnos, I.D.; Michali, M.C.; Ziavra, N.V.; Katotomichelakis, M.A.; Kastanioudakis, I.G. A Study of Airborne Pollen Grains and Fungal Spores in the Region of Epirus (Northwestern Greece). Cureus 2022, 14. [Google Scholar] [CrossRef]
- Kremneva, O.; Danilov, R.; Gasiyan, K.; Ponomarev, A. Spore-Trapping Device: An Efficient Tool to Manage Fungal Diseases in Winter Wheat Crops. Plants 2023, 12, 391. [Google Scholar] [CrossRef]
- Raza, M.M.; Bebber, D.P. Climate change and plant pathogens. Curr. Opin. Microbiol. 2022, 70, 102233. [Google Scholar] [CrossRef]
- De Linares, C.; Belmonte, J.; Canela, M.; de la Guardia, C.D.; Alba-Sanchez, F.; Sabariego, S.; Alonso-Pérez, S. Dispersal patterns of Alternaria conidia in Spain. Agric. For. Meteorol. 2010, 150, 1491–1500. [Google Scholar] [CrossRef]
- Vélez-Pereira, A.M.; De Linares, C.; Canela, M.; Belmonte, J. Spatial distribution of fungi from the analysis of aerobiological data with a gamma function. Aerobiologia 2021, 37, 461–477. [Google Scholar] [CrossRef]
- Comtois, P. The gamma distribution as the true aerobiological probability density function (PDF). Aerobiologia 2000, 16, 171–176. [Google Scholar] [CrossRef]
- Al-Nesf, M.A.; Gharbi, D.; Mobayed, H.M.; Ali, R.M.; Tuffaha, A.; Dason, B.R.; Adeli, M.; Sattar, H.A.; Trigo, M.d.M. Aerobiological monitoring in a desert type ecosystem: Two sampling stations of two cities (2017–2020) in Qatar. PLoS ONE 2022, 17, e0270975. [Google Scholar] [CrossRef]
- Scheifinger, H.; Belmonte, J.; Buters, J.; Celenk, S.; Damialis, A.; Dechamp, C.; García-Mozo, H.; Gehrig, R.; Grewling, L.; Halley, J.M.; et al. Monitoring, modelling and forecasting of the pollen season. In Allergenic Pollen; Sofiev, M., Bergmann, K.-C., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 71–126. ISBN 978-94-007-4880-4. [Google Scholar]
- Tu, J.V. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J. Clin. Epidemiol. 1996, 49, 1225–1231. [Google Scholar] [CrossRef]
- Aznartem, J.; Sánchez, J.M.B.; Lugilde, D.N.; Fernández, C.d.L.; de la Guardia, C.D.; Sánchez, F.A. Forecasting airborne pollen concentration time series with neural and neuro-fuzzy models. Expert Syst. Appl. 2007, 32, 1218–1225. [Google Scholar] [CrossRef]
- Verma, K.S.; Pathak, A.K. A comparative analysis of forecasting methods for aerobiological studies. Asian J. Exp. Sci. 2009, 23, 193–198. [Google Scholar]
- Belmonte, J.; Canela, M.; Guàrdia, R.-A. Comparison between categorical pollen data obtained by Hirst and Cour sampling methods. Aerobiologia 2000, 16, 177–185. [Google Scholar] [CrossRef]
- Belmonte, J.; Canela, M.A.; Guardans, R.; Roure, J.M. Comparison of polllen data obtained by Cour and modified-Durham methods. Pollen Spores 1988, 30, 257–264. [Google Scholar]
- Castellano-Méndez, M.; Aira, M.J.; Iglesias, I.; Jato, V.; González-Manteiga, W. Artificial neural networks as a useful tool to predict the risk level of Betula pollen in the air. Int. J. Biometeorol. 2005, 49, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Makra, L.; Matyasovszky, I.; Thibaudon, M.; Bonini, M. Forecasting ragweed pollen characteristics with nonparametric regression methods over the most polluted areas in Europe. Int. J. Biometeorol. 2011, 55, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Myszkowska, D.; Majewska, R. Pollen grains as allergenic environmental factors–new approach to the forecasting of the pollen concentration during the season. Ann. Agric. Environ. Med. 2014, 21, 681–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranzi, A.; Lauriola, P.; Marletto, V.; Zinoni, F. Forecasting airborne pollen concentrations: Development of local models. Aerobiologia 2003, 19, 39–45. [Google Scholar] [CrossRef]
- Cotos-Yáñez, T.R.; Rodríguez-Rajo, F.J.; Jato, V. Short-term prediction of Betula airborne pollen concentration in Vigo (NW Spain) using logistic additive models and partially linear models. Int. J. Biometeorol. 2004, 48, 179–185. [Google Scholar] [CrossRef]
- Vélez-Pereira, A.M.; De Linares, C.; Canela, M.-A.; Belmonte, J. Logistic regression models for predicting daily airborne Alternaria and Cladosporium concentration levels in Catalonia (NE Spain). Int. J. Biometeorol. 2019, 63, 1541–1553. [Google Scholar] [CrossRef]
- Grinn-Gofroń, A.; Strzelczak, A. The effects of meteorological factors on the occurrence of Ganoderma sp. spores in the air. Int. J. Biometeorol. 2011, 55, 235–241. [Google Scholar] [CrossRef] [Green Version]
- Jedryczka, M.; Strzelczak, A.; Grinn-Gofron, A.; Nowak, M.; Wolski, T.; Siwulski, M.; Sobieralski, K.; Kaczmarek, J. Advanced statistical models commonly applied in aerobiology cannot accurately predict the exposure of people to Ganoderma spore-related allergies. Agric. For. Meteorol. 2015, 201, 209–217. [Google Scholar] [CrossRef]
- Sadyś, M.; Skjøth, C.A.; Kennedy, R. Forecasting methodologies for Ganoderma spore concentration using combined statistical approaches and model evaluations. Int. J. Biometeorol. 2016, 60, 489–498. [Google Scholar] [CrossRef]
- Grinn-Gofroń, A.; Strzelczak, A. Hourly predictive artificial neural network and multivariate regression tree models of Alternaria and Cladosporium spore concentrations in Szczecin (Poland). Int. J. Biometeorol. 2009, 53, 555–562. [Google Scholar] [CrossRef]
- Kasprzyk, I.; Grinn-Gofroń, A.; Strzelczak, A.; Wolski, T. Hourly predictive artificial neural network and multivariate regression trees models of Ganoderma spore concentrations in Rzeszów and Szczecin (Poland). Sci. Total Environ. 2011, 409, 949–956. [Google Scholar] [CrossRef]
- O’Connor, D.J.; Sadyś, M.; Skjøth, C.A.; Healy, D.A.; Kennedy, R.; Sodeau, J.R. Atmospheric concentrations of Alternaria, Cladosporium, Ganoderma and Didymella spores monitored in Cork (Ireland) and Worcester (England) during the summer of 2010. Aerobiologia 2014, 30, 397–411. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Bracero, M.; González-Fernández, E.; Wójcik, M.; Alcázar, P.; Fernández-González, M.; Kasprzyk, I.; Rodríguez-Rajo, F.J.; Galán, C. Airborne fungal phytopathological spore assessment in three European vineyards from different bioclimatic areas. Aerobiologia 2020, 36, 715–729. [Google Scholar] [CrossRef]
- Allue Andrade, J.L. Phytoclimatic Atlas of Spain Taxonomies; Instituto Nacional de Investigaciones Agrarias, Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 1990; ISBN 84-7498-362-2. [Google Scholar]
- Vélez-Pereira, A.M. Modelación Espacio-Temporal de Polen y Esporas de Hongos Aerovagantes de Catalunya (1994–2015). Ph.D. Thesis, Universitat Autònoma de Barcelona–Institut de Ciència i Tecnologia Ambiental, Barcelona, Spain, 26 September 2017. [Google Scholar]
- Hirst, J.M. An Automatic Volumetric Spore Trap. Ann. Appl. Biol. 1952, 39, 257–265. [Google Scholar] [CrossRef]
- Galán, C.; Cariñanos, P.; Alcázar, P.; Dominguez, E. Manual de Calidad y Gestión de la Red Española de Aerobiología; Universidad de Córdoba: Cordoba, Spain, 2007. [Google Scholar]
- Galán, C.; Ariatti, A.; Bonini, M.; Clot, B.; Crouzy, B.; Dahl, A.; Fernandez-González, D.; Frenguelli, G.; Gehrig, R.; Isard, S.; et al. Recommended terminology for aerobiological studies. Aerobiologia 2017, 33, 293–295. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Lemeshow, S. Multiple Logistic Regression, 2nd ed.; Wiley Series in Probability and Statistics Texts and References Section; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2000; ISBN 978-0-471-72214-4. [Google Scholar]
- Brito, C.; Crespo, E.G.; Paulo, O.S. Modelling wildlife distributions: Logistic multiple regression vs overlap analysis. Ecography 1999, 22, 251–260. [Google Scholar] [CrossRef]
- Teixeira, J.; Ferrand, N.; Arntzen, J.W. Biogeography of the golden-striped salamander Chioglossa lusitanica: A field survey and spatial modelling approach. Ecography 2001, 24, 618–624. [Google Scholar] [CrossRef]
- Rojas, A.B.; Cotilla, I.; Real, R.; Palomo, L.J. Determinación de las áreas probables de distribución de los mamíferos terrestres en la provincia de Málaga. Galemys 2001, 13, 217–229. [Google Scholar]
- Barbosa, A.M.; Real, R.; Olivero, J.; Vargas, J.M. Otter (Lutra lutra) distribution modeling at two resolution scales suited to conservation planning in the Iberian Peninsula. Biol. Conserv. 2003, 114, 377–387. [Google Scholar] [CrossRef]
- Calle, M.L.; Sánchez-Espigares, J.A. Árboles de clasificación y regresión en la investigación biomédica. Med. Clin. 2007, 129, 702–706. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning—Data Mining, Inference, 2nd ed.; Springer Series in Statistics; Springer: New York, NY, USA, 2009; ISBN 978-0-387-84857-0. [Google Scholar]
- Murthy, S.K. Automatic construction of decision trees from data: A multi-disciplinary survey. Data Min. Knowl. Discov. 1998, 2, 345–389. [Google Scholar] [CrossRef]
- Tzima, F.A.; Karatzas, K.D.; Mitkas, P.A.; Karathanasis, S. Using data-mining techniques for PM 10 forecasting in the metropolitan area of Thessaloniki, Greece. In Proceedings of the 2007 International Joint Conference on Neural Networks, Orlando, FL, USA, 12–17 August 2007; IEEE: Piscataway, CK, USA; pp. 2752–2757. [Google Scholar]
- Real, R.; Barbosa, A.M.; Vargas, J.M. Obtaining environmental favourability functions from logistic regression. Environ. Ecol. Stat. 2006, 13, 237–245. [Google Scholar] [CrossRef]
- Hernández-Trejo, F.; Muñoz, F.R.; Tormo, R.M.; Silva, I.P. Airborne ascospores in Mérida (SW Spain) and the effect of rain and other meteorological parameters on their concentration. Aerobiologia 2012, 28, 13–26. [Google Scholar] [CrossRef]
- Rivera-Mariani, F.E.; Bolaños-Rosero, B. Allergenicity of airborne basidiospores and ascospores: Need for further studies. Aerobiologia 2012, 28, 83–97. [Google Scholar] [CrossRef]
- Rúa-Giraldo, A.L. Aerobiología de las Esporas de Pleosporales en Ambientes intra y Extradomiciliarios de Barcelona. Aplicación a la Clínica en Población Alérgica. Ph.D. Thesis, Universitat Autònoma de Barcelona, Barcelona, Spain, 2013. [Google Scholar]
- Martínez-Bracero, M.; Markey, E.; Clancy, J.H.; Sodeau, J.; O’Connor, D.J. First Long-Time Airborne Fungal Spores Study in Dublin, Ireland (1978–1980). Atmosphere 2022, 13, 313. [Google Scholar] [CrossRef]
- Mantoani, M.C.; Emygdio, A.P.M.; Degobbi, C.; Sapucci, C.R.; Guerra, L.C.C.; Dias, M.A.F.S.; Dias, P.L.S.; Zanetti, R.H.S.; Rodrigues, F.; Araujo, G.G.; et al. Rainfall effects on vertical profiles of airborne fungi over a mixed land-use context at the Brazilian Atlantic Forest biodiversity hotspot. Agric. For. Meteorol. 2023, 331, 109352. [Google Scholar] [CrossRef]
- Díez, A.H.; Sabariego, S.; Gutiérrez, M.B.; Cervigón, P.M. Study of airborne fungal spores in Madrid, Spain. Aerobiologia 2006, 22, 133. [Google Scholar] [CrossRef]
- Oliveira, M.; Ribeiro, H.; Delgado, J.L.; Abreu, I. The effects of meteorological factors on airborne fungal spore concentration in two areas differing in urbanisation level. Int. J. Biometeorol. 2009, 53, 61–73. [Google Scholar] [CrossRef]
- SenGupta, K.; Karmakar, B.; Roy, S.; Kaur, A.; Bhattacharya, S.G. Analyzing airborne fungal concentration in Kolkata, India: Temporal distribution, the effect of atmospheric parameters and health impact. Air Qual. Atmos. Health 2023, 16, 963–984. [Google Scholar] [CrossRef]
- Simović, I.; Matavulj, P.; Šikoparija, B. Manual and automatic quantification of airborne fungal spores during wheat harvest period. Aerobiologia 2023. [Google Scholar] [CrossRef]
- Toscano-Underwood, C.; Huang, Y.J.; Fitt, B.D.L.; Hall, A.M. Effects of temperature on maturation of pseudothecia of Leptosphaeria maculans and L. biglobosa on oilseed rape stem debris. Plant Pathol. 2003, 52, 726–736. [Google Scholar] [CrossRef]
- Kaczmarek, J.; Kedziora, A.; Brachaczek, A.; Latunde-Dada, A.O.; Dakowska, S.; Karg, G.; Jedryczka, M. Effect of climate change on sporulation of the teleomorphs of Leptosphaeria species causing stem canker of brassicas. Aerobiologia 2016, 32, 39–51. [Google Scholar] [CrossRef]
- Craig, R.L.; Levetin, E. Multi-year study of Ganoderma aerobiology. Aerobiologia 2000, 16, 75–81. [Google Scholar] [CrossRef]
- Stępalska, D.; Wołek, J. Intradiurnal periodicity of fungal spore concentrations (Alternaria, Botrytis, Cladosporium, Didymella, Ganoderma) in Cracow, Poland. Aerobiologia 2009, 25, 333–340. [Google Scholar] [CrossRef]
- Hernández, F.T.; Muñoz, A.F.; Tormo, R.M.; Silva, I.P. Airborne spores of basidiomycetes in Merida (SW Spain). Ann. Agric. Environ. Med. 2013, 20, 657–663. [Google Scholar]
- Almaguer, M.; Rojas-Flores, T.I.; Rodríguez-Rajo, F.J.; Aira, M.-J. Airborne basidiospores of Coprinus and Ganoderma in a Caribbean region. Aerobiologia 2014, 30, 197–204. [Google Scholar] [CrossRef]
- Calderon, C.; Lacey, J.; McCartney, H.A.; Rosas, I. Seasonal and diurnal variation of airborne basidiomycete spore concentrations in Mexico city. Grana 1995, 34, 260–268. [Google Scholar] [CrossRef] [Green Version]
- Hasnain, S.M.; Fatima, K.; Al-Frayh, A.; Al-Sedairy, S.T. Prevalence of airborne basidiospores in three coastal cities of Saudi Arabia. Aerobiologia 2005, 21, 139–145. [Google Scholar] [CrossRef]
- Ščevková, J.; Hrabovský, M.; Kováč, J.; Rosa, S. Intradiurnal variation of predominant airborne fungal spore biopollutants in the Central European urban environment. Environ. Sci. Pollut. Res. 2019, 26, 34603–34612. [Google Scholar] [CrossRef]
- Vélez-Pereira, A.M.; De Linares, C.; Delgado, R.; Belmonte, J. Temporal trends of the airborne fungal spores in Catalonia (NE Spain), 1995–2013. Aerobiologia 2016, 32, 23–37. [Google Scholar] [CrossRef]
- Quintero, E.; Rivera-Mariani, F.; Bolaños-Rosero, B. Analysis of environmental factors and their effects on fungal spores in the atmosphere of a tropical urban area (San Juan, Puerto Rico). Aerobiologia 2010, 26, 113–124. [Google Scholar] [CrossRef]
- Li, Y.; Feng, Y.; Shang, Y.; Xu, H.; Xia, R.; Hou, Z.; Pan, S.; Li, L.; Bian, Y.; Zhu, J.; et al. Sexual spores in edible mushroom: Bioactive components, discharge mechanisms and effects on fruiting bodies quality. Food Sci. Hum. Wellness 2023, 12, 2111–2123. [Google Scholar] [CrossRef]
- Gonzálo, M.A.; Paredes, M.M.; Muñoz, A.F.; Tormo, R.; Silva, I. Dinámica de dispersión de basidiosporas en la atmósfera de Badajoz. Rev. Esp. Alergol. Inmunol. Clín. 1997, 12, 294–300. [Google Scholar]
- Burch, M.; Levetin, E. Effects of meteorological conditions on spore plumes. Int. J. Biometeorol. 2002, 46, 107–117. [Google Scholar] [CrossRef]
- Picornell, A.; Rojo, J.; Trigo, M.M.; Ruiz-Mata, R.; Lara, B.; Romero-Morte, J.; Serrano-García, A.; Pérez-Badia, R.; Gutiérrez-Bustillo, M.; Cervigón-Morales, P.; et al. Environmental drivers of the seasonal exposure to airborne Alternaria spores in Spain. Sci. Total Environ. 2022, 823, 153596. [Google Scholar] [CrossRef]
- Olsen, Y.; Skjøth, C.A.; Hertel, O.; Rasmussen, K.; Sigsgaard, T.; Gosewinkel, U. Airborne Cladosporium and Alternaria spore concentrations through 26 years in Copenhagen, Denmark. Aerobiologia 2020, 36, 141–157. [Google Scholar] [CrossRef]
- De Linares, C.; Navarro, D.; Puigdemunt, R.; Belmonte, J. Airborne Alt a 1 Dynamic and Its Relationship with the Airborne Dynamics of Alternaria Conidia and Pleosporales Spores. J. Fungi 2022, 8, 125. [Google Scholar] [CrossRef]
- Grinn-Gofroń, A.; Strzelczak, A. Changes in concentration of Alternaria and Cladosporium spores during summer storms. Int. J. Biometeorol. 2013, 57, 759–768. [Google Scholar] [CrossRef] [Green Version]
- Damialis, A.; Mohammad, A.B.; Halley, J.M.; Gange, A.C. Fungi in a changing world: Growth rates will be elevated, but spore production may decrease in future climates. Int. J. Biometeorol. 2015, 59, 1157–1167. [Google Scholar] [CrossRef]
- Grinn-Gofroń, A.; Bosiacka, B. Effects of meteorological factors on the composition of selected fungal spores in the air. Aerobiologia 2015, 31, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Sousa, L.; Camacho, I.C.; Grinn-Gofroń, A.; Camacho, R. Monitoring of anamorphic fungal spores in Madeira region (Portugal), 2003–2008. Aerobiologia 2016, 32, 303–315. [Google Scholar] [CrossRef]
- Recio, M.; Trigo, M.M.; Docampo, S.; Melgar, M.; García-Sánchez, J.; Bootello, L.; Cabezudo, B. Analysis of the predicting variables for daily and weekly fluctuations of two airborne fungal spores: Alternaria and Cladosporium. Int. J. Biometeorol. 2012, 56, 983–991. [Google Scholar] [CrossRef]
- Frankland, A.W.; Davies, R.R. Allergie Aux Spores de Moisissures En Angleterre. Le Poumon et le cøeur 1965, 21, 11–23. [Google Scholar]
- Gravesen, S. Fungi as a Cause of Allergic Disease. Allergy 1979, 34, 135–154. [Google Scholar] [CrossRef]
- Katotomichelakis, M.; Nikolaidis, C.; Makris, M.; Proimos, E.; Aggelides, X.; Constantinidis, T.C.; Papadakis, C.E.; Danielides, V. Alternaria and Cladosporium Calendar of Western Thrace: Relationship with Allergic Rhinitis Symptoms. Laryngoscope 2016, 126, E51–E56. [Google Scholar] [CrossRef]
- Pace, L.; Boccacci, L.; Casilli, M.; Fattorini, S. Temporal Variations in the Diversity of Airborne Fungal Spores in a Mediterranean High Altitude Site. Atmos. Environ. 2019, 210, 166–170. [Google Scholar] [CrossRef]
Taxon | Station | Concentration Thresholds | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Low | Medium | High | Very High | |||||||||||||||
Logit | Trees | Logit | Trees | Logit | Trees | Logit | Trees | |||||||||||
Sen | Spe | Sen | Spe | Sen | Spe | Sen | Spe | Sen | Spe | Sen | Spe | Sen | Spe | Sen | Spe | |||
Ascospores | Leptosphaeria | Barcelona | 50% | 75% | 51% | 73% | 58% | 74% | 48% | 88% | 59% | 76% | 59% | 83% | 67% | 74% | 57% | 85% |
Bellaterra | 67% | 65% | 56% | 77% | 69% | 68% | 64% | 87% | 74% | 68% | 65% | 87% | 80% | 68% | 71% | 87% | ||
Girona | 57% | 77% | 65% | 71% | 67% | 75% | 60% | 81% | 69% | 71% | 62% | 88% | 75% | 71% | 70% | 86% | ||
Lleida | 47% | 82% | 62% | 65% | 54% | 86% | 51% | 85% | 58% | 85% | 55% | 85% | 61% | 85% | 66% | 86% | ||
Manresa | 57% | 82% | 61% | 78% | 65% | 81% | 54% | 89% | 69% | 77% | 57% | 89% | 75% | 79% | 76% | 87% | ||
Roquetes–Tortosa | 55% | 78% | 55% | 73% | 64% | 77% | 58% | 85% | 66% | 78% | 59% | 85% | 72% | 79% | 67% | 93% | ||
Tarragona | 58% | 74% | 65% | 61% | 63% | 73% | 60% | 82% | 66% | 73% | 57% | 87% | 70% | 75% | 68% | 86% | ||
Vielha | 68% | 78% | 56% | 83% | 73% | 80% | 47% | 90% | 74% | 80% | 51% | 92% | 75% | 79% | 50% | 90% | ||
Pleospora | Barcelona | 54% | 69% | 60% | 71% | 54% | 68% | 46% | 82% | 59% | 67% | 45% | 86% | 61% | 67% | 48% | 83% | |
Bellaterra | 56% | 73% | 61% | 68% | 58% | 72% | 51% | 85% | 62% | 71% | 48% | 92% | 63% | 72% | 57% | 90% | ||
Girona | 41% | 86% | 49% | 77% | 50% | 86% | 40% | 92% | 49% | 83% | 52% | 89% | 53% | 82% | 64% | 88% | ||
Lleida | 67% | 49% | 80% | 33% | 65% | 64% | 53% | 74% | 71% | 66% | 55% | 81% | 70% | 67% | 64% | 81% | ||
Manresa | 53% | 74% | 70% | 57% | 57% | 76% | 55% | 84% | 60% | 79% | 57% | 87% | 65% | 80% | 59% | 94% | ||
Roquetes–Tortosa | 54% | 83% | 61% | 67% | 57% | 81% | 58% | 86% | 61% | 83% | 58% | 90% | 67% | 76% | 70% | 90% | ||
Tarragona | 48% | 77% | 68% | 53% | 55% | 74% | 45% | 87% | 56% | 73% | 50% | 86% | 63% | 71% | 63% | 89% | ||
Vielha | 54% | 72% | 46% | 76% | 60% | 78% | 50% | 85% | 60% | 81% | 48% | 92% | 73% | 83% | 50% | 95% | ||
Basidiospores | Agaricus | Barcelona | 70% | 49% | 36% | 73% | 75% | 51% | 27% | 87% | 73% | 52% | NC | NC | 77% | 54% | 45% | 79% |
Bellaterra | 72% | 68% | 52% | 77% | 70% | 69% | 43% | 83% | 73% | 68% | 41% | 85% | 71% | 68% | 53% | 78% | ||
Girona | 65% | 52% | 63% | 52% | 68% | 57% | 35% | 83% | 70% | 58% | 32% | 86% | 71% | 61% | 45% | 83% | ||
Lleida | 59% | 67% | 33% | 73% | 58% | 74% | 33% | 82% | 57% | 73% | 34% | 81% | 61% | 76% | 29% | 90% | ||
Manresa | 60% | 65% | 54% | 68% | 64% | 68% | 36% | 81% | 64% | 68% | 69% | 54% | 59% | 68% | 33% | 91% | ||
Roquetes–Tortosa | 65% | 69% | 61% | 54% | 65% | 63% | 44% | 74% | 63% | 67% | 39% | 77% | 72% | 69% | 52% | 78% | ||
Tarragona | 68% | 56% | 25% | 87% | 73% | 56% | 44% | 72% | 75% | 57% | 43% | 77% | 77% | 56% | 63% | 61% | ||
Vielha | 72% | 85% | 43% | 84% | 77% | 85% | 46% | 89% | 78% | 81% | 50% | 87% | 76% | 80% | 59% | 84% | ||
Ganoderma | Barcelona | 78% | 80% | 76% | 82% | 88% | 75% | 82% | 75% | 91% | 71% | 74% | 76% | 96% | 65% | 91% | 62% | |
Bellaterra | 77% | 93% | 76% | 92% | 80% | 91% | 74% | 92% | 82% | 87% | 69% | 92% | 86% | 83% | 63% | 90% | ||
Girona | 64% | 93% | 67% | 89% | 74% | 94% | 75% | 93% | 80% | 93% | 76% | 93% | 85% | 89% | 69% | 93% | ||
Lleida | 63% | 85% | 57% | 84% | 68% | 84% | 56% | 88% | 65% | 84% | 43% | 92% | 66% | 85% | 37% | 93% | ||
Manresa | 74% | 87% | 65% | 88% | 79% | 85% | 59% | 89% | 75% | 82% | 59% | 88% | 69% | 77% | 42% | 88% | ||
Roquetes–Tortosa | 69% | 77% | 58% | 84% | 78% | 78% | 71% | 84% | 82% | 78% | 71% | 79% | 74% | 77% | 77% | 73% | ||
Tarragona | 81% | 82% | 77% | 80% | 88% | 73% | 76% | 79% | 92% | 0% | 0% | 100% | 89% | 66% | 81% | 71% | ||
Vielha | 74% | 92% | 74% | 87% | 80% | 92% | 83% | 90% | 81% | 92% | 78% | 91% | 82% | 93% | 75% | 94% | ||
Conidiospores | Alternaria | Barcelona | 68% | 80% | 71% | 67% | 72% | 78% | 75% | 66% | 83% | 66% | 61% | 82% | 87% | 60% | 68% | 69% |
Bellaterra | 68% | 86% | 83% | 47% | 76% | 81% | 83% | 69% | 86% | 67% | 78% | 75% | 90% | 63% | 70% | 72% | ||
Girona | 52% | 92% | 58% | 84% | 67% | 92% | 74% | 87% | 83% | 91% | 65% | 93% | 82% | 85% | 64% | 88% | ||
Lleida | 79% | 75% | 96% | 50% | 64% | 79% | 61% | 83% | 59% | 91% | 71% | 71% | 64% | 93% | 64% | 87% | ||
Manresa | 55% | 88% | 74% | 68% | 59% | 93% | 75% | 66% | 68% | 89% | 65% | 88% | 75% | 85% | 58% | 88% | ||
Roquetes–Tortosa | 60% | 85% | 68% | 80% | 63% | 92% | 73% | 76% | 73% | 84% | 67% | 82% | 80% | 76% | 61% | 83% | ||
Tarragona | 71% | 72% | 79% | 61% | 74% | 73% | 84% | 55% | 81% | 67% | 58% | 77% | 80% | 64% | 59% | 74% | ||
Vielha | 57% | 89% | 57% | 90% | 84% | 88% | 74% | 90% | 82% | 85% | 62% | 93% | 75% | 86% | 50% | 94% | ||
Cladosporium | Barcelona | 66% | 85% | 79% | 57% | 76% | 73% | 57% | 81% | 83% | 59% | 59% | 74% | 85% | 54% | 70% | 72% | |
Bellaterra | 67% | 91% | 72% | 78% | 76% | 79% | 73% | 81% | 83% | 65% | 49% | 80% | 89% | 59% | 80% | 62% | ||
Girona | 54% | 96% | 69% | 68% | 67% | 93% | 65% | 93% | 76% | 88% | 57% | 92% | 81% | 80% | 49% | 89% | ||
Lleida | 44% | 95% | 64% | 67% | 45% | 97% | 62% | 57% | 53% | 85% | 49% | 87% | 54% | 87% | 33% | 93% | ||
Manresa | 55% | 95% | 77% | 78% | 63% | 84% | 66% | 77% | 72% | 82% | 44% | 91% | 75% | 77% | 41% | 88% | ||
Roquetes–Tortosa | 67% | 95% | 77% | 65% | 72% | 88% | 62% | 85% | 75% | 74% | 50% | 85% | 81% | 73% | 42% | 85% | ||
Tarragona | 61% | 90% | 74% | 55% | 75% | 75% | 50% | 85% | 89% | 62% | 58% | 75% | 92% | 53% | 70% | 64% | ||
Vielha | 74% | 94% | 70% | 92% | 79% | 92% | 55% | 94% | 76% | 87% | 58% | 90% | 77% | 83% | 62% | 88% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vélez-Pereira, A.M.; De Linares, C.; Canela, M.A.; Belmonte, J. A Comparison of Models for the Forecast of Daily Concentration Thresholds of Airborne Fungal Spores. Atmosphere 2023, 14, 1016. https://doi.org/10.3390/atmos14061016
Vélez-Pereira AM, De Linares C, Canela MA, Belmonte J. A Comparison of Models for the Forecast of Daily Concentration Thresholds of Airborne Fungal Spores. Atmosphere. 2023; 14(6):1016. https://doi.org/10.3390/atmos14061016
Chicago/Turabian StyleVélez-Pereira, Andrés M., Concepción De Linares, Miquel A. Canela, and Jordina Belmonte. 2023. "A Comparison of Models for the Forecast of Daily Concentration Thresholds of Airborne Fungal Spores" Atmosphere 14, no. 6: 1016. https://doi.org/10.3390/atmos14061016
APA StyleVélez-Pereira, A. M., De Linares, C., Canela, M. A., & Belmonte, J. (2023). A Comparison of Models for the Forecast of Daily Concentration Thresholds of Airborne Fungal Spores. Atmosphere, 14(6), 1016. https://doi.org/10.3390/atmos14061016